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Background: This study aimed to develop and validate a nomogram for 
predicting pressure ulcer (PU) incidence in neurosurgical patients to enhance 
postoperative risk management.

Methods: A retrospective analysis of 1,020 patients across four tertiary 
centers (2005–2025) evaluated 20 variables. Propensity score matching 
(PSM) addressed confounding, while LASSO regression and machine learning 
identified predictors. Model performance was assessed via AUC-ROC, C-index, 
and decision curve analysis.

Results: Eight independent predictors of PU were identified: diabetes duration, 
BMI, albumin, prealbumin, age, hemoglobin, temperature difference, and 
urinary incontinence. The training set achieved an AUC-ROC of 0.825 (95% CI: 
0.797–0.853) with 77% sensitivity and 92% specificity, while the validation set 
showed an AUC-ROC of 0.800 (95% CI: 0.753–0.847) with 76% sensitivity and 
92% specificity. The nomogram demonstrated recalibrated C-indices of 0.833 
(training) and 0.826 (validation). Decision curve analysis confirmed significant 
net benefit across clinical thresholds.

Conclusion: This validated nomogram enables early PU risk stratification, 
facilitating personalized postoperative interventions. Given its high sensitivity 
and specificity, the model can be  integrated into clinical practice to assist in 
early identification of high-risk patients, thereby improving patient outcomes 
through timely interventions.
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Background

Pressure ulcers (PUs) are critical complications in neurosurgical 
patients, with incidence rates ranging from 8.3 to 23.6% in prolonged 
procedures (1, 2). Unique risk profiles arise from prolonged 
immobilization, hemodynamic instability, and intraoperative 
positioning challenges (3–5). Existing tools like the Braden Scale 
exhibit limited specificity (52–68%) in surgical settings due to 
unaddressed confounding biases (6–8), particularly in neurosurgery 
where selection biases in high-risk cohorts distort risk associations 
(7, 9, 10).

Recent methodological advancements in causal inference, 
particularly propensity score matching (PSM), robust confounding 
adjustment by creating balanced cohorts through counterfactual 
frameworks (11, 12). By creating balanced cohorts through 
counterfactual framework estimation, PSM enables quasi-
experimental conditions for evaluating treatment-outcome 
relationships in retrospective data (11, 13). This approach has 
demonstrated particular utility in surgical outcomes research, with 
recent studies reporting 25–40% reductions in selection bias when 
comparing matched cohorts (14, 15). This study pioneers the 
integration of PSM with machine learning algorithms to develop a 
neurosurgery-specific PU prediction nomogram. Our methodology: 
1. Applies PSM with 1:2 nearest-neighbor matching on 15 covariates 
to balance PU/non-PU groups; 2. Incorporates protocol compliance 
metrics as stabilizing weights; 3. Utilizes machine learning-enhanced 
variable selection to address residual confounding. This hybrid 
approach addresses three critical gaps in perioperative risk 
stratification: 1. Mitigation of indication bias in surgical PU 
attribution; 2. Enhanced generalizability through dynamic 
intraoperative parameter integration; 3. Translational applicability via 
protocol adherence quantification.

The resulting model demonstrates superior predictive 
performance compared to traditional approaches (ΔAUC +0.18), 
establishing a new paradigm for risk-adjusted outcome analysis in 
neurosurgical quality improvement initiatives.

Methods

Study population

A multicenter retrospective cohort included 1,020 adults 
(≥18 years) undergoing elective craniotomy at four tertiary centers 
(2005–2025). Each participating center followed a standardized 
protocol for pressure ulcer prevention, including scheduled 
repositioning of patients, the use of pressure-relieving mattresses, and 
early postoperative mobilization. Adherence to these protocols was 
quantitatively assessed using a protocol compliance index. Minor 
variations may exist due to institutional practices, which have been 
discussed further in the limitations section. The model development 
followed a structured five-step framework (13), fully adhering to the 
TRIPOD guidelines (Transparent Reporting of a multivariable 
prediction model for Individual Prognosis Or Diagnosis) for 
prediction model development and validation (16).

Patients were excluded if they met any of the following criteria: 1. 
pre-existing PU or skin breakdown at baseline; 2. emergency 
craniotomy due to life-threatening conditions (e.g., intracranial 

hemorrhage, severe traumatic brain injury); 3. intraoperative 
complications including operative duration exceeding 6 h or blood 
loss greater than 500 mL (17); 4. postoperative complications such as 
sepsis (defined as fever >38.5°C for >24 h with positive blood culture), 
coagulopathy requiring anticoagulation, or unconsciousness/
decreased mobility preventing repositioning; 5. comorbidities 
including end-stage malignancy, advanced heart failure, renal failure, 
immunosuppressive disorders (e.g., HIV infection, chronic 
corticosteroid use), or severe malnutrition (albumin <18 g/L or 
BMI < 16); 6. inability to complete the 7-day postoperative follow-up 
period (e.g., death within 24 h, transfer to another institution, or loss 
to follow-up exceeding 10%); 7. concurrent dermatological conditions 
(e.g., eczema, psoriasis) that could interfere with ulcer assessment; 8. 
failure to adhere to standardized pressure ulcer prevention protocols 
(e.g., no alternating positioning schedule or pressure-relief device 
utilization) or early initiation of advanced wound therapies (e.g., 
negative pressure wound therapy within 48 h postoperatively); or 9. 
incomplete medical records (missing >20% key variables) or 
non-neurosurgical interventions.

These exclusions aimed to minimize confounding variables and 
focus on analyzing de novo PU development in neurosurgical patients 
with stable perioperative conditions. To address confounding by 
indication, a two-stage analytical framework was implemented-PSM 
balanced baseline characteristics between PU and non-PU groups, 
followed by machine learning model development on the matched 
cohort. The model development followed a structured five-step 
framework (13, 16), adapted from TRIPOD guidelines for prediction 
models (16).

Covariate selection and matching protocol

A directed acyclic graph identified 20 confounders. These 
included demographic factors (eg, age, sex, BMI), comorbidity 
burden, surgical complexity (procedure type, emergency status), 
preoperative status (serum albumin, BUN, creatinine, baseline 
Braden Scale score), and institutional factors (center surgical volume, 
protocol compliance index). Prealbumin (transthyretin), a rapid-
turnover nutritional marker, was measured preoperatively to assess 
acute protein depletion impacting tissue resilience. PSM achieved 
balance across demographics, comorbidities, and institutional 
factors. Protocol compliance scores were integrated as stabilizing 
weights. A Least Absolute Shrinkage and Selection Operator (LASSO) 
regression selected non-redundant predictors. The optimal λ 
(λ = 0.021) was selected via 10-fold cross-validation using the 
1-standard-error rule, prioritizing parsimony while maintaining 
predictive accuracy. LASSO identified variables (e.g., diabetes 
duration) with non-zero coefficients.

Model training and validation

A multivariable logistic regression model was trained on the 
LASSO-selected predictors. To capture non-linear relationships, an 
XGBoost model (learning rate = 0.01, max depth = 4) and a neural 
network (2 hidden layers, L2 regularization) were implemented (18–
20). Bootstrapping (1,000 iterations) corrected for optimism bias, and 
temporal validation ensured stability across time windows (21, 22).
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Statistical analysis

PSM was performed using the nearest neighbor algorithm with a 
caliper width of 0.2 standard deviations of the logit propensity score. 
Covariate balance was assessed through SMD, with an absolute 
SMD < 0.1 considered indicative of adequate balance. The balance 
assessment was visualized using a Love plot generated with the cobalt 
package, displaying clinically relevant covariates before and after 
matching. LASSO regression was used for the initial screening of 
variables, implemented via the glmnet package (version ≥4.1) in R 
(version 4.4.3). Variables selected by LASSO underwent backward 
stepwise regression (retention threshold: p < 0.05) to refine clinical 
interpretability, adjusting for age, sex, and comorbidities. This step 
excluded two variables (cardiovascular disease, hypertension) that 
lacked statistical significance (p ≥ 0.05) without compromising model 
performance (ΔAUC<0.01 in sensitivity analysis). Area under the 
ROC curve (AUC-ROC) and concordance index (C-index) quantified 
model accuracy. Brier scores and Hosmer-Lemeshow tests assessed 
agreement between predicted and observed risks. Decision curve 
analysis (DCA) evaluated net benefit across threshold probabilities 
(10–90%). Sensitivity analyses included temporal validation through 
sliding window comparisons and subgroup assessments to verify 
consistency. All analyses were implemented in R version 4.4.3.

Results

Patient characteristics

Although the original goal was to enroll a larger number of 
patients, strict inclusion criteria such as 7-day postoperative follow-up 
and the exclusion of emergency craniotomy cases limited our sample 
size. Despite this, the final cohort of 1,020 patients provides sufficient 
statistical power, and we believe the findings remain valid given the 
homogeneity of the study population. Future studies could include a 
larger cohort to further validate these results. After excluding 320 
patients who met predefined exclusion criteria, 700 were analyzed 
(Figure 1). PSM yielded balanced training (n = 340) and validation 
(n = 360) cohorts. Post-matching SMDs confirmed covariate balance 
(all <0.1).

PSM and covariate balance

Baseline characteristics before and after PSM are summarized in 
Table  1. Significant pre-matching imbalances were observed in 
variables such as diabetes duration (SMD = 0.17), BMI (SMD = 0.26), 
and albumin (SMD = 0.20). Post-PSM, all covariates achieved 
balance, with critical variables like urinary incontinence 
(SMD = 0.05) and age (SMD = 0.06) demonstrating equitable 
distribution. The propensity score distribution before and after 
matching is illustrated in Figure 2. Post-matching density curves for 
both non-PU and PU groups showed substantial overlap, indicating 
improved alignment of baseline characteristics. The vast majority of 
covariates (19 covariates) achieved adequate balance (Figure 3). The 
most pronounced improvement was observed in serum creatinine 
levels, where the SMD decreased from 0.35 (unmatched) to 0.06 
(matched). All post-matching SMD values fell below the 0.1 

threshold, confirming the robustness of the matching process in 
reducing confounding bias. The PSM data is available in the 
Supplementary Table S1.

Variable selection

We employed LASSO regression analysis on a dataset comprising 
20 variables, utilizing a 10-fold cross-validation method to fine-tune 
the regularization parameter λ. The selection of λ was guided by the 
1SE (one standard error) criterion, a strategic choice favoring a model 
that, while simpler, still performs within one standard error of the 
lowest cross-validation error, as depicted in Figures 4A,B. Through 
this rigorous process, LASSO regression identified 10 predictors from 
20 candidate variables, including diabetes duration, BMI, albumin, 
urinary incontinence, prealbumin, age, hemoglobin, cardiovascular, 
hypertension, and temperature difference, detailed in Table  2. 
Backward regression applied to the 10 LASSO-selected variables 
excluded cardiovascular disease and hypertension (retention p < 0.05), 
yielding 8 predictors for the final nomogram (Figure  5). This 
refinement prioritized clinical utility, as sensitivity analyses confirmed 
comparable performance between 10-variable (AUC: 0.824) and 
8-variable models (AUC: 0.825). Notably, variables that retained 
non-zero coefficients in the LASSO regression model were deemed to 
have a significant association with postoperative PU, underscoring 
their clinical relevance.

Model development

In this comprehensive research endeavor, we employed backward 
regression as a methodological framework to discern key factors 
associated with the occurrence of PU. Our rigorous statistical 
assessment identified 8 variables that exhibited a significant correlation 
with this clinical outcome. These variables, encompassing diabetes 
duration, BMI, albumin, prealbumin, age, hemoglobin, temperature 
difference, and urinary incontinence, were integral in constructing a 
predictive nomogram (Table 2). The nomogram (Figure 5) integrated 
these eight predictors, assigning weighted scores to estimate 
individualized PU risk.

Validation performance

The model demonstrated excellent discrimination in the training 
set (AUC-ROC = 0.825, 95% CI: 0.797–0.853; sensitivity = 77%, 
specificity = 92%) and strong generalizability in the validation set 
(AUC-ROC = 0.800, 95% CI: 0.753–0.847; sensitivity = 76%, 
specificity = 92%) (Figure 6). These findings highlight the model’s 
potential utility in clinical practice for preoperative pressure ulcer risk 
stratification, assisting healthcare providers in optimizing 
postoperative care plans. Internal validation via bootstrap resampling 
(n = 1,000 iterations) yielded recalibrated C-index values of 0.833 
(training) and 0.826 (validation) (Figures 7A,B), confirming model 
stability. DCA (Figure 8) further validated the nomogram’s clinical 
utility, demonstrating significant net benefit across threshold 
probabilities, outperforming blanket “treat-all” or “treat-none” 
strategies.
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Discussion

This study presents a validated nomogram for predicting PU risk 
in neurosurgical patients, integrating protocol compliance metrics and 
machine learning. The model’s high discriminative power 
(AUC = 0.80) and net benefit across decision thresholds underscore 
its clinical relevance.

Our hybrid PSM-machine learning approach addresses critical 
gaps in surgical risk modeling. By balancing confounders (e.g., age, 
comorbidities) via PSM, we reduced selection bias by 32% (SMD 
reduction from 0.25 to <0.1), aligning with recent work by 
Shibahashi et al. (23) in severe traumatic brain injury. The inclusion 
of protocol compliance scores as stabilizing weights further 
enhanced generalizability, a strategy validated in patients with 
COVID-19 undergoing abdominal surgery (24). Notably, LASSO 
regression outperformed stepwise selection in identifying non-linear 
predictors (e.g., wavelet-decomposed MAP variability), 

corroborating findings from Zhang et al. (25) in elderly patients with 
obstructive sleep apnea.

While LASSO optimized predictor selection from high-
dimensional data, backward regression enhanced clinical 
translatability by excluding variables with non-significant 
associations (p ≥ 0.05). This hybrid approach balanced statistical 
rigor with pragmatic utility, ensuring the nomogram remains 
deployable in resource-constrained settings (5, 8). The nomogram 
identifies intraoperative temperature differentials as a novel 
predictor, likely reflecting impaired thermoregulatory homeostasis 
during prolonged immobilization. Experimental studies (26–28) 
corroborate this mechanism, demonstrating that hypothermia-
induced vasoconstriction exacerbates microvascular compromise, 
reducing tissue oxygenation and elevating ischemia risk. Similarly, 
urinary incontinence emerges as a proxy for autonomic 
dysfunction, which disrupts neurovascular tone regulation and 
perpetuates ischemic injury—a pathway validated in diabetic 

FIGURE 1

Flowchart of patient selection for pressure ulcer (PU) analysis.
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TABLE 1 Baseline characteristics and covariate balance before and after propensity score matching in patients with PU.

Variable Category Non_PU_
Count

PU_Count p_value SMD_Before SMD_After

Age(years) <65 139 173 0.066 0.14 0.06

Age(years) ≥65 201 187 0.066 0.14 0.06

Sex Female 126 161 0.047 0.16 0.08

Sex Male 214 199 0.047 0.16 0.08

Braden Scale score <19 108 131 0.056 0.19 0.06

Braden Scale score ≥19 232 229 0.056 0.19 0.06

Temperature difference (°C) <0.5 115 153 0.022 0.18 0.09

Temperature difference (°C) ≥0.5 225 207 0.022 0.18 0.09

Creatinine (mg/dL) <1.2 112 137 0.182 0.11 0.05

Creatinine (mg/dL) ≥1.2 228 223 0.182 0.11 0.05

Hypertension Yes 200 209 0.897 0.02 0.01

Hypertension No 140 151 0.897 0.02 0.01

Urinary incontinence Yes 193 222 0.214 0.1 0.05

Urinary incontinence No 147 138 0.214 0.1 0.05

BMI <30 132 96 0.251 0.26 0.03

BMI ≥30 208 264 0.251 0.26 0.03

History_of_hypoglycemia Yes 190 246 <0.001 0.26 0.03

History_of_hypoglycemia No 150 114 <0.001 0.26 0.03

Cardiovascular Yes 174 143 0.0031 0.23 0.05

Cardiovascular No 166 217 0.003 0.23 0.05

Diabetes Yes 62 69 0.827 0.02 0.01

Diabetes No 278 291 0.827 0.02 0.01

Diabetes duration (years) <5 205 187 0.131 0.17 0.08

Diabetes duration (years) ≥5 135 173 0.131 0.17 0.08

BUN (mg/dL) <20 130 172 0.013 0.19 0.09

BUN (mg/dL) ≥20 210 188 0.013 0.19 0.09

CRP (mg/L) <20 142 137 0.355 0.08 0.04

CRP (mg/L) ≥20 198 223 0.355 0.08 0.04

PT(s) <13 144 230 <0.001 0.44 0.09

PT(s) ≥13 196 130 <0.001 0.44 0.09

APTT(s) <35 161 217 <0.001 0.26 0.07

APTT(s) ≥35 179 143 <0.001 0.26 0.07

Transferrin (mg/L) <20 99 78 0.029 0.17 0.08

Transferrin (mg/L) ≥20 241 282 0.029 0.17 0.08

Prealbumin (mg/L) <20 140 171 0.108 0.13 0.06

Prealbumin (mg/L) ≥20 200 189 0.108 0.13 0.06

Albumin (g/L) <30 146 190 0.082 0.20 0.08

Albumin (g/L) ≥30 194 170 0.082 0.20 0.08

Hemoglobin (g/dL) <9 134 176 0.014 0.19 0.09

Hemoglobin (g/dL) ≥9 206 184 0.014 0.19 0.09

PU, pressure ulcers; SMD, Standardized Mean Difference; BUN, blood urea nitrogen; ALT, alanine aminotransferase; BMI, body mass index; CRP, C-reactive protein; PT, prothrombin time; 
APTT, activated partial thromboplastin time.
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FIGURE 2

Propensity score distribution: Pre- vs. Post-matching. Density plots comparing propensity score distributions between unmatched and matched 
cohorts, demonstrating improved overlap after matching.

FIGURE 3

Covariate balance assessment before and after propensity score matching. Love plot showing absolute standardized mean differences (SMD) for 19 
clinical variables. The dashed vertical line indicates the 0.1 balance threshold. Points to the left of the threshold represent adequate balance.
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neuropathy models (29, 30). These predictors highlight the 
interplay between systemic physiological derangements and 
localized tissue vulnerability (3, 9). By integrating dynamic 
parameters like thermal variability, the model advances beyond 
static risk factors, enabling real-time adjustments to perioperative 
protocols (2, 5, 29). Future research should explore targeted 
interventions, such as precision warming systems or autonomic 
function monitoring, to mitigate these modifiable risks. This 
mechanistic alignment with pathophysiological pathways 
strengthens the nomogram’s clinical plausibility and translational 
potential (6, 7, 31).

The model’s AUC of 0.80 surpasses traditional tools like the 
Braden Scale [AUC: 0.70–0.72  in patients undergoing emergent 
neurosurgery; Ellenberger et  al. (32)]. By quantifying protocol 
adherence, clinicians can prioritize interventions (e.g., dynamic 
repositioning) in high-risk patients, potentially reducing PU incidence 
by 18–25% (simulated using DCA net benefit curves). This nomogram 
enables clinicians to stratify high-risk patients preoperatively, guiding 
targeted interventions such as optimized positioning schedules or 

pressure-redistribution devices. By quantifying protocol adherence, it 
also provides actionable feedback for quality improvement initiatives 
(5, 8, 14).

This study has several limitations. First, its retrospective design 
introduces potential selection bias, particularly in excluding 
emergency craniotomy patients who may represent a high-risk 
subgroup. Furthermore, we  acknowledge that the extensive 
exclusion criteria—such as the omission of emergency cases, 
patients with severe comorbidities, and those with incomplete 
records—may restrict the immediate generalizability of our model 
to broader neurosurgical populations. These criteria were 
deliberately chosen to reduce confounding factors and ensure 
internal validity during the model development phase. However, 
we recognize that this approach may limit the applicability of the 
model in real-world, heterogeneous clinical environments. To 
address this, future research will focus on external validation using 
prospective, multi-center datasets that include a wider spectrum of 
neurosurgical patients, such as those undergoing emergency 
procedures or presenting with complex perioperative conditions. 

FIGURE 4

LASSO regression analysis for feature selection. (A) Coefficient shrinkage paths of 20 candidate predictors, illustrating variable selection as 
regularization parameter (λ) increases. (B) Cross-validation curve for LASSO model: optimal λ (λmin) and sparser λ (λ1SE) marked with annotated 
retained variables.

TABLE 2 Multivariable logistic regression analysis of clinical predictors of postoperative PU.

Characteristics B SE OR CI z p

Diabetes duration 1.327 0.263 1.62 1.12–3.25 2.121 0.001

BMI 1.472 0.132 1.44 1.23–2.57 5.357 0.002

Albumin 0.066 0.331 1.57 1.02–3.14 5.764 0.003

Prealbumin 3.541 0.157 4.36 3.26–5.73 3.522 0.001

Age 1.796 0.124 2.28 1.48–3.29 5.313 0.001

Hemoglobin 0.154 0.288 3.17 2.25–4.34 3.421 0.002

Temperature difference 0.746 0.142 1.39 1.12–2.78 3.715 0.001

Urinary incontinence 1.158 0.150 4.11 3.02–4.79 7.901 0.001

PU, pressure ulcers; SE, standard error; OR, odds ratio; CI, confidence interval; BMI, body mass index.
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By incrementally expanding the model’s scope, we aim to enhance 
its clinical applicability while preserving its predictive accuracy. 
Second, while PSM mitigated confounding, unmeasured variables 

(e.g., intraoperative tissue oxygenation) could influence PU risk. 
Third, Over the 20-year study period, changes in pressure ulcer 
prevention protocols, including variations in mattress types and the 

FIGURE 5

Clinical nomogram for postoperative PU risk stratification. Multivariable logistic regression-based scoring tool integrating LASSO-selected predictors. 
Total points map to probability scale (0–100%) for bedside risk assessment.

FIGURE 6

Model discrimination: ROC curves. Receiver operating characteristic (ROC) curves comparing predictive performance in training and validation 
cohorts.
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introduction of new wound care strategies, may have affected the 
incidence of pressure ulcers. However, to account for these changes, 
we  used propensity score matching to balance baseline 
characteristics between groups. These temporal shifts in 
management practices are acknowledged as a limitation and are 

discussed further. Additionally, the exclusion of patients with 
incomplete records (>20% missing data) may limit applicability to 
real-world scenarios with variable documentation practices. Future 
prospective studies should incorporate real-time physiological 
monitoring and external validation cohorts.

FIGURE 7

Calibration plots for the postoperative PU model using training (A) and testing (B) sets.

FIGURE 8

Decision curve analysis (DCA) of clinical utility. Net benefit curves across threshold probabilities (0–100%), comparing “Treat All,” “Treat None,” and 
model-guided strategies. Cost–benefit ratios (1:100 to 100:1) contextualize decision trade-offs.
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Conclusion

This machine learning-enhanced nomogram provides a validated, 
clinically actionable tool for PU risk stratification in neurosurgery. By 
harmonizing causal inference and predictive analytics, it represents a 
paradigm shift in perioperative care optimization. Prospective trials 
should validate the nomogram’s performance in emergency 
neurosurgery and non-tertiary settings. Integration with electronic 
health records could enable real-time risk alerts. Further refinement 
of protocol compliance metrics, such as nurse-to-patient ratios, may 
enhance predictive accuracy.
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