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Introduction: Understanding host-pathogen interactions is crucial

for explaining the variability in sepsis outcomes, with Pseudomonas

aeruginosa (PA) remaining a significant public health concern. In this

work, we explored PA-human host interaction mechanisms through a

data integration workflow, focusing on protein-protein and metabolite-

protein interactions, along with pathway modulation in affected organs during

severe infections.

Methods: A scoping literature review enabled us to construct a domain-

based infection network encompassing pathogenesis concepts, molecular

interactions, and host response signatures, providing a wide view of the relevant

mechanisms involved in severe bacterial infections.

Results: Our analysis yielded a literature-based comprehensive description of PA

infection mechanisms and an annotated dataset of 189 PA-human interactions

involving 151 proteins/molecules (109 human proteins, 3 human metabolites,

34 PA proteins, and 5 PA molecules). This dataset was complemented with

gene expression analysis from in vivo PA-infected lung samples. The results

indicated a notable overexpression of proinflammatory pathways and PA-

mediated modulation of host lung responses.

Discussion: Our comprehensive molecular network of PA infection

represents a valuable tool for the understanding of severe bacterial

infections and offers potential applications in predicting clinical

phenotypes. Through this approach combining omics data, clinical

information, and pathogen characteristics, we have provided a

foundation for future research in host-pathogen interactions and the
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mechanistic grounds to build dynamic computational models for clinical 

phenotype predictions. 

KEYWORDS 

P. aeruginosa, host-pathogen interaction, bacterial infection, disease map, sepsis 

Introduction 

Sepsis caused by multi-drug resistant pathogens remains 
a leading cause of mortality in intensive care units (ICU) and 
represents a significant public health concern (1, 2). While 
it is established that microbial infection outcomes depend 
heavily on host conditions and spatial interactions between 
microbes, hosts, and other microorganisms (3, 4), many molecular 
details of these complex relationships remain unexplored. 
Pseudomonas aeruginosa (PA) is one of the most common 
pathogens for nosocomial infections, and, along with Acinetobacter 
baumannii and Enterobacterales resistant to carbapenems, it 
was listed among critical priority pathogens for World Health 
Organization (5, 6). The European Centre for Disease Prevention 
and Control (ECDC) has included PA in its antimicrobial 
resistance surveillance program (7). As an opportunistic human 
pathogen particularly aecting Cystic Fibrosis (CF) patients, 
PA’s clinical significance stems from multiple drug resistance 
mechanisms, numerous virulence factors, and biofilm production 
capabilities, enhancing its infection and host colonization 
potential (8). Recently, computational approaches have aided 
in unraveling mechanistic insights of PA infections. A network-
assisted experiment allowed the identification of novel genes 
for virulence and antibiotic resistance, confirmed through 
experimental validation, showing cross-resistance against multiple 
drugs due to the same genes (9). In another eort, a real-time 
deep-learning model was applied to sepsis patients aiming to 
estimate prognostic outcomes from early infection phases (10). 
The model addressed baseline acuity, comorbidities, seasonal 
eects, and secular trends over time, unraveling the strategic 
significance of computational modeling to improve the clinical 
outcomes in sepsis patients. 

Mechanistic computational modeling, omics data analysis, 
and clinical research have emerged as crucial tools for bridging 
the gap between conceptual models and clinical practice in 
infectious diseases (11, 12). By structuring key pathophysiological 
mechanisms and identifying conceptual domains, molecular 
diagrams provide novel insights into biomedical knowledge 
(11, 13, 14). The value of network-based exploratory and 
molecular virus-host interactome approaches was particularly 
evident during the COVID-19 pandemic, where rapid 
identification of molecular interactions between SARS-CoV-
2 and human hosts became crucial to explain the clinical 
manifestations (15–19), as well as enabled a timely drug 
repurposing (20, 21). In this context, the resulting molecular 
maps of disease mechanisms (e.g., a Disease Map)1 provided 

1 https://disease-maps.io/ 

biological meaning to apparently unrelated interactions, 
facilitating the mechanistic understanding of complex disease 
processes (22, 23). Following this paradigm, we applied similar 
strategies to bacterial pathogens such as PA, to uncover 
actionable insights about complex host interactions in severe 
systemic infections. 

Our study presents a data integration workflow to build 
a molecular map of interaction between PA and human hosts 
in severe infection. Through extensive literature review, data 
curation, and gene expression meta-analysis, we have documented 
PA infection pathogenic mechanisms, direct protein-protein 
interactions (PPI), metabolite-protein interactions (MPI), and 
pathway activations in aected organs, organizing these findings 
into three conceptual domains: “cellular interaction level”, “tissue 
interaction level”, and “organ interaction level”. 

Materials and methods 

Scoping review 

We conducted independent literature reviews compliant with 
international reference guidelines for scoping reviews (24). For 
each domain, the scoping review outcomes were processed to 
identify features of PA interactions with the host and the direct or 
indirect eects that they cause within the host itself. 

Using a structured search string in PubMed (Supplementary 
Text 1), we identified 532 articles after excluding duplicates, 
non-English publications, and studies not addressing systemic 
infection or host-pathogen interactions. We supplemented this 
with 27 additional articles focusing on host response to PA 
infection in both mouse models and human patients through 
omics data analysis. During the review process, papers were 
evaluated in three sequential inclusion criteria: (i) title relevance; 
(ii) abstract consisting of three conceptual domains, and (iii) 
identification of specific pathogenic mechanisms in PA infection 
through full-text analysis. The final selection comprised 150 
articles which were categorized into three interaction levels: (1) 
“cell interaction level”; (2) “tissue interaction level”; and (3) 
“organ interaction level”. Full-text articles were evaluated by the 
curators to define the best possible conceptual domains, following 
the reference methodology (PRISMA-ScR) for the assessment 
(25, 26). Each article selected for review was independently 
read and evaluated by two reviewers. At the end of the 
evaluation, the data results were discussed and evaluated in 
a specific meeting of the entire working group. Each article 
was assigned a unique reference ID (SR) and documented in 
Supplementary Table 1. 
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Conceptual domains 

First, we identified the conceptual domains that organize 

the information obtained from the literature, providing a 

hierarchical model of host-pathogen interaction, following a 

previous experience on mapping host-pathogen interactions in the 

COVID-19 Disease Map project (11, 12). Three interaction levels 
within the host’s system were identified: cell, tissue, and organ. For 

each level, we further identified conceptual domains, describing 

the interactions with the pathogen (Figure 1). A comprehensive 

description of all mechanisms and PA-human interactions, along 

with search string, containing all search terms used in the scoping 

review section on PubMed, and protein abbreviation were reported 

in Supplementary Text 1, while a summary can be found below in 

the results section. 

Molecular interaction dataset and human 
host - PA interactome 

We documented PPI and MPI between PA and humans. All 
interaction details, including type, Uniprot ID, literature reference, 
and subdomains of the model, were compiled in the curated 
dataset (Supplementary Table 2). We constructed a network-
based interaction model by exploring PA-host data gathered from 
the scoping review, following methodology established for SARS-
CoV-2-human host interactions (16, 17). Human PPI data was 
retrieved using R packages PSICQUIC and biomaRt (27, 28), 
resulting in a comprehensive large network of 13,334 nodes and 
73,584 interactions that included PA-human host interactions. The 
mechanisms of infection were estimated using the Random Walk 
with Restart (RWR) algorithm (29), using each PA protein as a 
seed and limiting the output to the 200 closest host proteins per PA 

FIGURE 1 

Structure of data collection and analysis workflow. For each level, we identified further conceptual domains, describing the interactions with PA 
molecules. 
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protein. Network visualizations were generated using GEPHI 0.9.2 
(30). Gene set enrichment analysis (GSEA) was performed using 
the R package enrichR (31), testing against Reactome 2022, KEGG 
2021 and WikiPathways 2023 human pathways databases (32–34). 

Meta-analysis of the whole 
transcriptome from animal model of 
PA-induced sepsis 

We performed a meta-analysis of gene expression in mouse 
lung samples comparing PA-infected tissues with healthy controls 
using data from two projects. The first dataset comprised 12 bulk 
RNAseq samples from PA-infected lung tissues (PRJNA975462; 
GEO: GSE233206, SRA Study SRP439193) (35), while the second 
included 6 bulk gene expression samples from acute and chronic 
PA pulmonary infection (PRJNA793679; GEO: GSE192890, SRA 
Study SRP353174) (36). SRA data was processed using Prefetch 
and converted to FASTQ files using the fastq-dump tool from the 
SRA Toolkit software v2.11.0 (37, 38). Reads were aligned to the 
mm10 mouse reference genome using HISAT2 (39). Dierentially 
expressed genes (DEGs) were identified using DESeq2 v.1.42.1 in 
R version 3.4.3 (40), with thresholds set at Log2FC > |1| and 
Benjamin-Hochberg False Discovery Rate < 5% (BH-FDR). To 
account for batch eects between laboratories, we conducted a 
meta-analysis using metaRNASeq R packages, combining p-values 
from the two independent RNA-seq experiments using Fisher 
methods (41). The analysis focused on 21,010 genes shared between 
datasets, generating combined BH-adjusted p-values and average 
Log2FC values. Genes meeting the thresholds of Log2FC > |1| and 
BH FDR < 5% were classified as DEGs. 

Gene enrichment on DEGs in PA 
infection and healthy conditions 

To deliver biological meaning from the data, we performed 
a gene enrichment analysis using Reactome, KEGG, and 
WikiPathways (32–34). The enrichR R package was used to 
conduct gene set enrichment analysis, with significance assessed 
through Fisher exact test (p-value) and false discovery rate (q-value: 
adjusted p-value for FDR) (31). 

Results 

Domain-based analysis of PA-human 
host interactions reveals detailed 
pathogenic mechanisms 

To understand in detail PA infection pathogenic mechanisms, 
we reported many PA-human host interactions mechanisms, 
organizing them into three conceptual domains: cellular, tissue, and 
organ-level interactions. 

At the cellular level, four key aspects characterize PA-
host interaction: (i) bacterial adhesion/colonization (PA-Ad); (ii) 

bacterial invasion and innate immune response of the host (PA-
In); (iii) PA exotoxins activity in infection (PA-Ex); (iv) bacterial 
metabolic mechanisms (PA-Met). The pathogenic mechanisms in 
PA infection were assigned to each domain (Table 1). PA initiates 
infection through flagellum and type IV pili adherence, interacting 
with MUC1 ectodomains via NEU1 modulation (42, 43). The 
bacterium employs multiple adhesion strategies, including biofilm 
formation, psl adhesins (44, 45), and various receptors binding 
to extracellular matrix components (46, 47). During invasion, PA 
modifies host cell membranes through PI3K/PIP3/Akt pathway 
activation and uses specialized proteins like pilY1 for binding 
(48). The bacterium’s survival in macrophages relies on mgtC and 
oprF (49). The exotoxin family (exoS, exoT, exoU, exoY, exoA) 
facilitates pathogenesis through various mechanisms, including 
protein ribosylation, cytoskeleton modification, and membrane 
disruption (50–53). 

At the tissue level, PA aects three primary domains: (i) 
endothelial tissue (Endothelial Tissue - EnT); (ii) lower airway 
and alveolar epithelial tissue in the lung, including CF conditions 
(Airway Epithelial Tissue - AET); and (iii) other epithelial tissues 
such as desquamated bronchial and urinary epithelia (Other 
Epithelial Tissues - ETs). In endothelial tissue, particularly during 
severe infection, APOE exhibits antibacterial activity (54), while 
T3SS aects actin cytoskeleton dynamics (55). The bacterium 
adapts to blood survival by regulating metabolic pathways and 
virulence factors (56, 57). In airway epithelial tissue, particularly 
relevant in CF conditions, PA flagella binds to asialoGM1 and 
MUC1, triggering inflammatory responses (43, 58, 59). CFTR plays 
a crucial role in PA uptake and inflammation (60, 61). In other 
epithelial tissues, PA binds through HSPGs and N-glycans (62), 
with quorum sensing molecules aecting barrier integrity (63). 

Finally, at the organ level, PA infection primarily impacts 
the lung and bloodstream. In lung infections, particularly in 
CF, PA causes intense inflammation with neutrophil infiltration 
and cytokine production, inducing changes in immune cell 
composition (36, 59, 64). The infection involves various immune 
mechanisms, including TRPV4 (65), TIM3/Gal-9 signaling (64), 
and NET formation (66). In bloodstream infections, PA induces 
dierential immune cell responses and aects the vascular 
endothelium through multiple mechanisms, such as TREM-1 (67– 
69). The Hxu system contributes significantly to bloodstream 
infection capability (70). These multi-level interactions highlight 
the complexity of PA pathogenesis and its adaptive capabilities in 
dierent host environments. 

PA-host proteins interaction network 
reveals key mechanisms modulated in 
humans by PA severe infection 

To reveal key molecular mechanisms in PA severe infection, 
we collected the molecular interactions between PA and human 
proteins during dierent infection stages, which were manually 
curated. Analysis of 92 articles revealed multiple direct protein-
protein interactions (PPI) and molecule-protein interactions 
(MPI), detailed in Supplementary Table 2 and annotated with 
Uniprot IDs, references, and model subdomains. 
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TABLE 1 The table summarizes the main pathogenic mechanisms in PA infection for each domain, with comprehensive conceptual analysis provided in 
the Supplementary Text 1: (A) cell interaction level; (B) tissue interaction level; (C) organ interaction level. This structured approach enabled us to 
characterize specific mechanisms and experimental models of PA infections. 

Domain Subdomain Key molecules Biological outcome References 

Cell interaction level PA Adhesion/colonization Flagellum, pilA Adherence in upper respiratory tract, interaction with 

IRF-1 

(42, 43, 71) 

Flagellum, 
NEU1 

Modulation of binding between flagellum and MUC1 (43, 71) 

Pilus Interaction with asialo-GM1, asialo-GM2, 
glycosphingolipids; MMP7 expression induction 

(58, 72–74) 

Psl Biofilm formation, cell adhesion, flagellin-mediated 

NF-κB activation 

(45) 

estA, oprD, 
oprG, oprQ, 
PA3923, Paf 

Binding to LAMA1 (α4, α5) and FN1 (46, 47) 

lecA Binding to Gb3 and GPI- anchored CD59 (75) 

CD18, N-glycans PA uptake facilitation via integrin-mediated uptake (76) 

PA Invasion mgtC, oprF Macrophage survival (49) 

Flagellin EGFR/TGF-α release, 
MUC1 phosphorylation, 
TLR5 association 

(77) 

IMPa Leukocyte rolling 

adhesion via CD43, 
CD44, CD55, PSGL-1 

(78) 

pumA NF-κB inhibition, 
interaction with TIRAP, 
MyD88, UBAP1 

(79) 

LPS SP-A interaction, TNF-α release limitation (80) 

LL-37 IL-8 production inhibition, mucA mutagenesis (81, 82) 

lasB Protein degradation (elastin, collagen, laminin, IgG, 
C3, α1-AT, IFN-γ, IL-2) 

(83) 

LPS MUC5AC overproduction (84) 

CD95/CD95 ligand Apoptosis triggering, NF-κB/JNKs/GADD153/PLA 2 

stimulation 

(85) 

PTEN-CFTR complex PA intracellular killing promotion (86) 

Exotoxins Azurin Cell proliferation 

inhibition via aldolase A secretion 

(87) 

3OC12-HSL T-lymphocyte proliferation inhibition, 
MAPK-p38 activation 

(88) 

PAI-1 Cyclooxygenase 2 

activation in fibroblasts and ECs 
(89) 

PNC Neutrophil death, mitochondrial dysfunction, IL-8 

downregulation 

(51, 90, 91) 

pvrA PC and fatty acid 

catabolism regulation 

(92) 

Tissue interaction 

level 
Endothelial tissue APOE3 NF-κB reduction in monocytes, antibacterial 

activity 

(54) 

exoS, exoT Lim kinase-cofilin 

pathway modulation, GTPase inactivation 

(55) 

lasB/pseudolysin Endothelial adherence disruption, cytotoxicity (67) 

Airway epithelial tissue pilY1 PI3K/PIP3/Akt pathway activation, membrane 

remodeling 

(48) 

Flagella TLR5 activation, neutrophil respiratory 

burst 
(59, 93) 

pilA Tight junction disruption, IRF-1 activation (67, 94–96) 

(Continued) 
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TABLE 1 (Continued) 

Domain Subdomain Key molecules Biological outcome References 

exoA ADAM10 interaction, leukocyte migration 

alteration 

(97) 

PNC Ciliary dysfunction, 
mucus velocity alteration 

(98) 

PA-IL, PA-IIL Cilia binding, airway 

infection facilitation 

(99) 

lasB EC detachment via 

FN1/vWf degradation 

(47) 

Vav3 b1 integrin/FN1 complex formation in CF (100) 

CFTR PA uptake regulation, NF-
κB activation 

(60, 61) 

Various IL-6/CXCL8/TACE 

expression induction 

(101) 

Other epithelial tissues HSPGs Enhanced apical surface 

binding 

(62) 

pilA, Flagella N-glycan and HSPG-
mediated binding 

(62) 

T3SS, LPS Barrier function disruption (63) 

exoS Na/K-ATPase inhibition 

via FXYD3 

(102) 

T3SS 

components 
Keratitis development, 
tight junction disruption 

(96) 

Fur regulator Iron acquisition pathway regulation (103) 

Organ interaction 

level 
Lungs LPS, CFTR PA uptake, NF-κB activation (59, 104), (64) 

CFTR/TLR4/TL 

R5 

Phagocytosis regulation, 
inflammatory response 

(59, 60) 

TRPV4 Immune defense 

enhancement 
(65) 

Elastase IgG cleavage, 
phagocytosis inhibition 

(105) 

LL-37, CLEC5A NET formation, cytokine 

release 

(66) 

MIF Lung inflammation 

reduction 

(72) 

Various Altered immune cell 
composition, pathway regulation 

(35, 36), 

– Gut microbiota 

metabolism disruption 

(106) 

Bloodstream TREM-1 Inflammatory response 

modulation 

(69) 

QS genes, pqsH Systemic infection 

adaptation 

(107) 

Hxu system BSI pathogenesis 
regulation 

(70) 

– Blood metabolome 

alteration 

(108) 

– Dierential immune cell 
response 

(68) 

We identified 151 molecules: 109 human proteins, 3 

human metabolites (Gangliotetraosylceramide, Phospholipid 

cell membrane, glycosphingolipid globotriaosylceramide), 

34 PA proteins, and 5 PA molecules (3O-C12-HSL, LipidA, 

LPS, Exopolysaccharide, Pyocyanin), yielding 189 PA-human 

interactions and 7 human-human interactions. Note that the 
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FIGURE 2 

Network of PA-human host molecular interactions, with the top 200 nearest proteins found by the Random Walk with Restart (RWR) algorithm. 
Nodes have different colors to show different kinds of molecules: purple, human proteins; green, PA proteins; light blue, PA molecules; orange, 
human proteins belonging to the complement pathway. 

189 interactions include multiple events involving the same 
molecules, while the 151 components represent unique entities 
within the network. 

These interactions were categorized into four cellular domains: 
Adhesion process (PA-Ad), invasion and injury of tissue (PA-Inv), 
exotoxin production (PA-Ex) and bacterial metabolism (PA-Meta). 

Gene enrichment analysis revealed significant pathway 
associations across Reactome, WikiPathways and KEGG 
(Supplementary Table 3). Notable enrichments included 
the “Pathogenic Escherichia coli Infection WP2272” pathway 
(WikiPathways) and “Pertussis” (KEGG) with FDR < 0.0001%. 
Reactome analysis highlighted three significant pathways 
(FDR < 0.0001%), including Programmed Cell Death R-HSA-
5357801, Toll-like Receptor Cascades R-HSA-168898, and 
Signaling by Interleukins R-HSA-449147. In these pathways several 
key proteins (e.g., exoS and exoT) would play a modulating 

role, such as inhibition of interleukin proteins or degradation of 
occludin (OCLN), a cell death regulator (109). 

A full network of interactions between PA and human host 
proteins (Figure 2) enabled us to reveal the overall cell response 
to infection, digging up also new possible pathogenic mechanisms: 
the modulating eect of outer membrane proteins oprH, oprQ, 
and the elastase lasB on Complement Cascade Pathway (Reactome 
R-HSA-166658; 18/55; FDR < 0.0001%) for contrasting bacterial 
cell damage. These proteins also showed significant interactions 
with blood clotting factors, such as VWF, SERPINF2, PLAUR, 
PLAT, and PLG (Complement and Coagulation Cascade WP558; 
20/58; FDR < 0.0001%), suggesting a potential involvement in 
thrombotic event. Furthermore, the role of exotoxin (exoS, exoY, 
and exoT) in PA infection proved central to triggering of cell 
toxicity through interactions with cytoplasmic 14-3-3 proteins (e.g., 
YWHAB). 
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FIGURE 3 

GSEA with WikiPathways (a) and Reactome (b), based on upregulated DEGs in PA - infected samples, obtained from meta-analysis of two infection 
experiments in mouse lung tissues. 

Meta-analysis of whole transcriptome of 
PA-infected lung tissues from mice 
reveals selective modulation of 
pro-inflammatory pathways 

To better define the biological response in PA-infected lung 
tissues, we carried out a meta-analysis of gene expression of two 
bulk RNAseq datasets (GSE233206 and GSE192890) comparing 
PA-infected mice lung samples with healthy controls. Our meta-
analysis identified 1,560 upregulated and 383 downregulated 
genes (Log2FC > 1; FDR BH < 5%, Supplementary Table 4). 
Pathway analysis of upregulated genes using WikiPathways 
revealed significant enrichment in inflammation-related pathways, 
notably “Overview of Proinflammatory and Profibrotic Mediators 
WP5095” (39/129, FDR < 0.0001%). Reactome analysis aligned 
with our scoping review findings, highlighting significant 
enrichment (FDR < 0.000001%) in key pathways: Cytokine 

Signaling in Immune System R-HSA-1280215 (145/702), Signaling 
by Interleukins R-HSA-449147 (109/453), Interleukin-10 Signaling 
R-HSA-6783783 (31/45) (Figures 3a, b). Proinflammatory 
pathways were found nested into Interleukins R-HSA-449147 
(Homo sapiens) Reactome’s entry (Interleukin-2 family signaling R-
HSA-451927; Interleukin-3, Interleukin-5 and GM-CSF signaling 
R-HSA-512988; Interferon alpha/beta signaling R-HSA-909733; 
Interferon gamma signaling R-HSA-877300; ISG15 antiviral 
mechanism (Homo sapiens) R-HSA-1169408; PKR-mediated 
signaling R-HSA-9833482; TNFR2 non-canonical NF-kB pathway 
R-HSA-5668541; Signaling by CSF1 (M-CSF) in myeloid cells; 
R-HSA-9680350. All these pathways have many key proteins 
for PA infection, which are described as targets for PA exoU, 
exoS, azu, lasB, aprA, oprF, pilA, and LPS. These results suggest 
that these pathways are directly involved in initiating the innate 
response to PA infection, but also highlight the potential role of PA 
molecules in modulating and limiting this response, particularly 
for interleukin signaling. 
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Discussion 

In this work, we present the development of a comprehensive 
data integration model to understand PA infection through detailed 
exploration of the literature and metanalysis of transcriptomics 
datasets, identifying specific human molecular targets for each PA 
molecule, pathogenic mechanisms, and host responses. In general, 
PA could be considered a useful example for studying severe 
systemic infections, given its multi-drug resistance capabilities, 
ability to cause acute and chronic infections in pulmonary disease 
patients, and its capacity to form biofilm in hypoxic conditions, 
which makes it extremely diÿcult to treat (110, 111). 

Firstly, the central role of exoS during infection was confirmed, 
while enhanced activity among exo family proteins, including 
exoY and exoT, was widely highlighted (112). ExoS functions by 
inhibiting several proteins of interleukin pathways and inducing 
the degradation of Occludin (OCLN), an integral membrane 
protein involved in cytokine-induced regulation of the tight 
junction permeability barrier, ultimately inducing cell death 
(67). Through its ADP RT activity, exoS modulates host cell 
apoptosis, inducing PA-infected cell death by targeting various 
Ras proteins (113). The Complement Cascade Pathway undergoes 
modulation by PA’s outer membrane proteins, oprH, oprQ, 
and elastase lasB, which trigger cytotoxic eects and adhesion 
through complement binding, particularly C3 (114). This result 
mirrors the mechanism of activation of the complement system, 
in which C3 is the main actor against bacteria, through a 
link with oprF, a porin involved in ion transport (Na+ and 
Cl−) and anaerobic biofilm production (115, 116). A significant 
finding was the interaction between oprH, oprQ, and lasB with 
coagulation proteins, suggesting their involvement in thrombotic 
processes. PA lasB’s cleavage of a C-terminal peptide FYT21 
derived from thrombin inhibits activation of the transcription 
factors NFκ-B and activator protein 1 (AP-1). PA demonstrates 
sophisticated modulation of host immune responses through 
multiple pathways; aprA, lasB, and exoS exhibit inhibitory eects 
on interleukin pathways (112, 117, 118), indicating an adaptive 
modulation that enhances PA survival within the host. Such an 
eect was confirmed in PA infection, where PA-derived DnaK 
negatively regulates IL-1β production by cross-talk between JNK 
and PI3K/PDK1/FoxO1 pathways (119). Notably, decreased PA 
levels in CF patients correlate with reduced proinflammatory 
cytokines (120). 

Our findings provided a broader view of molecular 
perturbations in PA systemic infection and served as a foundation 
for developing specific disease maps for severe PA infection, 
supporting the integration of omics data from clinical cases into 
predictive computational models. Future developments may 
incorporate text mining and AI-assisted analysis for drug target 
identification (23) and digital modeling of the human immune 
system under infection conditions (121) to better predict real 
patient outcomes and test potential therapeutic strategies in a 
personalized fashion. 

There are some limitations worth noting. While we have 
documented numerous significant PA-human interactions, our 
model may not encompass all possible interactions. The PPI/MPI 
dataset requires iterative updates to incorporate new experimental 
findings from both in vitro, in vivo and clinical studies. 

Furthermore, since our interaction data derives primarily from 
in vitro experiments, the described pathogenic mechanisms require 
validation in the context of severe systemic infections. Finally, our 
dierential expression meta-analysis, conducted in mouse models 
with limited sample size, provides an overview of host gene-
expression signatures in PA infection but requires confirmation 
through clinical data. 

In conclusion, our study provides a comprehensive collection 
and analysis of molecular mechanisms in P. aeruginosa infection, 
combining literature-based evidence, protein-protein interaction 
analysis, and transcriptomic data from in vivo studies. A detailed 
dataset of PA-host interactions across cellular, tissue, and 
organ levels was built through a systematic data integration 
approach. Our findings highlight the complex interplay 
between PA virulence factors and host responses, particularly 
the role of exoS in modulating interleukin pathways and the 
involvement of outer membrane proteins in the complement 
cascade. The integration of dierential expression analysis 
from mouse models further strengthens our understanding 
of host response patterns, particularly in proinflammatory 
and immune signaling pathways. As antimicrobial resistance 
continues to pose significant challenges in healthcare, such a 
comprehensive molecular understanding may prove invaluable 
for applying precision medicine approaches to severe bacterial 
infections and improving patient-tailored treatments in severe 
systemic infections. 
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