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Introduction: Understanding  host-pathogen interactions is  crucial
for explaining the variability in sepsis outcomes, with Pseudomonas
aeruginosa (PA) remaining a significant public health concern. In this
work, we explored PA-human host interaction mechanisms through a
data integration workflow, focusing on protein-protein and metabolite-
protein interactions, along with pathway modulation in affected organs during

severe infections.

Methods: A scoping literature review enabled us to construct a domain-
based infection network encompassing pathogenesis concepts, molecular
interactions, and host response signatures, providing a wide view of the relevant
mechanisms involved in severe bacterial infections.

Results: Our analysis yielded a literature-based comprehensive description of PA
infection mechanisms and an annotated dataset of 189 PA-human interactions
involving 151 proteins/molecules (109 human proteins, 3 human metabolites,
34 PA proteins, and 5 PA molecules). This dataset was complemented with
gene expression analysis from in vivo PA-infected lung samples. The results
indicated a notable overexpression of proinflammatory pathways and PA-
mediated modulation of host lung responses.

Discussion: Our comprehensive molecular network of PA infection
represents a valuable tool for the understanding of severe bacterial
infections and offers potential applications in predicting clinical
phenotypes. Through this approach combining omics data, clinical
information, and pathogen characteristics, we have provided a
foundation for future research in host-pathogen interactions and the
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mechanistic grounds to build dynamic computational models for clinical
phenotype predictions.
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Introduction

Sepsis caused by multi-drug resistant pathogens remains
a leading cause of mortality in intensive care units (ICU) and
represents a significant public health concern (I, 2). While
it is established that microbial infection outcomes depend
heavily on host conditions and spatial interactions between
microbes, hosts, and other microorganisms (3, 4), many molecular
details of these complex relationships remain unexplored.
Pseudomonas aeruginosa (PA) is one of the most common
pathogens for nosocomial infections, and, along with Acinetobacter
baumannii and Enterobacterales resistant to carbapenems, it
was listed among critical priority pathogens for World Health
Organization (5, 6). The European Centre for Disease Prevention
and Control (ECDC) has included PA in its antimicrobial
resistance surveillance program (7). As an opportunistic human
pathogen particularly affecting Cystic Fibrosis (CF) patients,
PA’s clinical significance stems from multiple drug resistance
mechanisms, numerous virulence factors, and biofilm production
capabilities, enhancing its infection and host colonization
potential (8). Recently, computational approaches have aided
in unraveling mechanistic insights of PA infections. A network-
assisted experiment allowed the identification of novel genes
for virulence and antibiotic resistance, confirmed through
experimental validation, showing cross-resistance against multiple
drugs due to the same genes (9). In another effort, a real-time
deep-learning model was applied to sepsis patients aiming to
estimate prognostic outcomes from early infection phases (10).
The model addressed baseline acuity, comorbidities, seasonal
effects, and secular trends over time, unraveling the strategic
significance of computational modeling to improve the clinical
outcomes in sepsis patients.

Mechanistic computational modeling, omics data analysis,
and clinical research have emerged as crucial tools for bridging
the gap between conceptual models and clinical practice in
infectious diseases (11, 12). By structuring key pathophysiological
mechanisms and identifying conceptual domains, molecular
diagrams provide novel insights into biomedical knowledge
(11, 13, 14). The value of network-based exploratory and
molecular virus-host interactome approaches was particularly
during the COVID-19 pandemic, rapid
identification of molecular interactions between SARS-CoV-

evident where

2 and human hosts became crucial to explain the clinical
manifestations (15-19), as well as enabled a timely drug

repurposing (20, 21). In this context, the resulting molecular
maps of disease mechanisms (e.g., a Disease Map)! provided

1 https://disease-maps.io/
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biological meaning to apparently unrelated interactions,
facilitating the mechanistic understanding of complex disease
processes (22, 23). Following this paradigm, we applied similar
strategies to bacterial pathogens such as PA, to uncover
actionable insights about complex host interactions in severe
systemic infections.

Our study presents a data integration workflow to build
a molecular map of interaction between PA and human hosts
in severe infection. Through extensive literature review, data
curation, and gene expression meta-analysis, we have documented
PA infection pathogenic mechanisms, direct protein-protein
interactions (PPI), metabolite-protein interactions (MPI), and
pathway activations in affected organs, organizing these findings
into three conceptual domains: “cellular interaction level”, “tissue

interaction level”, and “organ interaction level”.

Materials and methods
Scoping review

We conducted independent literature reviews compliant with
international reference guidelines for scoping reviews (24). For
each domain, the scoping review outcomes were processed to
identify features of PA interactions with the host and the direct or
indirect effects that they cause within the host itself.

Using a structured search string in PubMed (Supplementary
Text 1), we identified 532 articles after excluding duplicates,
non-English publications, and studies not addressing systemic
infection or host-pathogen interactions. We supplemented this
with 27 additional articles focusing on host response to PA
infection in both mouse models and human patients through
omics data analysis. During the review process, papers were
evaluated in three sequential inclusion criteria: (i) title relevance;
(ii) abstract consisting of three conceptual domains, and (iii)
identification of specific pathogenic mechanisms in PA infection
through full-text analysis. The final selection comprised 150
articles which were categorized into three interaction levels: (1)
“cell interaction level”; (2) “tissue interaction level”; and (3)
“organ interaction level”. Full-text articles were evaluated by the
curators to define the best possible conceptual domains, following
the reference methodology (PRISMA-ScR) for the assessment
(25, 26). Each article selected for review was independently
read and evaluated by two reviewers. At the end of the
evaluation, the data results were discussed and evaluated in
a specific meeting of the entire working group. Each article
was assigned a unique reference ID (SR) and documented in
Supplementary Table 1.
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Conceptual domains

First, we identified the conceptual domains that organize
the information obtained from the literature, providing a
hierarchical model of host-pathogen interaction, following a
previous experience on mapping host-pathogen interactions in the
COVID-19 Disease Map project (11, 12). Three interaction levels
within the host’s system were identified: cell, tissue, and organ. For
each level, we further identified conceptual domains, describing
the interactions with the pathogen (Figure 1). A comprehensive
description of all mechanisms and PA-human interactions, along
with search string, containing all search terms used in the scoping
review section on PubMed, and protein abbreviation were reported
in Supplementary Text 1, while a summary can be found below in

the results section.

10.3389/fmed.2025.1600509

Molecular interaction dataset and human
host - PA interactome

We documented PPI and MPI between PA and humans. All
interaction details, including type, Uniprot ID, literature reference,
and subdomains of the model, were compiled in the curated
dataset (Supplementary Table 2). We constructed a network-
based interaction model by exploring PA-host data gathered from
the scoping review, following methodology established for SARS-
CoV-2-human host interactions (16, 17). Human PPI data was
retrieved using R packages PSICQUIC and biomaRt (27, 28),
resulting in a comprehensive large network of 13,334 nodes and
73,584 interactions that included PA-human host interactions. The
mechanisms of infection were estimated using the Random Walk
with Restart (RWR) algorithm (29), using each PA protein as a
seed and limiting the output to the 200 closest host proteins per PA

Outcomes

Review of host-pathogen
interaction mechanisms

FIGURE 1
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protein. Network visualizations were generated using GEPHI 0.9.2
(30). Gene set enrichment analysis (GSEA) was performed using
the R package enrichR (31), testing against Reactome 2022, KEGG
2021 and WikiPathways 2023 human pathways databases (32-34).

Meta-analysis of the whole
transcriptome from animal model of
PA-induced sepsis

We performed a meta-analysis of gene expression in mouse
lung samples comparing PA-infected tissues with healthy controls
using data from two projects. The first dataset comprised 12 bulk
RNAseq samples from PA-infected lung tissues (PRJNA975462;
GEO: GSE233206, SRA Study SRP439193) (35), while the second
included 6 bulk gene expression samples from acute and chronic
PA pulmonary infection (PRJNA793679; GEO: GSE192890, SRA
Study SRP353174) (36). SRA data was processed using Prefetch
and converted to FASTQ files using the fastq-dump tool from the
SRA Toolkit software v2.11.0 (37, 38). Reads were aligned to the
mm10 mouse reference genome using HISAT2 (39). Differentially
expressed genes (DEGs) were identified using DESeq2 v.1.42.1 in
R version 3.4.3 (40), with thresholds set at Log2FC > |1| and
Benjamin-Hochberg False Discovery Rate < 5% (BH-FDR). To
account for batch effects between laboratories, we conducted a
meta-analysis using metaRNASeq R packages, combining p-values
from the two independent RNA-seq experiments using Fisher
methods (41). The analysis focused on 21,010 genes shared between
datasets, generating combined BH-adjusted p-values and average
Log2FC values. Genes meeting the thresholds of Log2FC > |1| and
BH FDR < 5% were classified as DEGs.

Gene enrichment on DEGs in PA
infection and healthy conditions

To deliver biological meaning from the data, we performed
a gene enrichment analysis using Reactome, KEGG, and
WikiPathways (32-34). The enrichR R package was used to
conduct gene set enrichment analysis, with significance assessed
through Fisher exact test (p-value) and false discovery rate (g-value:
adjusted p-value for FDR) (31).

Results

Domain-based analysis of PA-human
host interactions reveals detailed
pathogenic mechanisms

To understand in detail PA infection pathogenic mechanisms,
we reported many PA-human host interactions mechanisms,
organizing them into three conceptual domains: cellular, tissue, and
organ-level interactions.

At the cellular level, four key aspects characterize PA-
host interaction: (i) bacterial adhesion/colonization (PA-Ad); (ii)

Frontiers in Medicine

10.3389/fmed.2025.1600509

bacterial invasion and innate immune response of the host (PA-
In); (iii) PA exotoxins activity in infection (PA-Ex); (iv) bacterial
metabolic mechanisms (PA-Met). The pathogenic mechanisms in
PA infection were assigned to each domain (Table 1). PA initiates
infection through flagellum and type IV pili adherence, interacting
with MUC1 ectodomains via NEU1 modulation (42, 43). The
bacterium employs multiple adhesion strategies, including biofilm
formation, psl adhesins (44, 45), and various receptors binding
to extracellular matrix components (46, 47). During invasion, PA
modifies host cell membranes through PI3K/PIP3/Akt pathway
activation and uses specialized proteins like pilY1 for binding
(48). The bacterium’s survival in macrophages relies on mgtC and
oprF (49). The exotoxin family (exoS, exoT, exoU, exoY, exoA)
facilitates pathogenesis through various mechanisms, including
protein ribosylation, cytoskeleton modification, and membrane
disruption (50-53).

At the tissue level, PA affects three primary domains: (i)
endothelial tissue (Endothelial Tissue - EnT); (ii) lower airway
and alveolar epithelial tissue in the lung, including CF conditions
(Airway Epithelial Tissue - AET); and (iii) other epithelial tissues
such as desquamated bronchial and urinary epithelia (Other
Epithelial Tissues - ETs). In endothelial tissue, particularly during
severe infection, APOE exhibits antibacterial activity (54), while
T3SS affects actin cytoskeleton dynamics (55). The bacterium
adapts to blood survival by regulating metabolic pathways and
virulence factors (56, 57). In airway epithelial tissue, particularly
relevant in CF conditions, PA flagella binds to asialoGM1 and
MUCI, triggering inflammatory responses (43, 58, 59). CFTR plays
a crucial role in PA uptake and inflammation (60, 61). In other
epithelial tissues, PA binds through HSPGs and N-glycans (62),
with quorum sensing molecules affecting barrier integrity (63).

Finally, at the organ level, PA infection primarily impacts
the lung and bloodstream. In lung infections, particularly in
CE PA causes intense inflammation with neutrophil infiltration
and cytokine production, inducing changes in immune cell
composition (36, 59, 64). The infection involves various immune
mechanisms, including TRPV4 (65), TIM3/Gal-9 signaling (64),
and NET formation (66). In bloodstream infections, PA induces
differential immune cell responses and affects the vascular
endothelium through multiple mechanisms, such as TREM-1 (67—
69). The Hxu system contributes significantly to bloodstream
infection capability (70). These multi-level interactions highlight
the complexity of PA pathogenesis and its adaptive capabilities in
different host environments.

PA-host proteins interaction network
reveals key mechanisms modulated in
humans by PA severe infection

To reveal key molecular mechanisms in PA severe infection,
we collected the molecular interactions between PA and human
proteins during different infection stages, which were manually
curated. Analysis of 92 articles revealed multiple direct protein-
protein interactions (PPI) and molecule-protein interactions
(MPI), detailed in Supplementary Table 2 and annotated with
Uniprot IDs, references, and model subdomains.
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TABLE 1 The table summarizes the main pathogenic mechanisms in PA infection for each domain, with comprehensive conceptual analysis provided in
the Supplementary Text 1: (A) cell interaction level; (B) tissue interaction level; (C) organ interaction level. This structured approach enabled us to
characterize specific mechanisms and experimental models of PA infections.

Domain ’ Subdomain ’ Key molecules ‘ Biological outcome ’ References l
Cell interaction level PA Adhesion/colonization Flagellum, pilA Adherence in upper respiratory tract, interaction with (42,43,71)
IRF-1
Flagellum, Modulation of binding between flagellum and MUC1 (43,71)
NEU1
Pilus Interaction with asialo-GM1, asialo-GM2, (58, 72-74)
glycosphingolipids; MMP7 expression induction
Psl Biofilm formation, cell adhesion, flagellin-mediated (45)
NF-kB activation
estA, oprD, Binding to LAMALI (a4, a5) and FN1 (46, 47)
oprG, oprQ,
PA3923, Paf
lecA Binding to Gb3 and GPI- anchored CD59 (75)
CD18, N-glycans PA uptake facilitation via integrin-mediated uptake (76)
PA Invasion mgtC, oprF Macrophage survival (49)
Flagellin EGFR/TGF-a release, 77)
MUC1 phosphorylation,
TLR5 association
IMPa Leukocyte rolling (78)
adhesion via CD43,
CD44, CD55, PSGL-1
pumA NF-kB inhibition, (79)
interaction with TIRAP,
MyD88, UBAP1
LPS SP-A interaction, TNF-a release limitation (80)
LL-37 IL-8 production inhibition, mucA mutagenesis (81, 82)
lasB Protein degradation (elastin, collagen, laminin, IgG, (83)
C3, al-AT, IFN-vy, IL-2)
LPS MUCS5AC overproduction (84)
CD95/CD95 ligand Apoptosis triggering, NF-kB/JNKs/GADD153/PLA 2 (85)
stimulation
PTEN-CFTR complex PA intracellular killing promotion (86)
Exotoxins Azurin Cell proliferation (87)
inhibition via aldolase A secretion
30C12-HSL T-lymphocyte proliferation inhibition, (88)
MAPK-p38 activation
PAI-1 Cyclooxygenase 2 (89)
activation in fibroblasts and ECs
PNC Neutrophil death, mitochondrial dysfunction, IL-8 (51,90, 91)
downregulation
pvrA PC and fatty acid (92)
catabolism regulation
Tissue interaction Endothelial tissue APOE3 NF-kB reduction in monocytes, antibacterial (54)
level activity
exoS, exoT Lim kinase-cofilin (55)
pathway modulation, GTPase inactivation
lasB/pseudolysin Endothelial adherence disruption, cytotoxicity (67)
Airway epithelial tissue pilY1 PI3K/PIP3/Akt pathway activation, membrane (48)
remodeling
Flagella TLR5 activation, neutrophil respiratory (59,93)
burst
pilA Tight junction disruption, IRF-1 activation (67, 94-96)
(Continued)
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TABLE 1 (Continued)
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ex0A ADAMI0 interaction, leukocyte migration 97)
alteration

PNC Ciliary dysfunction, (98)
mucus velocity alteration

PA-IL, PA-IIL Cilia binding, airway (99)
infection facilitation

lasB EC detachment via (47)
FN1/vWf degradation

Vav3 bl integrin/FN1 complex formation in CF (100)

CFTR PA uptake regulation, NF- (60, 61)
kB activation

Various IL-6/CXCL8/TACE (101)
expression induction

Other epithelial tissues HSPGs Enhanced apical surface (62)

binding

pilA, Flagella N-glycan and HSPG- (62)
mediated binding

T3SS, LPS Barrier function disruption (63)

exoS Na/K-ATPase inhibition (102)
via FXYD3

T3SS Keratitis development, (96)

components tight junction disruption

Fur regulator Iron acquisition pathway regulation (103)

Organ interaction
level

Lungs LPS, CFTR PA uptake, NF-kB activation (59, 104), (64)
CFTR/TLR4/TL Phagocytosis regulation, (59, 60)
R5 inflammatory response
TRPV4 Immune defense (65)
enhancement

Elastase IgG cleavage, (105)
phagocytosis inhibition

LL-37, CLEC5A NET formation, cytokine (66)
release

MIF Lung inflammation (72)
reduction

Various Altered immune cell (35, 36),
composition, pathway regulation

- Gut microbiota (106)
metabolism disruption

Bloodstream TREM-1 Inflammatory response (69)

modulation

QS genes, pqsH Systemic infection (107)
adaptation

Hxu system BSI pathogenesis (70)
regulation

- Blood metabolome (108)
alteration

- Differential immune cell (68)

response

We identified 151 molecules:

human metabolites

cell membrane,

Frontiers in Medicine

(Gangliotetraosylceramide,

109 human proteins, 3
Phospholipid
glycosphingolipid  globotriaosylceramide),

34 PA proteins, and 5 PA molecules (30-C12-HSL, LipidA,
LPS, Exopolysaccharide, Pyocyanin), yielding 189 PA-human

interactions and 7 human-human interactions. Note that the
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189 interactions include multiple events involving the same
molecules, while the 151 components represent unique entities
within the network.

These interactions were categorized into four cellular domains:
Adhesion process (PA-Ad), invasion and injury of tissue (PA-Inv),
exotoxin production (PA-Ex) and bacterial metabolism (PA-Meta).

Gene enrichment analysis revealed significant pathway
Reactome, WikiPathways and KEGG
(Supplementary  Table 3). Notable included
the “Pathogenic Escherichia coli Infection WP2272” pathway
(WikiPathways) and “Pertussis” (KEGG) with FDR < 0.0001%.
Reactome analysis highlighted three significant pathways
(FDR < 0.0001%), including Programmed Cell Death R-HSA-
5357801, Toll-like Receptor Cascades R-HSA-168898, and
Signaling by Interleukins R-HSA-449147. In these pathways several
key proteins (e.g., exoS and exoT) would play a modulating

associations across

enrichments
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role, such as inhibition of interleukin proteins or degradation of
occludin (OCLN), a cell death regulator (109).

A full network of interactions between PA and human host
proteins (Figure 2) enabled us to reveal the overall cell response
to infection, digging up also new possible pathogenic mechanisms:
the modulating effect of outer membrane proteins oprH, oprQ,
and the elastase lasB on Complement Cascade Pathway (Reactome
R-HSA-166658; 18/55; FDR < 0.0001%) for contrasting bacterial
cell damage. These proteins also showed significant interactions
with blood clotting factors, such as VWE, SERPINF2, PLAUR,
PLAT, and PLG (Complement and Coagulation Cascade WP558;
20/58; FDR < 0.0001%), suggesting a potential involvement in
thrombotic event. Furthermore, the role of exotoxin (exoS, exoY,
and exoT) in PA infection proved central to triggering of cell
toxicity through interactions with cytoplasmic 14-3-3 proteins (e.g.,
YWHAB).
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Meta-analysis of whole transcriptome of
PA-infected lung tissues from mice
reveals selective modulation of
pro-inflammatory pathways

To better define the biological response in PA-infected lung
tissues, we carried out a meta-analysis of gene expression of two
bulk RNAseq datasets (GSE233206 and GSE192890) comparing
PA-infected mice lung samples with healthy controls. Our meta-
analysis identified 1,560 upregulated and 383 downregulated
genes (Log2FC > 1; FDR BH < 5%, Supplementary Table 4).
Pathway analysis of upregulated genes using WikiPathways
revealed significant enrichment in inflammation-related pathways,
notably “Overview of Proinflammatory and Profibrotic Mediators
WP5095” (39/129, FDR < 0.0001%). Reactome analysis aligned
with our scoping review findings, highlighting significant
enrichment (FDR < 0.000001%) in key pathways: Cytokine
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Signaling in Immune System R-HSA-1280215 (145/702), Signaling
by Interleukins R-HSA-449147 (109/453), Interleukin-10 Signaling
R-HSA-6783783 (31/45) (Figures 3a, b). Proinflammatory
pathways were found nested into Interleukins R-HSA-449147
(Homo sapiens) Reactome’s entry (Interleukin-2 family signaling R-
HSA-451927; Interleukin-3, Interleukin-5 and GM-CSF signaling
R-HSA-512988; Interferon alpha/beta signaling R-HSA-909733;
Interferon gamma signaling R-HSA-877300; ISG15 antiviral
mechanism (Homo sapiens) R-HSA-1169408; PKR-mediated
signaling R-HSA-9833482; TNFR2 non-canonical NF-kB pathway
R-HSA-5668541; Signaling by CSF1 (M-CSF) in myeloid cells;
R-HSA-9680350. All these pathways have many key proteins
for PA infection, which are described as targets for PA exoU,
exoS, azu, lasB, aprA, oprE pilA, and LPS. These results suggest
that these pathways are directly involved in initiating the innate
response to PA infection, but also highlight the potential role of PA
molecules in modulating and limiting this response, particularly
for interleukin signaling.
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Discussion

In this work, we present the development of a comprehensive
data integration model to understand PA infection through detailed
exploration of the literature and metanalysis of transcriptomics
datasets, identifying specific human molecular targets for each PA
molecule, pathogenic mechanisms, and host responses. In general,
PA could be considered a useful example for studying severe
systemic infections, given its multi-drug resistance capabilities,
ability to cause acute and chronic infections in pulmonary disease
patients, and its capacity to form biofilm in hypoxic conditions,
which makes it extremely difficult to treat (110, 111).

Firstly, the central role of exoS during infection was confirmed,
while enhanced activity among exo family proteins, including
exoY and exoT, was widely highlighted (112). ExoS functions by
inhibiting several proteins of interleukin pathways and inducing
the degradation of Occludin (OCLN), an integral membrane
protein involved in cytokine-induced regulation of the tight
junction permeability barrier, ultimately inducing cell death
(67). Through its ADP RT activity, exoS modulates host cell
apoptosis, inducing PA-infected cell death by targeting various
Ras proteins (113). The Complement Cascade Pathway undergoes
modulation by PA’s outer membrane proteins, oprH, oprQ,
and elastase lasB, which trigger cytotoxic effects and adhesion
through complement binding, particularly C3 (114). This result
mirrors the mechanism of activation of the complement system,
in which C3 is the main actor against bacteria, through a
link with oprE a porin involved in ion transport (Na+ and
Cl—) and anaerobic biofilm production (115, 116). A significant
finding was the interaction between oprH, oprQ, and lasB with
coagulation proteins, suggesting their involvement in thrombotic
processes. PA lasB’s cleavage of a C-terminal peptide FYT21
derived from thrombin inhibits activation of the transcription
factors NFk-B and activator protein 1 (AP-1). PA demonstrates
sophisticated modulation of host immune responses through
multiple pathways; aprA, lasB, and exoS exhibit inhibitory effects
on interleukin pathways (112, 117, 118), indicating an adaptive
modulation that enhances PA survival within the host. Such an
effect was confirmed in PA infection, where PA-derived DnaK
negatively regulates IL-1p production by cross-talk between JNK
and PI3K/PDK1/FoxO1 pathways (119). Notably, decreased PA
levels in CF patients correlate with reduced proinflammatory
cytokines (120).

Our findings provided a broader view of molecular
perturbations in PA systemic infection and served as a foundation
for developing specific disease maps for severe PA infection,
supporting the integration of omics data from clinical cases into
predictive computational models. Future developments may
incorporate text mining and Al-assisted analysis for drug target
identification (23) and digital modeling of the human immune
system under infection conditions (121) to better predict real
patient outcomes and test potential therapeutic strategies in a
personalized fashion.

There are some limitations worth noting. While we have
documented numerous significant PA-human interactions, our
model may not encompass all possible interactions. The PPI/MPI
dataset requires iterative updates to incorporate new experimental
findings from both in vitro, in vivo and clinical studies.
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Furthermore, since our interaction data derives primarily from
in vitro experiments, the described pathogenic mechanisms require
validation in the context of severe systemic infections. Finally, our
differential expression meta-analysis, conducted in mouse models
with limited sample size, provides an overview of host gene-
expression signatures in PA infection but requires confirmation
through clinical data.

In conclusion, our study provides a comprehensive collection
and analysis of molecular mechanisms in P. aeruginosa infection,
combining literature-based evidence, protein-protein interaction
analysis, and transcriptomic data from in vivo studies. A detailed
dataset of PA-host
organ levels was built through a systematic data integration
highlight the
between PA virulence factors and host responses, particularly

interactions across cellular, tissue, and

approach. Our findings complex interplay
the role of exoS in modulating interleukin pathways and the
involvement of outer membrane proteins in the complement
cascade. The integration of differential expression analysis
from mouse models further strengthens our understanding
of host response patterns, particularly in proinflammatory
and immune signaling pathways. As antimicrobial resistance
continues to pose significant challenges in healthcare, such a
comprehensive molecular understanding may prove invaluable
for applying precision medicine approaches to severe bacterial
infections and improving patient-tailored treatments in severe

systemic infections.
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