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Introduction: Multi-label classification of medical imaging data aims to enable 
simultaneous identification and diagnosis of multiple diseases, delivering 
comprehensive clinical decision support for complex conditions. Current 
methodologies demonstrate limitations in capturing disease co-occurrence 
patterns and preserving subtle pathological signatures. To address these 
challenges, we  propose Med-DGTN, a dynamically integrated framework 
designed to advance multi-label classification performance in clinical imaging 
analytics.

Methods: The proposed Med-DGTN (Dynamic Graph Transformer Network with 
Adaptive Wavelet Fusion) introduces three key innovations: (1) A cross-modal 
alignment mechanism integrating convolutional visual patterns with graph-
based semantic dependencies through conditionally reweighted adjacency 
matrices; (2) Wavelet-transform-enhanced dense blocks (WTDense) employing 
multi-frequency decomposition to amplify low-frequency pathological 
biomarkers; (3) An adaptive fusion architecture optimizing multi-scale feature 
hierarchies across spatial and spectral domains.

Results: Validated on two public medical imaging benchmarks, Med-DGTN 
demonstrates superior performance across modalities: (1) Achieving a mean 
average precision (mAP) of 70.65% on the retinal imaging dataset (MuReD2022), 
surpassing previous state-of-the-art methods by 2.68 percentage points. (2) On 
the chest X-ray dataset (ChestXray14), Med-DGTN achieves an average Area 
Under the Curve (AUC) of 0.841. It outperforms prior state-of-the-art methods 
in 5 of 14 disease categories.

Discussion: This investigation establishes that joint modeling of dynamic 
disease correlations and wavelet-optimized feature representation significantly 
enhances multi-label diagnostic capabilities. Med-DGTN’s architecture 
demonstrates clinical translatability by revealing disease interaction patterns 
through interpretable graph structures, potentially informing precision 
diagnostics in multi-morbidity scenarios.

KEYWORDS

Dynamic Graph Transformer, wavelet transform, multi-label classification, medical 
image analysis, deep learning

OPEN ACCESS

EDITED BY

Haoyu Chen,  
The Chinese University of Hong Kong, China

REVIEWED BY

Luis Carlos Rivera M.,  
Friedrich Alexander University 
Erlangen-Nuremberg, Germany
Xie Weidong,  
Northeastern University, China

*CORRESPONDENCE

Yan Li  
 li_yan323@163.com  

Zongyun Gu  
 gzy@ahtcm.edu.cn

RECEIVED 26 March 2025
ACCEPTED 11 July 2025
PUBLISHED 24 July 2025

CITATION

Zhang G, Li Y, Wang T, Shi G, Jin L and 
Gu Z (2025) Med-DGTN: Dynamic Graph 
Transformer with Adaptive Wavelet Fusion for 
multi-label medical image classification.
Front. Med. 12:1600736.
doi: 10.3389/fmed.2025.1600736

COPYRIGHT

© 2025 Zhang, Li, Wang, Shi, Jin and Gu. This 
is an open-access article distributed under 
the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 24 July 2025
DOI 10.3389/fmed.2025.1600736

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1600736&domain=pdf&date_stamp=2025-07-24
https://www.frontiersin.org/articles/10.3389/fmed.2025.1600736/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1600736/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1600736/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1600736/full
mailto:li_yan323@163.com
mailto:gzy@ahtcm.edu.cn
https://doi.org/10.3389/fmed.2025.1600736
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1600736


Zhang et al. 10.3389/fmed.2025.1600736

Frontiers in Medicine 02 frontiersin.org

1 Introduction

The continuous advancement of medical imaging technology has 
significantly propelled the development of modern precision 
medicine. The exponential growth of global medical imaging data 
offers unprecedented opportunities for disease detection and diagnosis 
(1). However, the co-occurrence of multiple pathologies within 
individual medical images represents a pervasive challenge across 
imaging modalities (2). Diabetic retinopathy (DR), a leading global 
cause of vision loss (3), demonstrates significant clinical comorbidities 
as evidenced by fundus imaging (Figure 1). Retinal analysis reveals 
that DR frequently coexists with macular edema (4) and exhibits 
significant positive correlations with glaucoma progression (5).

Despite the revolutionary impact of deep learning on single-
disease detection, multi-label medical image analysis continues to 
be constrained by three fundamental limitations. Firstly, it overlooks 
the interdependence of diseases. Conventional binary classification 
frameworks fail to account for the co-occurrence patterns of diseases, 
which are particularly critical in progressive conditions like DR, which 
manifests through stage-specific pathological cascades. Secondly, it 
suffers from the attenuation of low-frequency features. Early-stage 
lesions, such as microaneurysms, predominantly reside in 
low-frequency spectral domains, making them susceptible to 
information loss in standard Convolutional Neural Network (CNN) 
architectures (6). Thirdly, it lacks the ability to model dynamic 
associations. While Graph Convolutional Networks (GCNs) enable 
the modeling of static relationships, such as those in graph attention 
networks (7), they fail to adapt to the patient-specific dynamics of 
disease interactions (8).

We treat a single medical image as a sample, and its multiple 
diseases as categories, forming a standard multi-label classification 
problem. This perspective led us to develop the Med-DGTN 
framework for multi-label classification of medical images. 
Med-DGTN exhibits enhanced modeling capabilities for pathological 
associations compared to traditional deep learning-based methods.

The key contributions of this paper include:

 • We have developed the Med-DGTN framework, a combination 
of GCN and CNN. This framework integrates label semantic 
information with image visual features through a feature space 
alignment strategy, thereby improving multi-label 
classification performance.

 • We propose a Dynamic Adjacency Matrix Extraction (DAME) 
module, which initializes from a reweighted correlation matrix 
based on dataset-level co-occurrence statistics and conditional 
probabilities. Instead of building a separate graph for each input, 
we  utilize a globally shared label graph whose structure is 
progressively refined during training via a learnable Graph 
Transformer. This approach enables adaptive modeling of 
evolving inter-label dependencies while avoiding the 
computational cost of per-sample graph construction. As a data-
driven strategy for dynamic correlation modeling, it effectively 
uncovers latent associations among pathological features in 
medical images.

 • We have also designed an image feature extraction module 
(FEM). This module utilizes the WTDense module, a 
combination of WTConv layers and multi-scale dense 
connections. This combination leverages the wavelet transform’s 

FIGURE 1

Multi-label dependency diagram of fundus image. This diagram illustrates the co-occurrence relationships among various eye diseases. The labels 
“choroidal neovascularization” and “age-related macular degeneration” are connected by an edge, indicating a high probability of concurrent 
occurrence.
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multi-frequency decomposition to enhance the capture of 
low-frequency pathological features.

 • The Med-DGTN framework has demonstrated outstanding 
performance on public datasets such as MuReD2022 
and ChestXray14.

2 Related works

In medical image analysis, multi-label image classification 
presents significant challenges due to the potential for images to 
display multiple disease characteristics. Accurate identification and 
categorization of these features are crucial for effective clinical 
diagnosis. We  will now explore the advancements in multi-label 
medical image classification research.

2.1 Multi-label medical image classification

Traditional medical image analysis primarily focuses on 
diagnosing a single disease, utilizing specialized networks like 
ConvNext (9) and Vision Transformer (10) for single-label 
classification. However, multi-disease co-occurrence is prevalent in 
clinical practice, and single-label methods fall short in modeling 
label interdependencies.

Researchers have made significant strides to improve multi-label 
medical image classification. K. V. Priya et  al. (11) initiated 
DenseNet-121 with a pre-trained DenseNet121 from ImageNet, 
yielding positive results in chest X-ray multi-label tasks. Bingzhi 
Chen et  al. (12) proposed CheXGCN, a GCN-based label 
co-occurrence learning framework with an Image Feature 
Embedding (IFE) module and Label Co-occurrence Learning (LCL), 
significantly enhancing label dependency modeling. Attention 
mechanisms have also proven beneficial. Li et al. (13) introduced 
IDSNet, combining DenseNet and SENet modules for high-accuracy 
breast cancer histopathological image classification. Wu et al. (14) 
developed CTransCNN, featuring Multi-modality Feature 
Alignment, Cross-branch Attention, and Interactive Information 
Mining modules, achieving breakthroughs in multi-label medical 
image classification.

Despite these advancements, most methods are based on single-
label independent prediction assumptions, failing to fully capture 
dynamic pathological label associations. This limitation restricts their 
potential in multi-disease co-occurrence analysis. To address these 
challenges, researchers have introduced GCNs to explore structured 
label dependencies and have begun integrating frequency-domain 
information, such as wavelet transforms, to enhance feature robustness 
and multi-scale representation.

2.2 GCNs for medical image applications

In recent years, GCNs have been utilized in medical image 
processing. Initially, David et al. (15) employed a static graph-based 
ChebNet for medical image classification, yielding impressive results 
on the Mayo Clinic cancer disease dataset. However, traditional static 
graph methods have inherent limitations in modeling complex labels 
and capturing their dynamic interactions.

To surmount these limitations, You et al. (16) introduced a deep 
autoregressive model for graph generation, capable of effectively 
capturing complex joint probabilities of nodes and edges. This 
advancement facilitated the extraction of node-depth-related features 
and node classification in graph-structured data of natural images. 
GCNs (17), by explicitly modeling label topology, have made 
significant strides in multi-label tasks in natural scenes, inspiring 
advancements in medical image multi-label classification. Chen et al. 
(18) improved multi-label classification performance by integrating 
GCN-learned label features with image features. Yuan et  al. (19) 
further enhanced the model’s expressiveness and adaptability for 
complex graph-structured data by introducing Graph Transformers.

While GCNs have demonstrated initial success in medical image 
analysis, current methodologies predominantly remain constrained 
by static graph modeling paradigms, failing to capture the dynamic 
interdependencies of pathological labels across temporal disease 
progression patterns. This fundamental limitation significantly 
impedes their clinical translatability in patient-specific diagnostic 
scenarios, urgently necessitating paradigm-shifting innovations to 
enable dynamic disease association modeling.

2.3 Wavelet transform feature 
enhancement

The Wavelet Transform is increasingly being recognized for its 
effective multi-scale frequency-domain analysis in image classification. 
Traditional wavelet-based Convolutional Neural Networks (CNNs) 
are susceptible to noise interference, leading to skewed results. To 
enhance noise robustness, Li et  al. (20) employed WaveCNets’ 
frequency-domain decomposition strategy. This approach splits 
feature maps into low- and high-frequency components for separate 
processing, achieving high-precision feature extraction and superior 
noise robustness. Liu et al. (21) utilized the wavelet transform for 
lesion segmentation, decomposing images to denoise CT scans while 
preserving lung contours. They combined wavelet transform with fast 
corner detection to extract pathological details and enhance lung 
contour correction and segmentation.

This paper addresses the limitations in multi-label medical image 
classification and inadequate label association modeling. It introduces 
Med-DGTN, a dual-branch visual-semantic collaborative model. The 
CNN backbone extracts image features, while the GCN branch, 
initialized with GloVe word vectors, generates a learnable adjacency 
matrix through a Graph Transformer layer. Notably, this paper 
innovatively integrates Discrete Wavelet Transform (DWT) with 
dynamic graph learning. This combination enhances multi-scale 
feature extraction using WTConv and a Graph Transformer-driven 
dynamic topology learning module. This co-optimization of medical 
image representation and disease semantic associations provides a 
novel solution for multi-label medical image classification.

3 Methodology

This study presents the Med-DGTN framework, which 
augments multi-label classification in medical images by 
integrating label semantics with visual features. Comprising a 
Graph Convolutional Network (GCN) module, a dynamic 
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adjacency matrix extractor (DAME), and an image feature 
extractor module(IFE), the framework facilitates the identification 
of correlations and dependencies between labels. The dynamic 
adjacency matrix extractor unveils the evolving relationships 
among pathological features in multi-label images. Simultaneously, 
the image feature extractor processes and extracts features from 
medical images. The components and workflow of the proposed 
method are illustrated in Figure 2.

3.1 Motivations

To address label dependencies, we  have developed a dual-
branch GCN-CNN framework. The GCN component is responsible 
for learning and modeling the semantic relationships between 
disease labels. We initiate the classifier’s label semantic space using 
GloVe pre-trained word vectors, providing the GCN with initial 
label association information. Additionally, we have incorporated 
a Graph Transformer layer into DAME. This layer generates 
dynamic label correlation matrices that capture dependencies 
between labels.

Within this framework, the CNN component employs cascaded 
WTDense Block modules as its backbone to extract multi-level 
image features. Our focus is on capturing and utilizing correlations 
between multiple disease labels as prior knowledge to enhance 
classification performance. In medical image analysis, 
low-frequency information often contains important pathological 
features, which are often overlooked in conventional feature 
extraction methods. Our research indicates that WTConv kernels 

(22) excel in capturing low-frequency information. Consequently, 
we have integrated WTConv kernels into WTDense Block modules. 
This module employs multi-scale feature fusion to improve the 
accuracy of fine-grained feature extraction, particularly enhancing 
the processing of low-frequency components in medical images that 
contain critical pathological information.

3.2 GCN module

In the Med-DGTN model designed in this paper, the Graph 
Convolutional Network (GCN) module passes information between 
nodes based on the obtained adjacency matrix and updates the node 
representations. The GCN branch is initialized using GloVe 
embeddings of disease labels, allowing the model to capture prior 
semantic relationships, including those involving rare or 
infrequent labels.

In the model of Med-DGTN constructed in this paper, the GCN 
(17) module operates by transmitting information between nodes, 
utilizing the derived adjacency matrix, and consequently updating the 
node representations.

3.2.1 Graph convolutional network recap
In this study, we employ two stacked GCN layers. Each layer of 

these networks takes the node representations lH  from the preceding 
layer as input, and subsequently outputs novel node representations 

+1lH . These are calculated in accordance with Equation 1.

FIGURE 2

Overall framework of our Med-DGTN model for multi-label medical image classification. The WTDense block is composed of six non-linear 
combination layers, incorporating batch normalization, ReLU activation, and WTConv. The outputs from these layers are subsequently concatenated 
across channels. WTDenseNet utilizes cascaded WTDense Block modules as its core structure to extract multi-level image features. These features are 
subsequently combined with classifiers generated through graph convolution to generate the final predictions.
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Here, A A I= + is the adjacency matrix with self-loops added, A 
is the original adjacency matrix, and I  is the identity matrix. D  is the 
degree matrix of A , ii j ijD A=∑  . ( )lW  is the learnable weight 
matrices of the −l th layer. σ  is the activation function. The final 
output of the GCN network is the feature ×∈ n DW  , where n is the 
number of classification labels.

This study employs a mapping function, based on GCN, to 
develop a classifier W  contingent upon the labels (refer to Equation 2).

 { }ω == 1
C

i iW  (2)

For the final layer, the output corresponds to the ultimate feature 
a, with C  symbolizing the count of classification labels and D  denoting 
the dimension of the image representation.

3.2.2 Classification label word vector embedding
The input to the GCN network in this module includes the 

adjacency matrix and the word vector embeddings of the classification 
label texts. The method for obtaining the adjacency matrix is described 
in Section 3.3. For label embeddings, we employ 300-dimensional 
GloVe vectors pretrained. While GloVe is a general-purpose word 
embedding model, it has shown strong transferability across domains, 
including biomedical contexts. In particular, many commonly used 
medical terms such as “glaucoma,” “pneumonia,” and “cardiomegaly” 
are present and semantically well-captured in the GloVe vocabulary. 
This allows the model to benefit from meaningful inter-label relational 
priors at the initialization stage, even before supervised training. The 

process for embedding the word vectors of the classification label texts 
is as follows:

First, the classification label texts are preprocessed to obtain clean 
and standardized input. This involves several steps: the text is first 
tokenized into individual words, then common stop words are 
removed, and finally, each word is reduced to its root form through 
stemming. After these steps, a vocabulary is built by collecting all 
unique words from the preprocessed text.

Next, a pre-trained word vector model, Glove, is utilized to 
vectorize each word within the vocabulary. To measure the 
relationship between words, cosine similarity is calculated between 
their corresponding vectors, as shown in Equation 3.

 
( ) i j

i j
i j

v v
cos v ,v

v v
Similarity

⋅
= =

  

 
(3)

Here, ∈ 300
iV   and jV  denote the 300-dimensional Glove 

embeddings of the i-th and j-th words, respectively. The cosine 
similarity serves as edge weights in the graph construction.

Finally, the network’s embedding layer maps each word’s index to 
its corresponding word vector. Throughout the model’s forward 
propagation, these word vector representations are channeled to 
subsequent neural network layers for further processing.

3.3 DAME module

The DAME module, a vital component of our framework, 
excavates dynamic associations among various pathological features 
from medical image data. As illustrated in Figure  3, the process 
commences by obtaining a correlation matrix N , from a multi-label 

FIGURE 3

Schematic diagram of DAME module correlation matrix generation. The schematic diagram of the DAME module’s correlation matrix generation 
illustrates its processing of the co-occurrence matrix M. This process involves conditional probability modeling to quantify disease relationships, 
followed by noise filtering and reweighting to reduce spurious correlations. Finally, a GAT layer is applied to enhance the capture of structural 
information related to disease-label nodes, ultimately producing a refined graph structure P with enriched node representations.
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medical image dataset. Subsequently, a Graph Transformer Network 
(GTN) is employed to generate an adjacency matrix, P . The DAME 
module further reinforces this by constructing a dynamic label graph 
using co-occurrence statistics and conditional probabilities as initial 
priors, which are further optimized through a learnable Graph 
Transformer. Rather than assigning a separate graph for each 
individual sample, this approach models a globally shared label graph 
that is dynamically refined throughout training. This enables the 
model to capture contextual dependencies and strengthens 
representations for underrepresented classes via shared 
label semantics.

3.3.1 Computing the correlation matrix
Computing the correlation matrix between disease labels can 

reveal concealed relationships and provide crucial insights for 
model design and optimization. The process involves the 
following steps:

Firstly, we  quantify the co-occurrence frequency of various 
disease label pairs within the training set of multi-label medical image 
classification, constructing a label co-occurrence matrix M , ×∈ C CM  .

Secondly, we model the correlations and dependencies between 
labels using conditional probability, generating a conditional 
probability matrix, M′ . To mitigate noise and over-smoothing 
inherent in simple correlations, we  implement a threshold, ô, to 
eliminate low-confidence edges, thereby creating a binary matrix, A, 
as illustrated in Equation 4.

 

τ

τ

′

′

 <= 
≥

0, if

1, if
ij

ij
ij

M
A

M  
(4)

Finally, the correlation matrix is derived. To mitigate the issue of 
over-smoothing inherent in the binary-valued correlation matrix, a 
reweighting strategy is implemented, as demonstrated in Equation 5.

 

=

 ≠
= 
 − =

∑ 1

, if

1 , if

C
ij iji

p i j
N A

p i j  

(5)

Here, p is a hyperparameter that balances the importance between 
self-connections and inter-node connections. When p approaches 1, 
the model emphasizes relationships between different nodes and 
downplays the self-connection. Conversely, when p approaches 0, the 
self-connection dominates, reducing the influence of other nodes.

3.3.2 Adjacency matrix computation
This study introduces a Graph Attention Transformer (GAT) layer 

to enhance the capture of structural information related to disease 
label nodes. The previously obtained correlation matrix, N, is 
transformed into a new graph structure, P. The process involves 
several steps:

Firstly, the correlation matrix, N, is processed through distinct 
linear layers to produce the query matrix, Q, the key matrix, K, and 
the value matrix, V (23), as shown in Equation 6.

 
 =    , , , ,Q K V

i i i i iiQ K V N W W W
 

(6)

Here, ×∈, , hQ K V n D
i iiW W W  。

Secondly, the attention matrix is computed based on , ,Q K V , as 
depicted in Equation 7.

 
( )

 
=   

 
Attention , , softmax

T
i i

i i i i
h

Q KQ K V V
D  

(7)

Thirdly, for each attention layer head h, a subgraph G containing 
information related to the disease label nodes is derived through 
computation, as illustrated in Equation 8.

 ( ) ( )( ) 0
1 1 1Concat Attention , , , ,Attention , ,j h h hG Q K V Q K V W= …

 (8)

Lastly, the adjacency matrix for the GCN is obtained by 
performing matrix multiplication on the subgraphs G from all 
attention heads, as demonstrated in Equation 9.

 =
=∏

1
P

k

j
j

G
 

(9)

3.4 IFE module

In the Med-DGTN model, the IFE is a CNN with WTDense Block 
modules (Figure 4). Each of the six nonlinear combination functions 
in a WTDense Block includes batch normalization (BN), ReLU 
activation, and WTConv. Each WTDense Block is followed by a 
Transition Layer with 1 × 1 convolution and 2 × 2 average pooling. 
After the last WTDense Block, there is a global average pooling layer.

3.4.1 Image feature extraction
The feature extraction network commences with a 448 × 448 

medical image as input.
First, the process initially involves passing the image through an 

initial visual layer, which comprises a 7 × 7 convolutional layer and a 
pooling layer. These components extract low-level features.

Next, the data is channeled into the first WTDense Block. Within 
this block, the data undergoes a series of nonlinear layers. Each 
nonlinear layer performs the following operations in sequence:

 • Applies batch normalization to the input feature map to stabilize 
the training process and accelerate convergence.

 • Applies a ReLU activation function to introduce nonlinearity and 
enhance the expressive power of features.

 • Applies a 3 × 3 WTConv layer for feature extraction based on 
wavelet convolution.

Each layer’s output is subsequently concatenated with the input 
feature map via channel-wise concatenation. The WTConv, which 
integrates cascaded wavelet decomposition, employs small 
convolutional kernels. With each wavelet transformation level, the 
receptive field expands, albeit with a slight increase in parameters.

After undergoing processing through multiple WTDense Blocks, 
the feature map size diminishes to 2048 × 14 × 14. In medical images, 
low-frequency information frequently contains crucial anatomical and 
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pathological features. The WTConv accentuates these low-frequency 
components through repeated wavelet decomposition, thereby 
operating on multiple frequencies with compact kernels. This 
approach aids the model in better handling noise and inhomogeneity 
in medical images, thereby enhancing classification robustness. 
Moreover, these low-frequency features are often associated with rare 
or subtle disease manifestations. By focusing on both prominent and 
hidden pathological signals, the model improves its ability to 
generalize under class-imbalanced conditions and strengthens its 
practical applicability in real-world clinical settings.

Finally, global average pooling compresses the feature map into a 
1D feature ∈ Dx   (D = 2048). This vector is then utilized for feature 
fusion with the output of the graph convolution operation.

3.4.2 Feature fusion
The integration of the one-dimensional feature, x, extracted from 

the feature extraction module, with the feature, W, learned by the 
GCN (refer to Equation 2), enables the generation of prediction 
scores, ŷ, for the multi-label classification task (refer to Equation 10).

 =ŷ Wx (10)

3.4.3 Loss function

Within the Med-DGTN framework, the entire network is trained 
utilizing a multi-label classification loss function, denoted as  
(referenced in Equation 11). Here, ∈ Cy   represents the true labels of 
the image, { }= 0,1iy  denoting the presence or absence of each label i.

 
( )( ) ( ) ( )( )σ σ

=
= + − −∑

1
lo l gˆg 1 o 1 ˆ

C
c c c c

c
y y y y

 
(11)

4 Experiments

In this section, we  first introduce the evaluation metrics and 
experimental settings. Then, we visualize the generated correlation 

matrix and present the comparison results of different feature 
extractors. Next, we  test the Med-DGTN model and compare its 
experimental results with those of current advanced models. Finally, 
we validate the effectiveness of each module in the model through a 
series of ablation experiments.

4.1 Evaluation metrics

To thoroughly evaluate the performance of the Med-DGTN 
model in multi-label medical image classification, we  utilized 
evaluation systems specifically designed to suit the characteristics and 
data distribution of each dataset.

For the MuReD2022 dataset, we utilized common multi-label 
classification metrics (24). Metrics such as Overall Precision (OP), 
Overall Recall (OR), and Overall F1 score (OF1) provide a broad 
overview of the model’s performance across all labels. In contrast, 
Class-wise Precision (CP), Class-wise Recall (CR), and Class-wise 
F1 score (CF1) measure the model’s ability to identify individual 
pathological categories. Furthermore, we  incorporated the 
composite metric, mean Average Precision (mAP), which 
calculates the average area under the Precision-Recall curve for 
each label, to assess the model’s robustness in multi-label scenarios. 
Additionally, we  retained the “Other” label to test the model’s 
recognition of rare diseases.

For the ChestXray14 dataset, given its severe class imbalance, 
we opted for the Area Under the Curve (AUC) (25) as the evaluation 
metric. AUC, which computes the area under the curve of the true 
positive rate versus the false positive rate, effectively mitigates the 
impact of class distribution skew on evaluation results. This metric is 
extensively used in multi-label chest X-ray classification tasks (26).

4.2 Experimental details

This paper utilizes the PyTorch deep learning framework for 
development in Python 3.8. The experimental hardware comprises an 
RTX 4090 GPU, and the software environment consists of PyTorch 
2.5.1 and CUDA 12.1. In the image feature extraction module, a CNN 

FIGURE 4

Schematic diagram of The WTDense block module. This module employs a dense connection pattern. Within each WTDense Block, following the 
application of BN and ReLU, a WTconv operation is conducted. The feature maps generated by each layer are then concatenated along the channel 
dimension, thereby serving as the input for the subsequent layers.
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backbone with pre-trained weights loaded is integrated to boost 
model performance.

The training process employs the Stochastic Gradient Descent 
(SGD) optimizer, setting the momentum at 0.9 and the weight decay 
coefficient at 10-4. The initial learning rate for the Dynamic 
Convolutional Graph Network is set at 0.5, while for CNN, it is set at 
0.03. The higher initial learning rate aids the network in quick 
convergence during the early training stages. Later on, reducing the 
learning rate helps prevent oscillation near the optimal solution, 
ensuring stable convergence. The entire training process is configured 
for 100 epochs, with the learning rate decaying to 1/10 of its current 
value every 30 epochs. The batch size is set to 16. To mitigate 
overfitting, an Early Stopping mechanism is incorporated into the 
training strategy.

In the data preprocessing stage, all images are resized to 448×448 
and standardized. Data augmentation techniques, such as random 
horizontal flipping and multi-scale cropping, are also applied, along 
with normalization, to ensure consistent data distribution across 
channels. These preprocessing steps improve image quality, 
significantly enhancing the model’s performance and 
generalization ability.

The DAME module involves two hyperparameters: the threshold 
ô used to filter weak connections in the conditional probability matrix 
and the re-weighting parameter p for balancing self-loops. In our 

experiments, τ  is set to 0.4 and p is set to 0.2, following the 
configuration used in Chen et al. (18). These values were found to 
yield stable performance while effectively preserving meaningful 
label dependencies.

4.3 Adjacency matrix heatmaps

For the MuReD2022 retinal disease multi-label dataset, 
we  illustrate the role of the adjacency matrix in the model by 
plotting a heatmap of correlations among all fundus disease labels. 
In Figure  5, disease label abbreviations denote twenty labels, 
including ‘diabetic retinopathy’, ‘normal’, ‘media haze’, ‘optic disc 
cupping’, ‘tessellation’, ‘age-related macular degeneration’, ‘drusen’, 
‘myopia’, ‘branch retinal vein occlusion’, ‘optic disc pallor’, ‘central 
retinal vein occlusion’, ‘choroidal neovascularization’, ‘retinitis’, 
‘optic disc edema’, ‘laser scars’, ‘central serous retinopathy’, 
‘hypertensive retinopathy’, ‘arteriosclerotic retinopathy’, 
‘chorioretinitis’, and ‘other diseases’.

Figure  5 indicates a strong correlation between ‘age-related 
macular degeneration’ and ‘choroidal neovascularization’, indicating 
a high probability of their co-occurrence. Conversely, a weak 
correlation between these two conditions implies a low probability 
of co-occurrence. The Med-DGTN model incorporates these 

FIGURE 5

Heatmap of the adjacency matrix for MuReD2022. This heatmap illustrates the correlation strengths between the fundus disease labels within the 
dataset. The darker the color, the stronger the correlation between the corresponding labels.
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correlations, employing conditional probability modeling and 
reweighting strategies, and utilizes the Graph Transformer Net to 
generate a correlation matrix that reflects intricate label 
relationships. This matrix not only aids in guiding the model’s 
classification training and inference but also serves as a constraint 
that enhances disease prediction accuracy by influencing multi-
label predictions.

For the ChestXray14 dataset, disease label abbreviations in 
Figure 6 correspond to fifteen labels: “edema,” “cardiomegaly,” “no 
finding,” “nodule,” “atelectasis,” “infiltration,” “pneumothorax,” 
“fibrosis,” “hernia,” “emphysema,” “consolidation,” “pneumonia,” 
“effusion,” “mass,” and “pleural_thickening.” Figure 6 presents a label 
correlation heatmap, revealing associations between various 
chest diseases.

4.4 Choice of the FEM’s backbone network

To achieve optimal model performance, we compared different 
image feature extraction networks on the MuReD2022 dataset. All 
models used the basic network architecture without our enhanced 
WTDense Block module. Each model had two GCN layers, with 
consistent configurations and input parameters. Table 1 details the 
experimental results.

As shown in Table 1, DenseNet161 performed best among the 
tested backbone networks. It achieved the highest mAP and 
outperformed other models in key metrics like OR, OF1, and CR.

Figure 7 illustrates the changes in mAP and loss on the training 
and validation sets across epochs. The loss curves smoothed out after 
the 30th epoch, and the mAP peaked and stabilized around the 50th 
epoch, indicating optimal model performance.

4.5 Experimental results

To establish the reliability of our model, we performed experiments 
on two medical image datasets. In this study, given the exploratory nature 
of the research and the distinctive characteristics of the data, we have 
opted not to employ formal statistical analysis. Instead, our focus has been 
on illustrating and comparing the algorithm’s performance.

4.5.1 Experiments on MuReD2022
The MuReD2022 dataset serves as a crucial component of our 

experimental evaluation, providing a robust framework to test the efficacy 
of our Med-DGTN model in multi-label medical image classification. 
Specifically designed to capture the intricacies of retinal diseases, this 
dataset offers a valuable resource for both model training and validation. 
Our experiments on this dataset seek to illustrate how the incorporation 

FIGURE 6

Heatmap of the adjacency matrix for ChestXray14. This heatmap illustrates the inter-label correlation patterns among the various disease labels within 
this dataset.
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of dynamic pathological correlation modeling and low-frequency feature 
extraction can improve diagnostic accuracy and reliability.

4.5.1.1 Retinal disease dataset MuReD2022
This study primarily used the retinal disease dataset MuReD2022 

(27), which integrates images from ARIA, STARE, and RFMiD, 
totaling 2,208 images. Of these, 1,764 images were utilized as the 
training set, while 444 images were served as the validation set. The 

dataset includes 20 distinct labels, such as the “normal” label for 
healthy retinas and the “Other” label for rare disease conditions. There 
are variations in image quality and resolution, and each image 
comprises one or more labels.

4.5.1.2 Experimental results and analysis on MuReD2022
On the MuReD2022 dataset, we compared our Med-DGTN model 

with classical fundus multi-label classification models, such as 

TABLE 1 Comparison of different networks as feature extractors.

Backbone mAP OP OR OF1 CP CR CF1

ResNet-50 57.839 0.7222 0.5601 0.6309 0.5542 0.4601 0.5028

ResNet-101 57.859 0.7186 0.5548 0.6261 0.5943 0.4750 0.5280

ResNeXt-50 32x4d 56.389 0.6757 0.5835 0.6262 0.4688 0.4336 0.4505

ResNeXt-101 32x16d 63.248 0.7386 0.6086 0.6673 0.6459 0.5341 0.5847

VGG16 57.817 0.7467 0.5081 0.6047 0.5607 0.3787 0.4521

DenseNet161 67.960 0.7137 0.6625 0.6872 0.6189 0.5708 0.5938

ConvNeXt 60.045 0.7338 0.5494 0.6283 0.5843 0.4625 0.5163

Swin Transformer 65.517 0.7248 0.6194 0.6680 0.6835 0.5415 0.6043

This table compares the key characteristics of various networks serving as feature extractors. The metrics assessed include mAP, OP, OR, OF1, CP, CR, and CF1, serving as a benchmark for the 
selection of an appropriate feature extraction network. The data suggests that DenseNet161 exhibits the best overall performance.

FIGURE 7

Loss and mAP change curves. The figure demonstrates the progression of the model’s loss and mAP across training epochs, both on the training and 
validation sets. The blue solid line signifies the train loss, the red dashed line represents the train mAP, the green solid line indicates the Val loss, and the 
purple dashed line depicts the Val mAP.
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Transformer-based models (27). We also concentrated on comparing 
advanced GCN-based models, including ML-GCN, MGTN (28), and 
GATN. To ensure fairness, we  standardized the CNN module 
configurations in our comparative analysis. Specifically, ML-GCN used 
ResNet-101 (18) and DenseNet161, MGTN used ResNeXt50 (28) and 
DenseNet161, and GATN used ResNeXt-101 (19) and DenseNet161. 
The experimental results are presented in Table 2.

By examining the data in Table 2, it becomes evident that when 
DenseNet161 is chosen as the foundational model for the CNN module 
within the dual-branch structure, it demonstrates a notable advantage 
in the comprehensive metric, mAP, by 5–8% over other basic models. 
Under identical conditions, our method consistently achieves the 
highest mAP value. This is 6.680, 5.362, and 1.895 percentage points 
higher than ML-GCN, MGTN, and GATN respectively, and is a 2.1 
percentage point improvement over C-Tran. Furthermore, our method 
also excels in six additional indicators (OP, OR, OF1, CP, CR, CF1), 
obtaining the top performance in OP, CP, and CF1. This suggests that 
our method not only enhances the extraction of fine-grained features 
but also optimizes the modeling of label relationships, thus significantly 
enhancing overall classification performance.

4.5.2 Experimental results on ChestXray14
To further evaluate the effectiveness of our Med-DGTN model in 

multi-label medical image classification, we conducted experiments 
on the ChestXray14 dataset. This dataset provides a diverse set of chest 
X-ray images with multiple disease labels, thereby providing an ideal 
testing ground for the model’s ability to manage complex multi-
label scenarios.

4.5.2.1 ChestXray14 Dataset
In order to further substantiate the feasibility of our method on 

diverse medical images, we opted for the ChestXray14 dataset (29) 
provided by the NIH. This dataset comprises of 112,120 frontal-view 
chest X-ray images, sourced from 32,717 patients. Among these, 
86,524 images were utilized for training, while 25,596 were reserved 
for testing. The dataset encompasses 14 prevalent chest disease labels 
and a single “No Finding” label. Each image possesses a resolution of 
1,024 × 1,024 pixels, and it either bears the “No Finding” label or one 
or more chest disease labels.

4.5.2.2 Experimental results and analysis on ChestXray14
To ascertain the generalizability of our method in multi-label 

medical image classification, we executed supplementary experiments 

on the ChestXray14 dataset. The results, assessed using the AUC 
metric, were compared with other competitive methods, as displayed 
in Table 3.

Our model outperforms others in Atelectasis, Infiltration, 
Pneumothorax, Pneumonia, and Hernia, achieving the highest AUC 
values. Although the average AUC (0.841) is marginally lower than 
that of CoAtNet (0.842), our method demonstrates a substantial 
advantage in the intricate Pneumonia label, with a 2% higher 
AUC. This underscores our method’s capability in identifying complex 
pathological features, particularly in challenging diseases such 
as pneumonia.

4.6 Ablation studies

To thoroughly evaluate the contributions of individual 
components in our proposed methodology, we carried out a series of 
ablation experiments. Specifically, we  methodically removed or 
substituted key components of the model and rigorously assessed the 
effects of these modifications on model performance. This 
experimental design aids in elucidating the roles and efficiencies of 
each component within the model. All ablation experiments were 
executed on the MuReD2022 dataset.

As illustrated in Table 4, we initially evaluated the complete model 
with all components intact. Upon replacing the WTDense Block with 
a standard Dense Block, we noted a 2.694 drop in the mAP metric. 
This finding underscores the pivotal role of the WTDense Block in 
augmenting the model’s feature extraction and representation 
capabilities, particularly in enhancing overall performance and 
refining feature fusion.

Subsequently, when we dispensed with the Graph Transformer 
driven dynamic label correlation matrix method for constructing 
the correlation matrix, the model’s mAP metric experienced a 
significant decline of 5.954. This outcome further corroborates the 
importance of this method in facilitating the model’s generation 
of more informative correlation matrices, especially in enhancing 
the model’s capacity to comprehend and capture 
intricate relationships.

Compared to the baseline model ML-GCN (based on 
DenseNet161), our complete model demonstrated a substantial 
improvement of 6.68 in mAP. This result exemplifies the synergistic 
effect of enhancing fine-grained feature extraction in medical images 
via WTConv and optimizing label topology modeling using the Graph 

TABLE 2 Comparisons with SOTA methods on the MuReD2022 dataset.

Methods mAP OP OR OF1 CP CR CF1

C-Tran (27) 68.500 – – 0.5730 – – –

ML-GCN(ResNet-101) (18) 58.101 0.2651 0.6158 0.3706 0.5853 0.5595 0.5721

ML-GCN(DenseNet161) 63.974 0.7140 0.6768 0.6949 0.6058 0.5857 0.5956

MGTN(ResNeXt50) (28) 57.349 0.7153 0.5548 0.6249 0.5759 0.4346 0.4954

MGTN(DenseNet161) 65.292 0.7099 0.6679 0.6883 0.5969 0.5824 0.5896

GATN(ResNeXt-101) (19) 62.300 0.7282 0.6445 0.6838 0.6343 0.5172 0.5738

GATN(DenseNet161) 68.759 0.7278 0.6768 0.7014 0.5967 0.5744 0.5853

Ours 70.654 0.7287 0.6607 0.6930 0.6386 0.5756 0.6055

In the table, data in bold indicate the best values for their respective metrics, while “–” denotes missing data. Boldface numbers denote the highest performance achieved among all compared 
models for each evaluation metric.
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Transformer. Collectively, these enhancements significantly elevate the 
model’s overall performance.

5 Discussion

The Med-DGTN model addresses two core challenges in multi-
label medical image classification: modeling dynamic pathological 
correlations and extracting low-frequency features. The Graph 
Transformer layer dynamically refines the label dependency graph 
during training, allowing the model to capture asymmetric and 
clinically meaningful co-occurrence patterns, which are common in 
ophthalmic conditions such as age-related macular degeneration, 
diabetic retinopathy, and glaucoma. This adaptive modeling reflects 
disease relationships more realistically than static approaches. In 
addition, the WTDense Block enhances the extraction of 
low-frequency features through wavelet-based convolution, which is 
particularly effective for identifying subtle pathological signs—such 
as drusen, or mild optic disc swelling—that may be underrepresented 
in training data. These enhancements support more accurate 
recognition of complex disease presentations in fundus imaging.

Experimental results on the MuReD2022 dataset reveal that 
Med-DGTN achieves a 70.65% mAP. When compared to other 
robust models within the CNN-GCN framework using DenseNet as 

the base CNN, Med-DGTN surpasses ML-GCN, MGTN, and GATN 
by 6.680, 5.362, and 1.895 percentage points, respectively, and C-Tran 
by 2.1 percentage points. Med-DGTN also demonstrates superior 
performance in other metrics such as OP, CP, and CF1. On the 
ChestXray14 dataset, Med-DGTN excels in five out of fourteen 
labels. Notably, it exhibits a 2% improvement in the AUC for the 
intricate Pneumonia label, suggesting that the WTDense Block 
effectively captures low-frequency pathological features. However, 
Med-DGTN underperforms compared to SOTA methods on labels 
like Fibrosis, possibly due to weak associations with other disease 
labels, which limits the effectiveness of the dynamic adjacency 
matrix. Ablation studies confirm the importance of each component 
by demonstrating significant performance declines when replacing 
or removing modules.

Although the DAME module offers a flexible, data-driven 
approach to dynamically constructing the label graph through 
statistical and learned dependencies, its implementation on large-scale 
datasets introduces practical challenges. First, the computation of the 
label co-occurrence matrix ×∈ C CM  , where C is the number of 
categories and N is the number of samples, has a complexity of 
( )2O C N⋅ . While this step is typically performed during 

preprocessing and does not cause significant overhead in most cases, 
it can become resource-intensive when the number of labels is large. 
To address this, the correlation matrix can be computed and stored 

TABLE 3 Comparisons of AUC with SOTA methods on the ChestXray14 dataset.

Disease Ours Ref. (29) Ref. (33) Ref. (34) Ref. (35) Ref. (36) Ref. (37)

Atelectasis 0.829 0.716 0.800 0.781 0.797 0.802 0.823

Consolidation 0.807 0.708 0.800 0.754 0.725 0.796 0.810

Infiltration 0.739 0.609 0.700 0.702 0.724 0.702 0.731

Pneumothorax 0.901 0.806 0.870 0.857 0.869 0.900 0.900

Edema 0.881 0.835 0.880 0.850 0.860 0.883 0.902

Emphysema 0.922 0.815 0.910 0.908 0.933 0.915 0.921

Fibrosis 0.813 0.769 0.780 0.830 0.849 0.825 0.816

Effusion 0.875 0.784 0.870 0.829 0.844 0.874 0.882

Pneumonia 0.781 0.633 0.670 0.729 0.739 0.715 0.761

Pleural_Thickening 0.755 0.708 0.760 0.778 0.753 0.791 0.801

Cardiomegaly 0.907 0.807 0.870 0.880 0.911 0.894 0.908

Nodule 0.770 0.671 0.750 0.773 0.802 0.768 0.798

Mass 0.851 0.706 0.830 0.834 0.836 0.843 0.862

Hernia 0.945 0.767 0.770 0.917 0.916 0.943 0.883

Average 0.841 0.738 0.804 0.816 0.826 0.832 0.842

The table provides a comparative analysis of our method’s performance with 6 other SOTA methods on the ChestXray14 dataset. The first column delineates the 14 chest disease labels, with the final 
row’s average representing the cumulative AUC for these 14 labels. Boldface values represent the AUC scores corresponding to the best-performing model across individual disease categories.

TABLE 4 Ablation study on MuReD2022.

Baseline WTDenseBlock Graph Transformer mAP

√ 63.974

√ √ 64.700

√ √ 67.960

√ √ √ 70.654

This table provides a comparison of model performance on the MuReD2022, showcasing different combinations of the baseline model with the WTDenseBlock module and the Graph 
Transformer module. “√” indicates that the corresponding module is included in the model configuration. Boldface values represent the mAP scores achieved by the best-performing 
configuration in the ablation experiments.
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before training begins. In the graph attention stage, constructing the 
query, key, and value vectors and computing the scaled dot-product 
attention further increases the complexity to ( )2O C d⋅ , where d is 
the attention dimension. In practice. For instance, when = 20C  (as in 
the MuReD2022 dataset) and = 64d ,the attention mechanism 
computes 25,600 weights. When = 60C , this increases to 230,400 
weights, which may lead to additional GPU memory usage during 
training. In practice, computational costs can be mitigated by limiting 
the number of computed subgraphs, applying threshold-based sparsity 
constraints, or grouping low-frequency labels together. These 
strategies allow the model to remain scalable while preserving the 
richness of inter-label relations.

Despite other researchers working on multi-label classification for 
MuReD2022 and ChestXray14, differences in evaluation metrics and 
the lack of code availability make their methods irreproducible (30). 
Therefore, comparisons are only made with methods that have 
available code or use the same evaluation metrics.

6 Conclusion

Multi-label classification presents significant importance and 
complex in medical image analysis, as a single image may display 
multiple disease characteristics. The primary challenges include 
modeling dynamic pathological correlations and extracting 
low-frequency pathological features. This paper introduces the 
Med-DGTN model, which employs a CNN-GCN cross-modal 
alignment strategy to achieve a deep coupling of image features and 
label semantics. The Graph Transformer layer effectively captures 
dependencies between diseases, while the WTDense Block module 
enhances low-frequency feature extraction through wavelet 
decomposition. Experimental results show that the Med-DGTN 
model achieves outstanding performance on the MuReD2022 and 
ChestXray14 datasets. These results demonstrate the model’s potential 
to assist in real-world clinical settings by improving the accuracy and 
comprehensiveness of automated disease screening. For instance, by 
accurately identifying co-existing pathologies in a single scan, 
Med-DGTN can support radiologists in making more informed and 
efficient diagnostic decisions, particularly in high-throughput 
environments. Future research may explore alternative graph-based 
techniques, such as GraphSAGE (31) and Node2Vec (32), to further 
enhance the modeling of disease relationships. In addition, 
incorporating domain-specific medical word embeddings may offer 
improved semantic representations of disease labels compared to 
general-purpose embeddings. These approaches can provide more 
flexible and scalable representations of label dependencies in large-
scale graphs, potentially improving the quality of the dynamically 
constructed adjacency matrix and boosting model performance on 
complex medical datasets.
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