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Electrocardiogram (ECG) classification plays a critical role in early detection and 
trocardiogram (ECG) classification plays a critical role in early detection and monitoring 
cardiovascular diseases. This study presents a Transformer-based deep learning 
framework for automated ECG classification, integrating advanced preprocessing, 
feature selection, and dimensionality reduction techniques to improve model 
performance. The pipeline begins with signal preprocessing, where raw ECG 
data are denoised, normalized, and relabeled for compatibility with attention-
based architectures. Principal component analysis (PCA), correlation analysis, and 
feature engineering is applied to retain the most informative features. To assess the 
discriminative quality of the selected features, t-distributed stochastic neighbor 
embedding (t-SNE) is used for visualization, revealing clear class separability in 
the transformed feature space. The refined dataset is then input to a Transformer- 
based model trained with optimized loss functions, regularization strategies, and 
hyperparameter tuning. The proposed model demonstrates strong performance 
on the MIT-BIH benchmark dataset, showing results consistent with or exceeding 
prior studies. However, due to differences in datasets and evaluation protocols, 
these comparisons are indicative rather than conclusive. The model effectively 
classifies ECG signals into categories such as Normal, atrial premature contraction 
(APC), ventricular premature contraction (VPC), and Fusion beats. These results 
underscore the effectiveness of Transformer-based models in biomedical signal 
processing and suggest potential for scalable, automated ECG diagnostics. However, 
deployment in real-time or resource-constrained settings will require further 
optimization and validation.
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1 Introduction

Electrocardiography is a primary and most used technique in cardiology that records 
electrical signals of the heart and analyzes the state of the heart. The increasing number of 
patients with CVDs, arrhythmia, myocardial infarction and heart failure proves that accurate 
and reliable diagnostic tools are needed (1). The initial stages of automated ECG classification 
were supported by convolutional models, which provided high accuracy and efficiency, 
although they typically relied on fixed-size kernels and local feature extraction (2). As such, 
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there is a growing need for automated ECG classification systems that 
can efficiently assist clinical decision-making and improve the quality 
of diagnostic results.

In recent years, the global incidents of CVDs has increased, 
making them one of the leading causes of death worldwide (3). ECG 
as a non-invasive technique is widely used for diagnosing cardiac 
arrhythmia and abnormalities. Prodromal signs of CVDs often 
manifest as irregular electrical patterns, detectable via ECG signals. 
For instance, cardiac arrhythmias can be  fatal if not monitored 
properly, as they may indicate conditions leading to sudden cardiac 
arrest. Acharya et  al. (4) employed CNN-based architectures to 
classify ECG signals and achieved 95% accuracy. Similarly, Liu et al. 
proposed the RNN-based approaches, demonstrating the ability of 
sequence-based models to capture temporal dependencies, achieving 
95% accuracy in arrhythmia classification (5–7). These results indicate 
that deep learning models are well-suited for ECG classification.

The ability to differentiate between normal and arrhythmic ECG 
signals is critical for improving CVD diagnosis and identification (8). 
However, due to small amplitude variations and short- duration signals, 
ECG classification remains challenging. Additionally, inherent 
differences in ECG patterns across different CVDs, and difficulty in 
distinguishing similar features between patients make classification even 
more complex. As a result, deep learning-based automated diagnostic 
tools are crucial in complementing traditional ECG analysis to improve 
accuracy and efficiency in CVD detection. Chang and Limon (9) 
demonstrated that transformers could effectively classify ECG signal by 
focusing on the most relevant signal characteristics using the attention 
mechanism. Transformers can capture long-range dependencies in ECG 
measurements well-suited for complex classification tasks.

Building upon these advancements, this study proposes a novel 
Transformer-based model for multi-class ECG classification, 
specifically targeting five distinct classes: Normal, APC, VPC, Fusion 
beat and others. To enhance classification performance, a Transformer-
based model is trained on refined ECG features rather than raw ECG 
signals, enabling better features extraction and reducing noise 
interference. The model is trained and tested on a publicly available 
ECG dataset, demonstrating its effectiveness in classifying various 
cardiac pathologies. To further evaluate the model’s performance, 
various evaluation metrics are used, ensuring its reliability in real-
world applications. Motivations behind this work are:

	•	 Variability of ECG waveforms across individuals due to age, 
physical condition and emotional state, making it challenging to 
distinguish between normal and abnormal rhythms.

	•	 Arrhythmic events often have low amplitude and short duration, 
making them difficult to identify amidst noise.

	•	 Distinguishing between automatically and mechanically 
mediated arrhythmias remains ambiguous due to overlapping 
signal characteristic.

	•	 Bio-noise, such as muscle contractions or improper 
electrode placement, increases signal distortion, affecting 
classification accuracy.

	•	 Traditional convolutional methods used for noise reduction may 
also remove critical ECG features, impacting arrhythmia detection.

The analysis of electrocardiogram (ECG) data now generates 
better results for recognizing heart rhythm irregularities together with 
better classification of cardiac conditions. Modern approaches solve 

many problems of traditional techniques through direct ECG signal 
analysis which removes the requirement for human involvement (10). 
Recent systems, such as Transformer-based architectures, build upon 
CNN strengths by enabling long-range dependency modeling and 
adaptive attention, which enhances recognition of subtle and 
infrequent ECG patterns (11–13).

These approaches demonstrate strong capabilities in detecting 
relationships throughout long duration within ECG recordings. Their 
ability to detect irregular heartbeats that appear infrequently makes 
these methods highly effective (14, 15). The ensured reliable operation 
across different patient groups and improved diagnostic accuracy 
comes from this approach’s capabilities. Real-world ECG 
measurements do not affect these systems because they demonstrate 
enhanced resistance to both interference and measurement distortions.

The ability to understand model prediction processes through 
these techniques increases the potential for medical practitioners to 
adopt the model. Transformers are particularly well-suited for 
capturing long-range temporal dependencies across ECG sequences, 
complementing the local feature extraction of CNNs.

This paper is organized:

	•	 Section 1 presents the Literature Review.
	•	 Section 2 describes Methodology, including data preprocessing, 

feature selection and model training.
	•	 Section 3 presents the Results and Analysis, where classification 

outcomes are evaluated.
	•	 Section 4 discusses Findings, Limitations and Future 

Research Directions.

2 Literature review

The identification and classification of cardiovascular disease 
(CVDs), particularly arrhythmia, remain critical areas of research due 
to the pivotal role of electrocardiography (ECG) in diagnosing heart 
disorder. Over the past few decades, various methodologies have been 
employed for ECG-based arrhythmia detection, ranging from classical 
machine learning techniques to advanced deep learning approaches, 
with the primary objective of enhancing accuracy, efficiency and 
robustness. Martis et al. (16) proposed an SVM-based classification 
method that relied on handcrafted features such as wavelet coefficients 
and heart rate variability, as discussed in Table 1. Similarly, Marinho 
et al. (17, 18) explored feature engineering techniques to improve 
arrhythmia classification. However, these models exhibit poor 
generalization on large databases due to their dependence on manual 
feature extraction, making them highly sensitive to noise and variation 
in patients.

To address the limitations of early rule-based and statistical ECG 
analysis methods, Hannun et  al. (15) explored recurrent neural 
networks (RNNs) and LSTM architectures to preserve temporal 
information over longer durations. While LSTMs improved 
arrhythmia classification, they often struggled with vanishing gradient 
problems and incurred high computational costs—posing a challenge 
for real-time or resource-constrained deployment.

Transformer models, originally introduced for natural language 
processing, have recently gained traction in biomedical signal 
processing due to their ability to model long-range dependencies 
efficiently. In one of the earliest applications of Transformers to ECG 
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signals, a 2021 study (19) demonstrated their effectiveness in 
arrhythmia classification. Li et  al. (14) further extended this by 
integrating a Transformer with a 2D-UNet architecture to capture 
both spatial and temporal ECG features, improving classification 
accuracy and interpretability.

Despite their promise, Transformers also come with 
challenges. Training large-scale Transformer models demands 
significant computational resources and careful hyperparameter 
optimization. Additionally, their integration into clinical 
workflows requires further work on improving interpretability 
and operational efficiency. The contribution of our work is 
as follows:

	•	 The proposed Transformer-based model was evaluated on five 
ECG arrhythmia classes: Normal, APC, VPC, Fusion Beat, and 
Others demonstrating its effectiveness in multi-class ECG 
classification tasks.

	•	 The model exploits the attention mechanism to learn long-range 
temporal dependencies, offering improved performance over 
conventional CNN and RNN approaches.

	•	 It addresses key challenges in ECG analysis, such as noise and 
signal variability, by focusing on clinically informative 
signal segments.

	•	 While deployment in clinical settings remains a future goal, the 
model shows promise for scalable and automated ECG analysis, 
suitable for integration into health-monitoring systems.

Despite notable advancements in CNNs, LSTMs, and 
Transformer-based techniques, several key challenges persist. These 
include limited generalizability across datasets, vulnerability to signal 
artifacts, and the computational intensity required for model training 
and inference. Overcoming these obstacles is essential for creating 
robust, interpretable, and deployable ECG classification systems 
suitable for real-world clinical use.

3 Materials and methods

The proposed ECG classification framework is designed to detect 
and categorize cardiac arrhythmia using a Transformer-based deep 
learning model trained on preprocessed ECG signals. The system 
integrates data acquisition from a wearable device, such as a 
smartwatch, with a mobile application that transmits ECG data to a 
cloud server via Wi-Fi for further processing. Upon receipt, the raw 

ECG signals undergo a structured preprocessing pipeline that includes 
denoising to eliminate motion artifacts and baseline drift, 
normalization to standardize signal amplitude, and segmentation to 
extract uniform time windows for analysis.

Following preprocessing, feature extraction and selection are 
conducted using techniques such as principal component analysis (PCA) 
and correlation-based filtering to identify the most discriminative signal 
characteristics. These selected features serve as input to the Transformer-
based architecture, which is trained in the cloud environment using 
supervised learning. The training phase incorporates hyperparameter 
tuning, loss function optimization, and regularization strategies to 
improve generalization and mitigate overfitting.

Once trained, the optimized model is intended for future 
deployment on mobile devices, where it can support real-time ECG 
classification. The mobile application will be able to receive ECG 
signals and output classification results, identifying patterns such as 
Normal, atrial premature contraction (APC), premature ventricular 
contraction (PVC), Fusion beat, and other arrhythmic events. While 
the system is structured for scalability and real-time analysis, 
on-device inference and hardware-level performance optimization 
remain areas of future work to ensure clinical reliability and 
deployment in resource-constrained settings (Figure 1).

Workflow of the proposed ECG classification system, illustrating 
the integration of hardware components (wearable smart watch, 
mobile application, and cloud server) and data processing stages 
including signal acquisition, preprocessing, feature extraction, 
Transformer-based classification, and result delivery. The framework 
is designed to improve the accessibility of cardiac monitoring and 
supports the goal of enabling earlier detection of arrhythmias, though 
deployment and validation on real-world hardware remain subjects 
for future work.

3.1 Dataset description

The dataset employed in this study comprises a collection of ECG 
recordings representing both normal rhythms and a range of arrhythmic 
conditions. All recordings are sampled at a consistent frequency, 
ensuring temporal uniformity across the dataset (20, 21). The dataset 
includes five clinically relevant classes: Normal, atrial premature 
contraction (APC), premature ventricular contraction (PVC), Fusion 
beat, and others, as illustrated in Figure 2. Although slightly imbalanced, 
it provides a diverse representation of common arrhythmic patterns. To 
ensure signal quality and reliability for downstream classification,  

TABLE 1  State-of-the-art methods for ECG classification.

References Techniques Goals Findings

Lee and Shin (30) Hierarchical Transformer Lead-aware ECG modeling High-performance arrhythmia detection

Hannun et al. (31) deep neural network (DNN) improve the accuracy and scalability reduce the rate of misdiagnosed

Rajpurkar et al. (32) CNN exceeds the performance Exceed cardiologist performance

Arabi et al. (19) MSW-Transformer Multi-scale attention ECG classifier Macro-F1: 77.85%

Ait Bourkha et al. (33) DCETEN (1D-CNN + Transformer) Efficient ECG classification Accuracy: 99.84%

Kailan et al. (34) PSO-based feature selection + SVM, 

KNN, RF, DT

Improve ECG classification accuracy & reduce 

dimensionality for IoT deployment

Accuracy: 98% (PSO-SVM) vs. 84% (non-PSO); 

Features reduced: 4000 → 888

Mavaddati (35) ResNet-34 + Time–Frequency 

Scalogram + Transfer Learning

Classify 3 types of cardiovascular diseases 

(CVDs); compare with CNN, RNN, SNMF

ResNet-34 outperformed CNN, RNN, and SNMF in 

accuracy, sensitivity, and robustness for clinical use
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preprocessing pipelines are applied to the raw ECG signals. This includes 
denoising, normalization, and segmentation steps, which help mitigate 
baseline drift, reduce motion artifacts, and standardize input lengths. 
These steps are essential to prepare the data for the attention-based 
Transformer model used in this study (6).

3.2 Data preprocessing

The preprocessing pipeline ensures the ECG signals are structured 
and standardized for input into the Transformer-based model. The key 
steps are as follows:

	•	 Dataset loading and partitioning: The ECG dataset is first loaded 
and divided into training and testing subsets. Each row represents 
a single ECG sample, with the final column indicating the class 
label associated with the corresponding cardiac condition.

	•	 Feature and label separation: The dataset is then split into feature 
matrices and target vectors. The features X_train, X_test → 
Contain Raw ECG features. While the Y_train, y_test → Contain 
corresponding class labels.

	•	 Normalization: Given the variability in ECG signal amplitudes, 
normalization is applied to scale all feature values between 0 and 1. 
This mitigates amplitude-related noise, stabilizes the data 
distribution, and improves training convergence. The normalization 
is applied using the min-max scaling as shown in Equation 1:

	
µ

σ
−

=` i
i

xx
	

(1)

Where,

	o	 xi is the normalized signal value.

	o	 xi is the original signal value.
	o	 μ is the meaning of the signal segment.
	o	 σ is the standard deviation of the signal segment.
	•	 Normalization not only stabilizes input ranges but also 

accelerates model convergence and enhances classification 
performance by minimizing bias introduced by amplitude 
variations across different recordings.

	•	 To analyze how well the normalized features represent different 
heartbeat categories, the t-distributed stochastic neighbor 
embedding (t-SNE) technique is applied. This dimensionality 
reduction method maps high-dimensional ECG features into a 
2D space, allowing visual assessment of class separability prior to 
training. This step is particularly valuable for evaluating whether 
the features preserve inter-class distinctions.

	•	 Since the task involves multi-class classification, categorical labels 
are transformed into numerical representations using a label 
encoding technique. This conversion is essential for training the 
deep learning model, allowing loss functions and optimization 
routines to operate effectively on class indices.

	•	 Transformer models require input in a sequence-based format. 
Thus, the ECG data is reshaped into a 3D tensor with the structure.

	o	 Samples (batch size).
	o	 Time steps (ECG sequence length).
	o	 Feature (single ECG value per step).

The reshaping is illustrated in Equation 2:

	 =      .downX i X i n 	 (2)

Where,

	o	 Xdown[i] is downsampled signal at index i.
	o	 X[i] is an original signal.
	o	 n is the down sampling factor.

FIGURE 1

Hardware architecture of the Transformer-based ECG classification model.
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This reshaping enables the model to process ECG signals as temporal 
sequences, ensuring that temporal dependencies and waveform 
dynamics are preserved during training. It aligns the data structure with 
the self-attention mechanism used by Transformers, which excels in 
modeling long-range dependencies without relying on fixed kernel sizes.

3.2.1 ClassLabels
The dataset includes five distinct heart rhythm categories, each 

representing a specific type of arrhythmia or normal pattern:

	•	 Normal: Represents a healthy, regular heart rhythm.
	•	 Atrial premature contraction (APC): Premature beats originating 

from the atria, indicating irregular early electrical activity.
	•	 Premature ventricular contraction (PVC): Extra systolic beats 

that originate in the ventricles, often associated with more serious 
cardiac conditions.

	•	 Fusion beat: A waveform resulting from the combination of normal 
and abnormal heart contractions, leading to a hybrid signal.

	•	 Other: Patterns that do not clearly fall into any of the above 
categories, encompassing miscellaneous or undefined anomalies.

Through the implementation of these preprocessing techniques, 
the ECG data is sanitized, segmented, and properly formatted before 
being fed into the Transformer-based classification model ensuring 
more accurate identification of a wide range of heart conditions.

3.3 Feature extraction techniques used in 
proposed model

Feature selection enhances model performance by identifying 
critical patterns and discarding irrelevant or less useful signal 

components (12, 13). After data preprocessing, multiple feature 
selection techniques are applied to ensure that only the most relevant 
features are retained for classification. The techniques used for feature 
extraction and selection include:

	•	 Principal component analysis (PCA): A dimensionality reduction 
technique that transforms a set of potentially correlated variables 
into a smaller set of uncorrelated principal components, 
preserving the majority of the data’s variance.

	•	 t-distributed stochastic neighbor embedding (t-SNE): A 
nonlinear dimensionality reduction technique primarily used for 
visualizing high-dimensional data in 2D or 3D.

	•	 Correlation analysis: Used to detect and eliminate redundant 
features that show strong inter-feature correlation but do not 
contribute independently to classification performance.

	•	 Feature engineering: The process of generating new, domain-
relevant features derived from existing data to improve 
model accuracy.

While PCA and correlation-based feature selection significantly 
improved classification performance, their clinical interpretability 
remains limited. The principal components produced by PCA are 
linear combinations of original ECG features and, while they 
effectively capture statistical variance, they do not directly correspond 
to established clinical indicators such as P-wave duration, QRS 
complex width, or T-wave inversion. This raises uncertainty about 
whether the most influential features in the model’s predictions align 
with clinically accepted diagnostic markers used by cardiologists. 
This limitation underscores the need for future research that 
incorporates clinically annotated datasets and domain-informed 
feature selection strategies. Such efforts could bridge the gap between 
deep learning representations and clinically meaningful 

FIGURE 2

Architecture diagram of Transformer-based ECG classification model.
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interpretations, improving trust and applicability in real-world 
diagnostic settings.

To evaluate the discriminative quality of the extracted features 
before model training, we applied t-distributed Stochastic Neighbor 
Embedding (t-SNE) to the preprocessed dataset. As shown in Figure 3, 
the resulting 2D embedding reveals distinct clustering patterns for 
most arrhythmia types. This indicates that the features refined through 
PCA and correlation analysis retain sufficient discriminatory power 
for effective classification. The visual separation also validates the 
structure of the input space before learning begins, providing insight 
into class overlap and guiding model architecture decisions.

3.4 Transformer-based model training and 
testing

The Transformer-based model is trained on reshaped ECG input, 
where each sample represents a time-series sequence of cardiac 
electrical activity. The input data is formatted as a two-dimensional 
matrix, with dimensions corresponding to the sequence length and 
the feature dimension. The sequence length reflects the number of 
time steps (i.e., signal samples) in each ECG segment. The feature 
dimension represents the amplitude of the ECG signal at each time 
step, typically one-dimensional for raw ECG traces. This sequential 
structure is well-suited for Transformer architectures, which rely on 
self-attention mechanisms to capture long-range dependencies and 
temporal relationships in the input. Positional encodings are 

incorporated to retain temporal order information, as the 
Transformer lacks inherent recurrence or convolution. The model is 
trained using supervised learning, where ECG signals are paired with 
corresponding class labels (e.g., Normal, APC, VPC, Fusion Beat, 
Others). Training includes the use of optimized loss functions (e.g., 
sparse categorical cross-entropy), regularization techniques such as 
dropout, and hyperparameter tuning (e.g., number of attention 
heads, embedding dimensions, and learning rate) to improve 
generalization and prevent overfitting.

Tables 2, 3 illustrate the detailed architecture of the model, 
including the layer-wise parameters used in training. To assist with the 
initial level of feature extraction, the model incorporates an optional 
Dense Layer containing 64 neurons. This layer acts as a feature 
extractor, transforming the original input into a high-dimensional 
space (22). As a result, it highlights underlying steady-state patterns 
in ECG signals and enhances the model’s ability to recognize complex 
patterns in subsequent layers. Notably, no activation is applied in this 
Dense Layer, ensuring that the transformation remains linear (23, 24). 
After passing through the Dense Layer, the data undergoes a crucial 
reshaping step. This step resizes the input dimensions to be compatible 
length and an embedding dimension of 64, optimizing it for 
processing within the core Transformer block.

The core component of the model is the Transformer Block, which 
is specifically designed to capture temporal dependencies in ECG 
signals. This block begins with a Multi-Head Attention mechanism 
consisting of four heads and an embedding size of 64. These attention 
heads allow the model to process multiple time segments 

FIGURE 3

t-SNE visualization of ECG signal features after dimensionality reduction and preprocessing. Each point represents one ECG sample projected in a 2D 
space, colored by class label: Normal, supraventricular (APC), ventricular (PVC), fusion beat, and other. The visualization demonstrates that the 
extracted features possess natural class separation, indicating their suitability for classification.
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simultaneously, capturing both local and global features within ECG 
signals. This capability is crucial for identifying arrhythmia, as 
different time steps may contribute to abnormal heart rhythms.

To further refine feature extraction and visualization, the model 
leverages t-SNE after training. T-SNE is applied to the high-dimensional 
feature representations extracted by the Transformer blocks, providing 
an interpretable 2D visualization of how ECG patterns are separated 
based on different heart conditions. This technique helps assess how well 
the model distinguishes between normal and abnormal heartbeat, 
enhancing its explainability in real-world applications.

The self-attention mechanism for each head is computed in 
Equation 3:

	
( )

 
=   √ 

, ,
TQKAttention Q K V softmax V

dk 	
(3)

Where,

	•	 Q = WQ X, K = WkX and V = WvX are the query, key and 
value matrices.

	•	 dk is the dimension of Key vector.
	•	 WQ, Wk, and Wv are learnable weights matrices.
	•	 QKT is Dot product of the query and key matrices.
	•	 Softmax ensures attention weights sum to 1.
	•	 Scaling by √dk helps with gradient stability.

For multi-head attention as shown in Equation 4:

	 ( ) ( )= ……1, , , , hMultiHead Q K V Concat head head Wo	 (4)

Where,

	•	 h is the number of attention heads.
	•	 headi is output of the i-th attention head.
	•	 Wo is an output weight matrix and h is the number of heads.

For feed-forward network (FFN):
Each transformer layer includes a position-wise FFN:

	 ( ) ( )= + +1 1 2 2FFN x ReLU xW b W b 	 (5)

Where,

	•	 W1, W2 are weight matrices for 2 linear layers.
	•	 b1, b2 are bias terms for each layer.
	•	 ReLU activation function applied after the first linear transformation.

For layer normalization and dropout:
After each attention and FFN block, layer normalization and 

dropout are applied:

	
( ) µ γ β

σ

−
= +

+2
.xLayerNorm x

ò 	
(6)

Where,

	•	 μ is the meaning of x.
	•	σ 2 is the variance.
	•	 ɛ is a small constant for numerical stability.
	•	 ϒ, β are learnable parameters.

Following the attention mechanism, the output proceeds through 
a Feed-Forward Neural Network (FFN) which comprises of two 
Dense Layers. The first Layer again makes the function non-linear by 
using the ReLU activation function thus enabling the model to detect 
higher order compounding in the data. The second layer scales the 
output back to the embedding size of 64 needed for attention 
computations. This is further added by layer Normalization that settles 
the training process as well as Dropout that discards some neurons at 
random to avoid overfitting. To address the issues of high 
dimensionality of the data in the model with important features 
preserved, the model uses Global Average Pooling Layer. This layer 
pools the learned features over the time steps making it easy to work 
on an informed representation of the entire sequence.

The output from the transformer encoder is passed to a fully 
connected layer for classification, where softmax activation is used to 
assign probabilities to each ECG class as shown in Equation 7:

	 ( )= +Y softmax ZWc bc 	 (7)

Where,

	•	 Z is the output from the encoder.

TABLE 2  Layer structure and parameters used in proposed model.

Layer type Layer name Parameters Description

Input layer Input Input_shape = (X-train. Shape [1], 

1)

Accepts input data reshaped to have one channel.

Flatten layer Flatten None Flattens the input into a 1D array for initial processing.

Dense layer Dense Units = 64 Fully connected layer for initial feature extraction

Reshape layer Reshape Target-Shape = (−1, 64) Reshapes the output to prepare it for the Transformer block.

Transformer block TransformerBlock Embed_dim = 64, num_heads = 4, 

ff_dim = 64

Custom layer implementing multi-head self-attention and feed-forward 

networks.

Global average pooling GlobalAveragePooling1D None Reduce the output sequence to a single vector by averaging.

Output layer Dense Units = num_classes, 

activation = ‘softmax’

Final layer for classification, providing class probability.
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	•	 Wc is the weight matrix.
	•	 bc bias terms for the classifier.

The output of the layer is feed to the Dense layer and a Softmax 
activation function is used. This last step computes probability for 
each of the five ECG classes which makes it possible for the model to 
perform multi-class classification. The model’s prediction is based on 
the maximum probability, which shows to which category the ECG 
signals belong, thus helping to diagnose arrhythmia correctly.

4 Results and evaluation metrics

The Transformer-based model’s performance was measured using 
various metrics to provide a comprehensive evaluation of its 
classification capabilities. The model achieved a final validation 
accuracy of 97% after 10 epochs, reflecting strong generalization on 
unseen data.

The correlation heatmap in Figure 4 depicts relationships among 
ECG features. Strong correlations (values close to 1 or −1) suggest 
redundancy, which guided the feature selection process using 
PCA. Features with low correlation were preserved to retain signal 
diversity. These insights helped reduce dimensionality while 
maintaining important clinical features. In this heatmap, every cell 
indicates the correlation between the two features of the bioinformatics 
dataset based on a coefficient varying between −1 to 1. Here, a value 
close to 1 reveals positive correlation, which makes one feature 
dependent on the other, whereas if one rises the other is also likely to 
rise. On the other hand, the value will be near −1, if the features are 
negative, thus suggesting that one of the features increases the other is 
likely to decrease (25). The heatmap uses a color gradient where 
darker colors signify higher positive correlation, lighter color signify 
low or negative correlation and black areas signify low correlation. 
Since each feature is compared to itself on the diagonal of the heatmap, 
it is obvious that the correlation between features would be 1. Some 
blocks in the heatmap contain areas with a clearly higher correlation, 
that can be attributed to groups of features that likely possess similar 
characteristics or possibly act in concert to manifest certain patterns 
in the ECG signals (26). Some blocks in the heatmap contain areas 
with a clearly higher correlation, that can be attributed to groups of 
features that likely possess similar characteristics or possibly act in 
concert to manifest certain patterns in the ECG signal. These 
observations indicated the possible redundancy or relevance of feature 
groups and might be helpful for the feature selection or dimensionality 

reduction (27). The lighter-colored areas or the areas with correlations 
near zero show that the features of these regions are least dependent 
on each other. Such features may be valuable for capturing some of the 
temporal qualities of the ECG signals that may be essential for the 
classification of arrhythmias. The heatmap analysis may show how 
various features related to arrhythmia are related to each other based 
on the pattern analysis. For instance, some attributes might appear to 
be more effective in identifying sorts of cardiac pathologies, knowledge 
of which can help to determine the model’s architecture.

Figure 5 visualizes class imbalance in the dataset. The “Normal” 
class dominates with 18,000 samples, compared to 560 for APC 
and 1,400 for VPC. This imbalance motivated the use of 
augmentation and class-weighted training to prevent overfitting 
toward the majority class and improve minority class detection. 
The above figure provides the visual representation of the class 
distribution in the dataset, offering a clear view of the count of 
samples in each category (28). By using a heatmap, it emphasizes 
the significant class imbalance where the Normal class has a much 
larger sample size compared to other classes like APC, VPC, 
Fusion Beat and others. This disparity may impact the model’s 
performance, potentially leading to bias toward the majority class 
during training.

Figure  6 shows the progression of training and validation 
accuracy/loss over 10 epochs. Accuracy steadily increased while loss 
decreased, with both curves converging by the 10th epoch. This 
indicates minimal overfitting and efficient learning. This trend 
suggests that the model is learning effectively and improving its 
predictions over time (29). The closeness of the training and validation 
accuracy curves indicates minimal overfitting, as the validation 
accuracy closely follows the training accuracy. The right curve, loss 
curve, augments downward with the training time, showing less error 
of prediction. The training and validation losses converge closely by 
the final epoch, indicating stable performance, which is additional 
evidence of model performance on unseen data. But the early epoch 
oscillates a bit, and this could mean the model is making changes to 
the learning rate or complexities in some classes. All these plots show 
that the model performed very well and with little overfitting which 
implies that there was good or sufficient balancing between the 
training and the validation accuracy models. This model appears well-
optimized for this dataset, though further comparisons with baseline 
models are required to confirm its superiority, since both the accuracy 
and the loss rate converge quite steadily.

4.1 Quantifying the impact of PCA

While both principal component analysis (PCA) and t-distributed 
stochastic neighbor embedding (t-SNE) were used in the study, their 
individual contributions were distinctly different. PCA was applied as 
a dimensionality reduction technique prior to training, aiming to 
eliminate redundancy and retain the most informative features. To 
evaluate its effectiveness, an ablation experiment was conducted where 
the Transformer model was trained once with PCA and once without 
PCA, using the same training configuration (Table 4).

These results confirm that PCA significantly improved model 
performance by reducing feature noise and enhancing separability in 
the feature space. In contrast, t-SNE was used exclusively for 
visualization to illustrate class-wise separability and decision 

TABLE 3  Transformer block breakdown of the proposed model.

Component Parameters Description

Multi-head 

attention

Num_heads = 4, 

key_dim = 64

Computers attention scores for 

different subspaces of the input.

Feed-forward 

network

Dense_layers: [64, 

64]

It consists of two dense layers with a 

ReLU activation in between.

Layer 

normalization

Epsilon = 1e-6 Normalize the output for better 

training stability.

Dropout Rate = 0.1 Regularization to prevent overfitting, 

applied after attention and feed-

forward layers.
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boundaries in a reduced feature space. It was not used during training 
and did not influence model accuracy directly.

To interpret the model’s behavior after training, we  applied 
t-distributed Stochastic Neighbor Embedding (t-SNE) to the learned 
feature embeddings and visualized the decision boundaries for each 
ECG class. As shown in Figure 7, the background color represents the 
class regions predicted by the trained Transformer-based model, while 
the overlaid dots indicate actual test samples projected into the 2D 
t-SNE space. The clear separation in some regions particularly for 
classes like “Normal” and “Fusion Beat” indicates strong class-specific 
learning. However, overlapping regions involving “APC” and “VPC” 
reflect residual class confusion, consistent with class imbalance and 
similar signal morphology. This visualization confirms that the model 
has successfully learned a meaningful embedding space for ECG 
classification, while also highlighting opportunities for 
further refinement.

Figure 8 illustrates the precision, recall, and F1 score for each 
ECG class, reflecting the model’s classification performance across 
different arrhythmia types. The results show that the model achieves 
near-perfect precision and F1 scores for the “Normal,” “Fusion 
Beat,” and “Other” categories, indicating excellent classification for 
these classes. For the Atrial Premature Contraction (APC) class, the 
model demonstrates strong recall (100%), suggesting it detects 

nearly all APC instances. However, the precision is relatively low, 
resulting in an F1 score above 85%. This implies the model over-
predicts APC, likely due to its confusion with similar classes such 
as Normal. The Ventricular Premature Contraction (VPC) class 
exhibits the weakest performance, with noticeably lower recall and 
F1 score. This may be due to class imbalance and the morphological 
similarity of VPC to APC and Fusion Beat in ECG waveforms 
particularly within the QRS complex, where overlapping features 
can confuse the classifier.

Interestingly, the VPC class shows a perfect AUC (1.00), indicating 
that the model is capable of ranking VPC instances correctly. However, 
the low recall suggests that classification thresholds or insufficient 
representation in the training data may limit actual detection. This 
highlights the need for possible threshold adjustment or targeted 
data augmentation.

Figure  9 displays the ROC curves for each ECG class in the 
classification model, showing the trade-off between the true positive 
rate (TPR) and false positive rate (FPR) at various classification 
thresholds. The ROC curve is a standard diagnostic tool to evaluate 
the model’s ability to distinguish between different classes. The area 
under the ROC curve (AUC) provides a scalar measure of this 
discriminative ability. AUC values closer to 1.0 indicate excellent class 
separability, while values near 0.5 suggest random guessing. In this 

FIGURE 4

Correlation heatmap of the ECG dataset.
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model, all ECG classes achieved high AUC scores, reflecting 
strong performance:

	•	 Normal: 0.98.

	•	 APC: 0.94.
	•	 VPC: 1.00.
	•	 Fusion Beat: 0.98.
	•	 Other: 1.00.

These results indicate that the model is highly capable of 
distinguishing between the different rhythm types, even for 
more challenging arrhythmias like APC and VPC. Despite 
some misclassifications seen in the confusion matrix and F1 scores 
(particularly for VPC), the high AUC values suggest that the model’s 
ranking ability is robust. This discrepancy implies that classification 

FIGURE 5

Class distribution heatmap of ECG dataset.

FIGURE 6

Training and validation accuracy and loss over 10 epochs of ECG classification model.

TABLE 4  Impact of PCA on the model performance.

Model setup Accuracy AUC

Without PCA 92.3 0.91

With PCA 97.1 0.96
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thresholds, class imbalance, or feature overlap might be affecting 
precision and recall, rather than the model’s core ability to separate 
classes. Therefore, further improvements could be made through 
threshold tuning, class-specific loss weighting, or augmentation 
strategies, rather than architecture changes:

	 ( ) ( )= + = +TPR t TP / TP FN,FPR t FP / FP TN 	 (8)

The final AUC score is computed by integrating the area under the 
ROC curve.

Figure 10 presents the normalized confusion matrix, providing a 
detailed view of the model’s classification performance across ECG 
rhythm categories: Normal (0), APC (1), VPC (2), Fusion Beat (3), and 
Other (4). Each cell indicates the percentage of instances from a true class 
(rows) predicted as a certain class (columns). Diagonal values represent 
correct classifications, while off-diagonal values indicate misclassifications.

The matrix shows excellent performance on the Normal class, 
with 99.5% of samples correctly classified, reflecting the model’s high 
sensitivity and specificity for detecting normal heartbeats. The “Other” 
category also shows strong results, with over 96% correctly identified.

However, some confusion is evident among arrhythmic classes:

	•	 APC is often misclassified as normal (33.1%), despite a 
high recall.

	•	 Fusion Beat is frequently predicted as normal (43.8%), suggesting 
difficulty in distinguishing Fusion morphology from typical 
ECG rhythms.

	•	 VPC shows good accuracy (86.7%), but a small portion is 
misclassified as normal (10.2%) or fusion (2.4%).

These misclassifications likely arise from morphological 
similarities in the QRS complexes and overlapping waveform features 
across arrhythmia types. In particular, the confusion between APC 
and Normal, and Fusion and Normal, may stem from subtle 
variations in signal patterns that challenge the model’s 
feature extractor.

To enhance class separability, especially for VPC and Fusion, 
future work could focus on improving the feature extraction 
pipeline, incorporating class-specific augmentation, or using 
contrastive learning techniques to better differentiate similar 
waveform classes in the learned embedding space.

The model was trained to minimize sparse categorical cross-
entropy loss, which quantifies the difference between the predicted 
probability distribution ppp and the true distribution qqq. The loss 
function is defined in Equation 9:

	 ( )= −Σ =1 logLoss N i qi pi 	 (9)

Where,

	•	 N is the number of classes.
	•	 qi is 1 for the correct class and 0 otherwise.
	•	 pi is predicted for class I.

FIGURE 7

Post-training t-SNE decision boundary visualization of the ECG classification model. Background regions indicate model-predicted class clusters, and 
colored circles represent projected ECG samples. While distinct clusters emerge for dominant classes, class overlap remains in minority arrhythmias.
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Overall accuracy, which is the ratio of correctly predicted 
instances to the total number of instances, is defined as:

	 = +  / Total InstancesAccuracy True Positive True Negatives 	 (10)

These metrics help to evaluate the model’s performance in 
each class:

Precision measures the accuracy of positive predictions:

	
=

+
 

  
True Positives

Precision
True Positives False Negatives 	

(11)

Recall measures the model’s ability to capture all relevant instances:

	 = + /   Recall True Positives True Positives False Negatives

F1-score is the harmonic mean of precision and recall, balancing 
the two metrics:

	 − = ∗ ∗ +1 2 /F Score Precision Recall Precision Recall	 (12)

When evaluating the model with respect to precision, recall and 
F1-score as well as the analysis of the confusion matrix, the model would 
be strong in predicting classes that make the majority such as 29 K, 44 K 
thus indicating the areas that would require improvement in the minority 
classes such as APC and VPC. The model architecture could also 
be improved further and overspecification of hyperparameters could 
be done to achieve a better balance among all classes.

5 Comparative evaluation of 
transformer variants

To demonstrate the effectiveness of our proposed model, 
we  compared its performance with other state-of-the-art 

Transformer-based ECG classifiers, including ECG-BERT, time series 
transformer (TST), and Informer. These models were selected based 
on their recent use in biomedical signal processing and sequential 
data tasks.

Table 5 summarizes the comparative performance of various state-
of-the-art Transformer-based models applied in biomedical signal 
classification. Among them, ECG-BERT, Informer, and time series 
transformer (TST) demonstrate strong performance on arrhythmia 
detection tasks, with AUC scores ranging from 0.94 to 0.95. These 
models leverage attention mechanisms to effectively model temporal 
dependencies within ECG signals. MN-STDT model proposes a 
brand-new multimodal framework, where chest X-ray spatial features 
and EHRs temporal features are combined, with an AUC of 0.8620 in 
in-hospital mortality prediction of heart failure. Despite not being 
directly applicable to ECG classification, MN-STDT demonstrates the 
increased nexus of multimodal Transformer models in clinical research 
and their ability to perform more context-aware predictions. In their 
turn, the suggested Transformer model of the present research, based on 
the use of the PCA-based feature selection, engineered representations 
as well as t-SNE visualization, attains higher performance, with an 
accuracy ratio of 97.1, F1-score rate of 0.95 and the value of AUC equals 
to 0.96. It suggests that, besides the overall success of the Transformer 
backbone at modeling ECG sequences, the well-optimized preprocessing, 
dimensionality reduction, and hyperparameters tuning play a central 
role. As opposed to other models, the proposed one has a high degree of 
interpretability and generalization to different classes of ECG, indicating 
its strong potential to be broadly integrated into the clinical routine in 
automated pipelines of ECG analysis.

6 Ablation study of hyperparameter 
settings

An ablation study was undertaken to assess the effectiveness of 
parameter ablation by varying the number of attention heads, the size 

FIGURE 8

Highlighting model performance across various arrhythmia types.
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FIGURE 10

Confusion matrix for Transformer-based ECG classification model across classes.

FIGURE 9

Receiver operating characteristic (ROC) curves for ECG classes.

https://doi.org/10.3389/fmed.2025.1600855
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Ikram et al.� 10.3389/fmed.2025.1600855

Frontiers in Medicine 14 frontiersin.org

FIGURE 11

Ablation study showing the effect of attention heads, embedding dimension, and dropout rate on classification accuracy. Optimal performance was 
achieved with 4 attention heads, 128-dimensional embeddings, and a dropout rate of 0.2.

of embedding dimension and dropout rate independently. This analysis 
aimed at finding the most optimal values that would offer classification 
accuracy and model complexity. Table 5 presents the classification 
accuracy and AUC values obtained by modifying one hyperparameter 
at a time while keeping the others constant (Figure 11).

The results demonstrate that using four attention heads and an 
embedding dimension of 128 achieved the highest classification 
accuracy and AUC without significantly increasing the computational 
cost. A dropout rate of 0.2 provided effective regularization, reducing 
the risk of overfitting while preserving performance. Higher dropout 
values (e.g., 0.4) led to underfitting, while lower values (e.g., 0.1) 
increased variance during training. These findings support the final 
hyperparameter configuration used in the proposed model and 
confirm that the selected values contribute meaningfully to improved 
classification outcomes, particularly for clinically relevant ECG classes.

7 Discussion

The transformer model as applied to the ECG has high classification 
accuracy across various classes of arrhythmias which implies that the 
model can handle temporal variability and complex morphologies of the 
ECG signals. By using self-attention, the model learns dependencies that 

are long-range without constraints to fixed-size temporal windows and 
recurrent architecture. This is because it can accommodate ECG 
sequences with different sequences and dynamics; this is a common 
feature in clinical data. Consequently, the sensitivity to the slight variation 
of the waveforms which is important in identifying the classification of 
arrhythmia is better enhanced on the model. Although CNN-based 
models have shown strong results in ECG analysis and remain widely 
used in clinical and research settings, their reliance on local receptive 
fields limits their capacity to capture long-range dependencies. 
Transformers overcome this by using self-attention mechanisms that 
dynamically model relationships across the entire signal length. 
Conversely, Transformer global attention mechanism better captures 
temporal dependencies to yield better classification results. Although 
model performance is one of the priorities, explaining the model still is 
a big challenge. Transformer-based models can be regarded as black 
boxes and even the presented techniques such as visualization of 
attention weights may provide some insight into the models, but this 
paper does not envisage an analysis of interpretability. Future research is 
advised to include implementations of explainability algorithms like 
attention mapping or SHAP analysis, seeking to make the inclusion of 
such systems more clinically acceptable and easy to adapt to.

Additionally, although architecture holds potential for integration 
into edge devices and wearable technologies, this study does not 

TABLE 5  Comparison with Transformer-based and SOTA ECG models.

Model Architecture Accuracy F1-score AUC Reference

ECG-BERT Pre-trained transformer (BERT-based) 94.6 0.92 0.94 (36)

Time series transformer (TST) Encoder-only transformer with positional encoding 95.3 0.93 0.95 (37)

DRL-ECG-HF DRL + Multi-instance learning + PER + SHAP – 0.58 9.90 (38)

MN-STDT Spatially and temporally decoupled transformer with 

multimodal fusion (CXRs + EHR)

– – 0.86 (37)

Proposed transformer model Transformer + PCA + Feature engineering 97.1 0.95 0.96 Current study
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evaluate inference latency, computational resource requirements, or 
hardware deployment feasibility. As such, claims regarding real-time 
or mobile deployment are beyond the scope of this work. Future 
research may explore model simplification, quantization, or pruning 
strategies to enable deployment in resource-constrained environments, 
such as wearable health monitoring systems.

Overall, this study underscores the applicability of Transformer 
architectures to biomedical signal classification tasks, particularly 
ECG interpretation, and provides a foundation for future research 
focused on explainability, deployment, and clinical validation.

8 Limitations

Although the current Transformer-based ECG classification model 
shows promising results, several limitations must be acknowledged.

First, the dataset used for training and evaluation lacked significant 
diversity and exhibited class imbalance. While the model performed 
well on majority classes such as “Normal” and “Fusion Beats,” it 
underperformed on minority classes like “Ventricular Premature 
Contractions (VPC),” which had relatively few samples. This imbalance 
likely affected the model’s ability to accurately classify rare arrhythmias 
and limits its generalizability to diverse or unseen clinical scenarios.

Second, the transformer architecture is computationally 
intensive, both during training and inference. Memory and 
processing demand pose challenges for deployment in resource-
constrained environments, such as mobile or wearable healthcare 
devices. This limitation impacts the model’s scalability and increases 
the cost and complexity of real-world implementation.

Third, interpretability remains a significant concern. Despite the 
theoretical advantages of attention mechanisms in revealing 
important features, Transformer-based models continue to function 
largely as black boxes. Current attention visualization techniques 
provide limited insight into the model’s reasoning, which hinders 

clinical trust and diagnostic transparency. Clinicians require 
explainable models to validate predictions and make informed 
decisions, and the lack of interpretability restricts practical adoption 
in healthcare settings. Finally, direct comparison with prior studies is 
constrained by inconsistencies in datasets, preprocessing pipelines, 
and evaluation metrics. Although Table 5 summarizes performance 
metrics and limitations of previous approaches, such comparisons 
should be interpreted cautiously due to differing experimental setups.

In summary, these limitations underscore key areas for future 
improvement, including addressing class imbalance, optimizing 
model efficiency for deployment, and enhancing model transparency. 
Addressing these challenges is essential to advance the clinical 
applicability of deep learning-based ECG analysis systems (Table 6).

Lastly, generalizability remains a fundamental concern due to the 
homogeneity of the dataset, which was collected from a specific 
demographic using a single device type. ECG signals can vary across 
different populations, age groups, and acquisition devices, potentially 
affecting the model’s performance in diverse clinical settings. As a 
result, the effectiveness of the proposed model may be limited when 
applied outside the specific context in which it was trained.

To enhance generalizability and clinical robustness, future studies 
should aim to validate the model on datasets collected from multiple 
sources, encompassing both homogeneous and heterogeneous subject 
groups. This includes variations in age, ethnicity, health conditions, 
and recording hardware. Such external validation would provide a 
stronger basis for assessing the model’s adaptability and reliability in 
real-world clinical environments.

9 Future work

In subsequent studies, efforts will focus on enhancing the 
robustness, clinical reliability, and deployment readiness of 
Transformer-based models for ECG classification.

TABLE 6  Limitations of various approaches used in ECG classification.

References Model Accuracies Limitations of previous 
work

Limitations of current 
transformer model

Smith et al. (39) Transformer-based model 

for ECG diagnosis

Evaluated by sensitivity, 

PPV, and detection of major 

abnormalities

Lower accuracy in detecting major 

abnormalities; higher false positives/

negatives leading to reduced 

diagnostic reliability

Sensitive to ECG noise; misclassification of subtle 

abnormalities; requires large, annotated datasets; 

trade-off between sensitivity and specificity

Zhao et al. (40) CNN-RNN (Deep 

Convolutional Neural 

Network – Recurrent 

Neural Network)

97.6% (for 2-s ECG 

segments)

Lacked real-time inference; limited 

performance in heart failure staging; 

complex feature extraction pipeline

Requires intensive preprocessing (segmentation, 

augmentation); limited capacity to capture long-

range dependencies

Chithra et al. 

(41)

ANN-based Decision Tree 93.4% Poor integration of clinical and ECG 

features; low model interpretability

High feature engineering cost; poor scalability to 

multilead/multiclass ECGs

Arabi et al. (19) MSW-Transformer Macro-F1 up to 77.85% CNN only captures local patterns Complex architecture, data-hungry sliding 

windows

Uğraş et al. (42) CardioPatternFormer Interpretable, multi-pathology Opaque black-box models May overfit attention map, needs clinical validation

Luo et al. (43) Hierarchical Transformer - Single-scale Transformers Multi-stage model is resource-intensive

Alghieth (44) DCETEN 99.84% acc. (MIT-BIH) Heavyweight transformer models Still GPU-reliant despite pruning

Current study Transformer Model 97% N/A High Computational demand, requiring 

advanced GPUs or TPUs, limited interpretability, 

challenging clinical transparency.

https://doi.org/10.3389/fmed.2025.1600855
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Ikram et al.� 10.3389/fmed.2025.1600855

Frontiers in Medicine 16 frontiersin.org

One key direction is addressing class imbalance, particularly for 
underrepresented arrhythmia types such as Ventricular Premature 
Contractions (VPC), which currently contribute to lower classification 
accuracy. Sensitivity to rare classes may be  improved by applying 
techniques such as class-specific data augmentation, oversampling, 
and class-weighted loss functions.

Another priority is improving the diversity and representativeness 
of the training data. Incorporating ECG signals from a broader 
population encompassing different demographics, acquisition devices, 
and arrhythmia types can increase the model’s generalizability and 
reduce bias toward specific data sources or conditions.

To further improve diagnostic accuracy, future work may explore 
multimodal learning by integrating additional physiological signals 
such as heart rate variability, blood oxygen saturation, and blood 
pressure. These complementary modalities could enhance the feature 
space and provide more context for ECG interpretation.

Optimizing the model for deployment in resource-constrained 
environments, such as mobile or wearable devices, is also a critical 
focus. While Transformers offer high accuracy, their computational 
demands limit feasibility on low-power platforms. Future research will 
investigate lightweight Transformer variants, as well as model 
compression techniques such as pruning and quantization, to reduce 
inference costs while preserving clinical performance.

Finally, improving model interpretability remains a central 
challenge. Future studies will incorporate explainability techniques 
such as attention weight visualization, relevance mapping, and lead-
wise contribution analysis. These tools can help clinicians better 
understand the basis for automated predictions, thereby increasing 
trust and promoting adoption in real-world healthcare settings.

10 Conclusion

The proposed Transformer-based ECG classification model 
demonstrates strong potential in accurately diagnosing multiple 
cardiac arrhythmias from raw ECG signals. Leveraging the self-
attention mechanism inherent in Transformer architecture, the model 
effectively captures the temporal dependencies of ECG sequences and 
achieves high classification accuracy across several classes, including 
Normal, APC, VPC, Fusion Beats, and Others. These results confirm 
the suitability of attention-based models for analyzing the complex 
and sequential nature of biomedical time-series data.

A key contribution of this work is the demonstration that 
transformer models can serve as effective tools for ECG signal 
classification, providing clinically relevant outputs with high precision, 
recall, and F1-scores particularly for classes with ample training data. 
This suggests that such models can complement existing machine 
learning techniques in automated ECG interpretation.

In addition to performance, the model offers potential for 
integration into future clinical workflows, where automated ECG 
analysis can support healthcare professionals by reducing manual 
diagnostic load and improving consistency. However, several challenges 
remain before deployment in real-world settings. These include 
improving classification for underrepresented arrhythmia classes, 
validating the model across more diverse populations and device types, 
and enhancing model interpretability and computational efficiency.

Future work should focus on optimizing the model for broader 
generalization, incorporating multimodal physiological data, and adapting 

the architecture for deployment in resource-constrained environments 
such as wearable healthcare devices. With further development and 
clinical validation, Transformer-based models may play an important role 
in advancing automated, scalable, and accessible cardiac diagnostics.
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