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COPD a�ects approximately 391 million people globally. While spirometry

is recognized as the gold standard for diagnosing COPD according to the

GOLD guidelines, its availability is limited in primary healthcare settings,

particularly in low- and middle-income countries. Furthermore, spirometry

requires patient cooperation, which may be challenging for individuals with

physical limitations or comorbidities, potentially impacting its accuracy. As a

result, there is a need for alternative diagnostic methods, particularly those

suited for resource-constrained environments. This study proposes a novel

multimodal deep learning framework, COPD-MMDDxNet, which integrates

structured pulmonary CT reports, blood gas analysis, and hematological

analysis from electronic medical records (EMRs) to overcome the limitations

of existing diagnostic methods. This framework develops the first multimodal

diagnostic tool for COPD that does not rely on spirometry. It innovatively fuses

cross-modal data, incorporating four key components: parametric numerical

embedding, hierarchical interaction mechanisms, contrastive regularization

strategies, and dynamic fusion coe�cients. These innovations significantly

enhance the model’s ability to capture complex cross-modal relationships,

thereby improving diagnostic accuracy.The dataset used in this study comprises

800 COPD patients, with a balanced age and sex distribution, and data were

collected over a 24-month period. Experimental results demonstrate that

COPD-MMDDxNet outperforms traditional single-modality models and other

state-of-the-art multimodal models in terms of accuracy (81.76%), precision

(78.87%), recall (77.78%), and F1 score (78.32%). Ablation studies confirm the

critical importance of each model component, particularly the contrastive

learning module and cross-modal attention mechanism, in enhancing model

performance.This framework o�ers a robust solution for more accurate and

accessible COPD diagnosis, particularly in resource-constrained environments,

without the need for spirometry.
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1 Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a serious

chronic condition affecting approximately 391 million people

globally (1). The primary risk factors for COPD include smoking,

air pollution, and occupational exposure to harmful substances

(2). Early diagnosis and management are crucial for improving

patient outcomes, as timely identification of COPD plays a

significant role in reducing acute exacerbations and slowing disease

progression (3).

Although the Global Initiative for Chronic Obstructive

Lung Disease (GOLD) guidelines recognize spirometry as the

gold standard for diagnosing COPD, its availability in primary

healthcare facilities is limited (4). Particularly in low- and middle-

income countries, where the availability of spirometry equipment

remains limited, failing to meet the screening needs of the

population (5). Furthermore, spirometry requires patients to

perform forced expiratory maneuvers, which may be challenging

for patients with physical limitations or comorbidities (6).

Therefore, despite its importance as a diagnostic tool, spirometry

has inherent limitations, particularly in certain clinical and

resource-constrained settings. In this context, multi-view data—

owing to its rich complementary and consistent information across

modalities—has garnered substantial interest for its potential to

significantly enhance the performance of downstream diagnostic

tasks (7).

Given these challenges, it is crucial to research disease diagnosis

and treatment in resource-limited environments (8). Developing

alternative diagnostic approaches that do not rely on spirometry,

particularly non-invasive technologies, is essential. This study

presents a solution in the form of a deep learning model specifically

designed for diagnosing COPD in environments where spirometry

may not be accessible.

In recent years, the rapid development of artificial intelligence

(AI) technology has provided new opportunities for the diagnosis

and treatment of COPD. Gompelmann et al. (9) investigate the

application of AI software, ArtiQ.PFT, to assist pulmonologists in

diagnosing interstitial lung disease by improving the interpretation

of pulmonary function tests. Zhao et al. (10) proposed a Multi-

Sentence Complementary Generative Adversarial Network to

synthesize COPD-related diagnostic images by fusing semantic

information from multiple clinical narrative sentences–leveraging

BERT for semantic feature extraction, a multi-semantic fusion

module, a pre-trained cross-modal contrast similarity model for

fine-grained loss, and a multi-sentence joint discriminator to

ensure that the generated images accurately reflect all input

descriptions. Alves Pegoraro et al. (11) employed a Hidden

Markov Model to analyze a range of breathing variables, including

daily measures of oxygen therapy duration, mean breathing rate,

and mean inspiratory amplitude, with the goal of detecting

pre-exacerbation periods in COPD patients. However, existing

studies primarily rely on single-modal data, such as pulmonary

function tests or imaging, limiting the comprehensiveness of

COPD diagnosis. At the same time, the widespread adoption of

electronicmedical record (EMR) systems globally has provided rich

multimodal data. When effectively utilized, this information can

enhance diagnostic accuracy.

Quennelle et al. (12) utilized EMR data to extract rare

adverse events associated with pediatric cardiac catheterization,

applying active learning (AL) methods to annotate the dataset,

which was subsequently used to train a deep learning text

classifier, incorporating clinical expert knowledge. Takeuchi et al.

(13) applied natural language processing and machine learning

techniques to unstructured electronic health records (EHRs) of

lung cancer patients. They developed a method to predict tumor

response evaluations, treatment durations, and survival curves,

thereby aiding researchers and clinicians in analyzing and utilizing

EHRs more efficiently.

These studies demonstrate that integrating AI with EMRs

can uncover latent information within patient data, providing

new approaches for early diagnosis and personalized treatment

of COPD. However, current COPD diagnostic practices have yet

to fully leverage the multimodal information contained in EMRs,

limiting the effectiveness of AI applications in this field. Therefore,

developing new methods to fully exploit the multimodal data

within EMRs is crucial for improving the accuracy and efficiency

of COPD diagnosis.

To address these challenges, this study proposes a novel

multimodal deep learning framework, COPD-MMDDxNet, which

integrates pulmonary imaging reports, medical history texts, and

structured data such as blood gas analysis and hematological

analysis from EMR systems to overcome the limitations

of existing diagnostic methods. The proposed framework

introduces four key innovations to address the challenges in

COPD diagnosis:

• Parametric numerical embedding: A nonlinear

representation mechanism utilizing learnable affine

parameters replaces conventional linear transformations,

enabling adaptive feature scaling across heterogeneous data

modalities.

• Hierarchical interaction mechanism: Gated cross-attention

layers facilitate multi-granular feature synergy between

imaging biomarkers and physiological parameters, mitigating

information degradation in shallow fusion architectures.

• Contrastive regularization strategy: Cross-modal semantic

consistency constraints are implemented through prototype

alignment in latent space, enhancing robustness against

clinical data noise and missing values.

• Dynamic fusion coefficients:Attention-weighted fusion gates

automatically calibrate hierarchical feature contributions

based on pathological relevance, simultaneously optimizing

prediction accuracy and model interpretability.

2 Method

2.1 Dataset construction and
preprocessing

The data for this study were sourced from the electronic

medical records (EMR) system of the First Affiliated Hospital of

Dalian Medical University, with ethical review approval. A total

of 800 COPD patients who met the inclusion criteria, based on
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FIGURE 1

COPD-MMDxNet architecture.

clinical manifestations such as chronic cough, excessive sputum

production, and airflow limitation, were enrolled. The cohort

consisted of 276 female patients and 524 male patients, with ages

ranging from 35 to 91 years, following a normal distribution.

Patients with incomplete records or those who did not undergo

necessary examinations were excluded. The dataset comprises

multimodal medical records, collected retrospectively over a 24-

month period. The raw dataset includes unstructured EMR texts

and structured laboratory parameters. All personally identifiable

information was anonymized using hash encryption.

For the unstructured features of the EMRs, medical natural

language processing (NLP) techniques were employed for

information extraction. Symptom duration, triggering factors,

and other clinical elements in chief complaints were converted

into standardized fields using regular expressions matched

with a medical ontology database. Radiological features in

pulmonary CT reports underwent entity recognition and

terminology normalization.

The structured data underwent multidimensional quality

control, including numerical range validation, logical relationship

verification, and outlier correction. Specifically, for the systematic

missingness of C-reactive protein (CRP) measurements, a clinically

context-aware imputation strategy was implemented. For patients

without fever symptoms and no CRP test results, a baseline value

of 3.5 mg/L for CRP was assigned, based on standard clinical

practice, while retaining the original testing status markers to

ensure transparency and consistency in the imputation approach.

For other missing values, different imputation methods were used

based on the type of variable. Continuous variables were imputed

using mean imputation, while categorical variables were imputed

using the most frequent value.

Finally, discrete variables were encoded using binary

representations, and continuous variables were Z-score

standardized before model integration. The final multidimensional

dataset consisted of 11 structured feature fields and 2 standardized

textual description units, providing a reliable data foundation for

subsequent analysis.

2.2 Model

The proposed COPD-MMDxNet multimodal deep learning

framework, with its core mechanism centered on establishing

a hierarchical progressive feature interaction process, achieves

deep integration of multimodal EMR information through

parametric numerical embedding, cross-modal attention routing,

and contrastive regularization strategies. The model architecture is

shown in Figure 1.

2.2.1 Multimodal feature encoding layer
In the feature extraction stage of this study, the data from

three modalities achieve in-depth semantic representation through

differentiated encoding strategies.

2.2.1.1 Structured feature encoding

For categorical features, a learnable embedding matrix E ∈

R
|C|×d is adopted, where |C| =

∑n
i=1 ci represents the total

number of categories (including special identifiers). Given the input

xcatalog ∈ R
k×m, its embedding process is defined as:

x̃
catalog
i = E[xi + φi], φi = offset(ci,j) (1)

where φi is the category offset to avoid ID conflicts.

For numerical features, non - linear embedding is achieved

through parameterized affine transformation:

x̃numj = wj ⊙ xnumj + bj, wj, bj ∈ R
d (2)

where ⊙ denotes element - wise multiplication, and wj, bj are

learnable parameters.

2.2.1.2 Text feature extraction

In the text feature extraction process, we use a pre-trained

BERT-Base model, which was trained on the English Wikipedia

and the BookCorpus dataset (the original pre-training corpora for

BERT). This model is widely used in natural language processing
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tasks and has demonstrated strong performance across a variety of

benchmark tasks. To ensure efficient feature extraction, we project

the final hidden states from BERT and normalize them to align

with features from other modalities. Let T represent the input text

and l the sequence length. The feature space alignment is achieved

through a projection layer P :R
l×dbert → R

l×d:

Htext = BERT(T) ∈ R
l×dbert (3)

Ĥtext = LayerNorm(GELU(WpH
text + bp)) (4)

Cross-modal attention: We design a bidirectional Gated

Cross-Attention (GCA) mechanism to facilitate feature interaction

between modalities:

Q = Wq · LN(X
(l)) (5)

K,V = Wkv · LN(Ĥ
text) (6)

GCA(X,H) = Softmax

(

QKT

√

dk

)

V ⊙ σ (Wg[X
(l); Ĥtext]) (7)

where σ represents the Sigmoid gating function, and Wg is

the learnable gating parameter that controls the cross-modal

interaction.

Feature fusion: We adopt a residual connection and

hierarchical fusion strategy to combine the features from different

modalities:

X
(l)
out = X(l) + FFN(LN(X(l)))+ λ · GCA(X(l), Ĥtext) (8)

where λ is an adjustable fusion coefficient, allowing the dynamic

adjustment of the contributions from different modalities through

learnable parameters.

2.2.2 Contrastive regularization and dynamic
classifier

To enhance cross-modal semantic consistency, we introduce

a contrastive loss based on InfoNCE: Feature projection: We

establish a shared projection spaceZ ∈ R
dz to project features from

different modalities into a common space:

zstruct = Projθ (xcls) (9)

ztext = Projθ (h
text
cls ) (10)

where Projθ denotes the projection function with learnable

parameters θ , mapping features from the structured data (xcls) and

text (htext
cls

) into the shared feature space Z .

Loss function: We define the symmetric contrastive loss as

follows:

Lcont = −
1

2N

N
∑

i=1






log

es(z
struct
i ,ztexti )/τ

∑N
j=1 e

s(zstructi ,ztextj )/τ
+ log

es(z
text
i ,zstructi )/τ

∑N
j=1 e

s(ztexti ,zstructj )/τ







(11)

where s(·) represents the cosine similarity function, and τ is a

learnable temperature parameter that controls the scale of the

similarity between different feature pairs.

2.2.3 Joint optimization objective
The final objective function for multi-task joint optimization is

given by:

Ltotal = α · Ltask + β · Lcont + γ · Lreg (12)

where Ltask represents the main task loss (such as cross-entropy),

Lreg is the weight regularization term, and α, β , and γ are the

balance coefficients that control the contribution of each loss term.

3 Experiments

This section presents experiments designed to evaluate the

effectiveness of the COPD-MMDxNet framework. Initially, we

assess single-modality models to underscore the limitations

inherent in relying on individual data sources. Subsequently,

we compare our multimodal approach against other state-of-

the-art methods to demonstrate its relative advantages. Finally,

ablation studies are conducted to investigate the impact of critical

components, including the contrastive learning module and the

cross-modal attention mechanism. These experiments collectively

highlight the superior performance of ourmodel and emphasize the

significance of each component in enhancing diagnostic accuracy

and robustness.

3.1 Experiment setup and computational
costs

In all experiments, we employed a 5-fold cross-validation

approach for model training and evaluation. This method ensures

robust performance assessment by splitting the dataset into five

subsets, with each subset serving as the validation set once while

the remaining four are used for training. The results from each fold

were averaged to obtain the final performance metrics, mitigating

the risk of overfitting and providing a comprehensive evaluation of

the model’s generalization ability.

For computational efficiency, all training was conducted on a

single NVIDIA V100 GPU. Each fold of the 5-fold cross-validation

took approximately 10 min, with the total training time for the

entire process being 50 min on the V100 GPU. To optimize

memory usage, we implemented dynamic batching and gradient

accumulation during training.

3.2 Comparison with single-modality
baseline models

To validate the effectiveness of multimodal diagnosis, this

study first performed a comparative experiment with single-

modality baseline models. The single-modality models were based

on structured clinical data and textual data analysis, respectively.

The experimental results are shown in Table 1.

The experimental results indicate that while the traditional

XGBoost (14) model and FT-Transformer (15) provide certain

predictive capabilities using pulmonary function parameters and

inflammatory biomarkers, they exhibit high missed diagnosis
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TABLE 1 Comparison of single-modality baseline models.

Data Method Acc Prec Rec Spec F1 score

CSV XGBoost 0.6706 0.6909 0.4935 0.8172 0.5758

CSV FT-Transformer 0.6433 0.5652 0.3881 0.8077 0.4602

TEXT DPCNN 0.6941 0.6769 0.5867 0.7789 0.6286

TEXT BERT 0.7176 0.7077 0.6133 0.8000 0.6571

CSV&TEXT COPD-MMDxNet 0.8176 0.7887 0.7778 0.8469 0.7832

The bolding indicates the parts where our model stands out.

TABLE 2 Comparison with advanced multimodal models.

Version Acc Prec Rec Spec F1 score

RETAIN 0.7423 0.7198 0.7045 0.7812 0.7098

BRLTM 0.7834 0.7556 0.7412 0.8145 0.7483

ExBEHRT 0.7956 0.7645 0.7534 0.8212 0.7589

Ours 0.8176 0.7887 0.7778 0.8469 0.7832

The bolding indicates the parts where our model stands out.

rates and low recall when handling early-stage cases, highlighting

the limitations of single-modality data in capturing complex

pathological mechanisms. In textual data analysis, although the

DPCNN (16) and BERT (17) models can extract useful information

from radiological reports, and BERT improves accuracy, it still

struggles to effectively capture dynamic imaging features and

exhibits relatively low specificity. This reflects the shortcomings

of single-modality text models in integrating and analyzing

diverse features. The COPD-MMDxNet framework, by integrating

multimodal information from both structured data and text,

successfully overcomes the limitations of single-modality models

in capturing cross-dimensional pathological relationships. This

demonstrates that multimodal fusion can effectively reduce the

information omissions and biases inherent in single data sources,

providing a more comprehensive representation of the complex

characteristics of the disease.

3.3 Comparison with advanced multimodal
models

To evaluate the effectiveness of the proposed COPD-

MMDxNet model, we conducted comparative experiments with

three representative models: RETAIN (18), BRLTM (19), and

ExBEHRT (20). The experimental results are shown in Table 2. The

RETAIN model is based on a reverse-time attention mechanism,

which improves accuracy and interpretability by processing EHRs

data in reverse time order and applying a two-level attention

mechanism. BRLTM, on the other hand, uses a Transformer

architecture and self-attention mechanism to capture forward

and backward dependencies in sequential data, enhancing the

model’s temporal learning capability. ExBEHRT is an extension of

BEHRT, improving performance through stacking and pre-training

strategies. The experimental results are shown in the Table 2.

Compared to the three baseline models, COPD-MMDxNet

demonstrates significant advantages in multiple aspects,

particularly in the fusion of multimodal features and cross-modal

interaction for complex EHRs data. Experimental results show

that our model outperforms RETAIN, BRLTM, and ExBEHRT

in terms of accuracy, precision, recall, and AUC. COPD-

MMDxNet effectively integrates information from structured

data, text, and numerical data through a hierarchical cross-modal

interaction mechanism. This stepwise feature interaction approach

allows for deeper and more accurate cross-modal information

complementarity and integration, which is superior to traditional

methods like unimodal self-attention and simple cross-modal

mapping. Additionally, COPD-MMDxNet adopts a dynamic

feature fusion strategy that adjusts the fusion weights based on

the contribution of each modality, thereby enhancing the model’s

performance across different tasks. In contrast, RETAIN and

BRLTM use fixed-weight fusion strategies, and while ExBEHRT

incorporates multimodal data, it lacks an effective cross-modal

consistency training mechanism, limiting the full potential of

multimodal information. Furthermore, by introducing InfoNCE-

based contrastive regularization, we further enhance the semantic

consistency across multimodal data. These innovations enable

COPD-MMDxNet to exhibit stronger capabilities in multimodal

data integration, semantic consistency, and feature processing,

further demonstrating its superiority in EHRs data processing.

3.4 Ablation analysis of key model
components

We also conducted systematic ablation studies to evaluate the

effectiveness of our model. The experimental results are presented

in Table 3. These experiments highlight the synergistic interactions

between the key components within the multimodal framework

and their significant influence on the model’s robustness. The

results indicate that the removal of the contrastive learning module

significantly reduces the alignment of cross-modal semantics,

which in turn leads to an increase in false-positive cases. This

can be attributed to the weakened latent correlations between

modalities, impairing the model’s ability to establish distinct

decision boundaries in the feature space. Further analysis shows

that removing the cross-modal attention mechanism severely

hinders the integration of heterogeneous features. The absence

of dynamic weight allocation prevents the model from effectively

capturing the complex pathological correlations across modalities,

which results in a substantial increase in false-negative rates.

In addition, we performed a comparison using a direct

fusion approach, where FT-Transformer or XGBoost was used

to process structured data features, and these features were

directly concatenated with the text features processed by BERT.
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TABLE 3 Ablation analysis of key model components.

Version Acc Prec Rec Spec F1 score

Original model 0.8176 0.7887 0.7778 0.8469 0.7832

Remove contrastive learning 0.8000 0.7639 0.7639 0.8265 0.7639

Remove cross-modal attention 0.7895 0.7049 0.7049 0.8364 0.7049

XGBoost+BERT direct fusion 0.7647 0.7864 0.6623 0.8495 0.7183

FTTransform+BERT fusion 0.7412 0.7656 0.6282 0.8370 0.6908

The bolding indicates the parts where our model stands out.

The experimental results show that, although this direct fusion

method can extract certain structured and textual features, its

performance is significantly lower than that of the proposed

multimodal framework. The direct concatenation approach fails

to capture the deep inter-modal correlations, preventing the

model from effectively utilizing the complementary information

between modalities.

Through these comparative experiments, we demonstrate

the significant limitations of single-data fusion methods and

cross-modal fusion strategies that lack dynamic weighting. Our

framework, by leveraging more complex feature interactions and

dynamic weight adjustments, is better able to capture pathological

correlations between modalities, thus significantly enhancing the

model’s diagnostic ability and robustness.

4 Conclusion

This study presents COPD-MMDDxNet, a novel multimodal

deep learning framework designed to enhance COPD

diagnosis by integrating structured clinical data, radiological

reports, and blood gas analysis from electronic medical

records (EMR). The framework addresses the limitations

of spirometry, making it particularly suitable for resource-

constrained environments. Key innovations, including parametric

numerical embedding, hierarchical interaction mechanisms,

contrastive regularization, and dynamic fusion coefficients,

enable effective multimodal integration and capture of complex

cross-modal relationships.

Experimental results demonstrate that COPD-MMDDxNet

outperforms traditional single-modality models and other state-of-

the-art multimodal models in terms of accuracy, precision, recall,

and F1 score. Ablation studies confirm the importance of each

component, particularly the contrastive learningmodule and cross-

modal attention mechanism, in enhancing model performance.

COPD-MMDDxNet offers a robust solution for more accurate

and accessible COPD diagnosis, particularly in settings where

spirometry is unavailable or impractical. This framework has the

potential to improve early diagnosis and disease management in

COPD. However, it is important to note that the current study

was conducted using a single-center dataset, which limits the

generalizability of the results. Future work will focus on expanding

clinical applicability and validating the model across multiple data

centers to further assess its robustness and reliability in diverse

clinical environments.

The code for the model, including the architecture and training

procedures, has been made publicly available on GitHub for

transparency and reproducibility. The repository can be accessed

at: https://github.com/yiyuanyuan827/COPD-MMDDxNet.
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