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CT radiomics combined with 
neural networks predict the 
malignant degree of pulmonary 
grinding glass nodules
Pengfei Chen , Huiyuan Gong , Lei Zhang  and Yang Geng *

Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 
China

Background: This study investigates the use of CT radiomics combined with 
convolutional neural networks (CNN) to predict the malignancy of lung ground 
glass nodules (GGN), which are challenging to diagnose due to their ambiguous 
boundaries. The goal is to improve diagnostic accuracy and support personalized 
treatment planning.

Methods: Retrospective data from 670 patients with pulmonary nodules (2019–
2023) were analyzed. CT images were preprocessed using Gaussian filtering 
and manually segmented to define regions of interest (ROI). A CNN model 
was trained using MATLAB’s Deep Learning Toolbox, and its performance was 
compared to the Mayo and Brock models.

Results: Key predictors of malignancy included nodule diameter, volume, 
mean CT value, and consolidation-to-tumor ratio (CTR). The CNN-based 
model achieved an AUC of 0.887, with 82.4% sensitivity and 75.5% specificity, 
outperforming existing models (Mayo: AUC = 0.655; Brock: AUC = 0.574). 
Validation accuracy reached 85.07%.

Conclusion: In this single-center retrospective study, integrating CT radiomics 
with CNN depicted promising potential for GGN malignancy prediction, though 
external validation remains necessary. These findings warrant verification in 
multicenter prospective cohorts.
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Introduction

Lung cancer is the second most common type of cancer all over the world, and according to 
the latest data published by GLOBALCAN, there will be about 2.48 million new cases of lung 
cancer and 18,187,000 deaths in 2022, which is the highest among all cancers (12.4 and 18.7%) 
(1). Lung nodules are the early manifestation of lung cancer, and according to their tissue 
composition, they can be classified as solid nodules and glassy nodules (GGN), and GGN are 
more challenging for physicians due to their blurred borders (2, 3). GGN is a non-specific 
manifestation of a cloudy, thin shadow of mildly increased density compared with that of normal 
lung tissue in chest computed tomography (CT) but does not obstruct the pulmonary vasculature 
or bronchiolar structures (4). The pathology of GGN may be benign, such as inflammatory 
infections and interstitial fibrosis, or malignant, such as lung adenocarcinoma (5, 6). Lung 
adenocarcinoma is the most common histological subtype of lung cancer (~50%) and has an 
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overall poor prognosis due to its highly aggressive tumor, high metastatic 
rate and low therapeutic efficiency (7). Lung cancer usually has no 
obvious physical changes in the early stages, and about 70% of lung 
cancer cases are diagnosed in the late stages, thus missing the best time 
for treatment (8). Therefore, performing GGN screening is clinically 
important for early diagnosis of lung cancer.

CT has a critical part in the detection of disease and assessment of 
efficacy in the field of oncology (9). Studies reported that screening of 
people at high risk for lung cancer by spiral CT scanning reduced 
mortality by 20% (10). For GGN, CT scanning requires a wide span of 
follow-up time for lung cancer surveillance. As a result, it reduces patient 
compliance and delays diagnosis and treatment, thereby increasing 
treatment costs and reducing lung cancer survival. In addition, the high 
cost and potential radiotoxicity of CT make it limited in the prediction 
of GGN (11). Recently, with the rapid development of Artificial 
Intelligence (AI), people having used AI to detect CT images has become 
a major research direction in the field of GGN detection (12). 
Convolutional neural network (CNN) is the basic class of deep learning 
neural networks, which is a branch of machine learning technology 
based on regularized multilayer networks (13), and it is a subtype of AI 
systems, and currently CNN has been proved to be a promising tool for 
medical image interpretation and analysis (14). Based on the current 
domestic and international related research dynamics, CNN, as an AI 
model, shows certain academic value and application value in benign 
and malignant screening of lung nodules (15).

Here, we investigated the value of CNN and CT models of GGN 
in benign and malignant screening of lung nodules, and the benign 
and malignant prediction results of the CNN model can be used as 
an auxiliary tool for doctors’ judgement, which can provide more 
objective and reliable guidance for clinical decision-making, optimize 
patient management and formulate individualized treatment plans.

Materials and methods

Patient inclusion and allocation

This study intends to retrospectively include inpatients who were 
diagnosed with pulmonary nodules and underwent surgical 
treatment in the Department of Thoracic Surgery of the Chest 
Hospital of the First Affiliated Hospital of Bengbu Medical College 
from January 2019 to December 2023. Inclusion criteria: (1) lung 
nodules (diameter ≤3 cm) with a definite pathological diagnosis; (2) 
high-resolution CT images with good images (layer thickness 
≤1.5 mm); (3) lung nodule images can be analyzed in AI-assisted 
diagnosis system; (4) images are clear enough to obtain specific CT 
image features; (5) patients with a confirmed diagnosis of GGN on 
CT examination. Exclusion criteria: (1) postoperative pathology 
suggesting peripheral metastases, not the primary tumor; (2) images 
suggesting that the size of the tumor diameter is more than 3 cm; (3) 
images with severe interstitial lung disease and motion artifacts and 
affecting the analysis and reading of the AI-assisted diagnostic 
system; (4) nodules with severe irregularities in shape, which 
prevented the correct segmentation of the tumor from the 
extratumoural tissues; and (5) unable to obtain the complete 
information from the electronic patient record system of our hospital.

A total of 670 patients were included in this study, including 
244 benign and 426 malignant cases. Basic information (e.g., age, 
gender, smoking history, etc.), mean CT value, lobulation sign, 

burr sign, vascular cluster sign, pleural depression sign, and 
vacuole sign were collected in all included cases according to the 
same inclusion and exclusion criteria. This research got approved 
by the Ethics Committee of the hospital. Each patient and their 
families knew their consent and voluntarily participated 
in research.

CNN-based modelling of lung nodules

The MATLAB (R2023a) Deep Learning Toolbox was employed for 
initial model development due to native DICOM image handling 
capabilities matching our PACS system, simplified deployment for 
clinical validation within our institution’s MATLAB-enabled 
infrastructure and rapid prototyping advantages for multidisciplinary 
collaboration. The architecture follows standard Keras-style layer 
definitions ensuring straightforward conversion to TensorFlow/PyTorch.

CT image acquisition and pre-processing

The establishment of the CNN lung nodule model is shown in 
Figure 1. First, we retrieved the preoperative CT images of the study 
subject from our hospital using an image archiving and communication 
system (PACS), and then input them into the MATLAB (MathWorks, 
Inc., USA) system for preprocessing (Figure 2). To enhance the quality 
of the images, a Gaussian filter (Gaussian filter) was used for 
preprocessing. Gaussian filter is a traditional linear filter that has been 
widely used in image denoising. It works by giving different weights to 
pixels based on the distance between the pixel and the center of the filter 
to achieve image smoothing.

Image preprocessing is necessary to improve the integrity of lung 
images as low-quality images can affect subsequent analyses and the 
effectiveness of the system. By using Gaussian filter, we can reduce the 
noise in the image and improve the clarity and detail of the image. This 
helps to better observe and analyze lung images and makes subsequent 
processing steps more accurate and reliable. It provides a good 
foundation for subsequent research and analysis.

Radiomic feature extraction

CT radiomic features were extracted using PyRadiomics (v3.0) 
following Image Biomarker Standardization Initiative (IBSI) 
guidelines. Features included:

 1. First-order statistics: Mean, median, skewness, kurtosis of 
intensity values.

 2. Shape-based: Volume, sphericity, surface area (3D).
 3. Texture features:

Gray-level co-occurrence matrix (GLCM): Contrast, correlation, 
entropy. Gray-level run-length matrix (GLRLM): Run emphasis, 
non-uniformity.

 4. Higher-order: Wavelet-filtered features (LoG sigma = 1.0, 3.0). 
All features were Z-score normalized and extracted from 
isotropic-resampled (1 × 1 × 1 mm3) images with fixed bin 
width (25 HU).
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Segmentation of preprocessed CT images

Ground-glass nodules (GGNs) exhibit low contrast and 
heterogeneous density gradients, particularly in subsolid lesions, 
which current automated algorithms (e.g., threshold-based or U-Net) 
frequently missegment. Manual delineation by experienced 
radiologists (≥5 years in thoracic imaging) was prioritized to preserve 
morphological details critical for radiomics analysis, account for 
adjacent anatomical interference (vessels, pleura). Inter-reader 
consistency received rigorous evaluation. To perform region of 
interest (ROI) segmentation (Figure 3), we used a manual approach 
for each preprocessed in the MATLAB (MathWorks, Inc., USA) 
system for nodules in CT images. In this process, we  needed to 

perform segmentation at each level involving the nodule and manually 
exclude regions not related to lung tissue, such as bronchi, large 
vessels, bones and mediastinum. All segmentation was done on thin-
layer lung window images.

To assess the agreement between the two investigators, a certain 
number of patients were randomly selected from the entire sample for 
comparison. The two investigators segmented the lesions 
independently and assessed them using the intragroup correlation 
coefficient (region of interest, ROI). During segmentation, the nodule 
site, maximum diameter and nodule type were recorded, and a 
judgement was made as to whether the nodule had a burr sign, 
whether calcification was present, and whether it was combined with 
emphysema. If disputes arose, we would discuss and resolve them. 
Through this segmentation method and evaluation process, we can 
obtain detailed information about the nodule for subsequent analysis 
and study.

CNN-based classification model training 
and validation

To assess model stability, we performed 5-fold cross-validation on 
the entire cohort (n = 670). The dataset was randomly partitioned 
into 5 equal subsets, with each subset used once as the validation set 
while the remaining 4 subsets formed the training set. The final 
performance metrics were averaged across all folds. After the 
segmentation process, the segmented region of interest (ROI) is 
analyzed by MATLAB’s Deep Learning Toolbox to classify the image 
as benign or malignant based on the postoperative pathology results. 
The basic principle of CNN is that it extracts the local features from 
the input and passes them to the lower layers to obtain more complex 
features. Figure 4 shows the main organization of CNN. The basic 
structure of CNN can be divided into five parts, i.e., Input Layer, 
Convolutional Layer, Convergence Layer, Fully Connected Layer and 
Output Layer.

With CNN, feature extraction is performed, including first 
order statistics features (first order statistics), shape features 
(shape), texture features and higher order statistics features, using 

FIGURE 1

CNN based data processing process. The full pipeline from CT image acquisition, preprocessing, ROI segmentation, radiomics feature extraction, to 
CNN model training and prediction is illustrated.

FIGURE 2

CT image preprocessing (Gaussian filtering). Gaussian filtering was 
applied to enhance image quality, reduce noise, and improve the 
clarity of CT images before segmentation and radiomics analysis.
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minimum redundancy maximum relevance (max-relevance and 
min-redundancy, mRMR) and minimum absolute shrinkage and 
selection operator (The basic principle of the LASSO algorithm 
is to shrink the regression coefficients of all variables by 
constructing the sum of the absolute values of all regression 
coefficients with the addition of a first-order paradigm penalty 
term, i.e., the sum of the absolute values of all regression 
coefficients). The basic principle of the LASSO algorithm is to 
shrink the regression coefficients of all variables by constructing 
the sum of the absolute values of all regression coefficients by 
adding a first-order paradigm penalty term, i.e., the sum of the 
absolute values of all regression coefficients and then shrinking 
the coefficients.

Mayo and Brock model analysis

The Mayo and Brock models are currently recognized nationally 
and internationally as predictive models for the probability of 
malignancy of lung nodules, with the probability of malignancy 
P = ex/(1 + ex), where x takes on different values.

 1. Mayo model (16) x = −6.827 2 + (0.0391 × age) + (0.7917 ×  
history of smoking) + (1.338 8 × history of malignancy) +  
(0.1274 × diameter of nodule) + (1.0407 × hairbrush sign) +  
(0.7838 × position of upper lobe).

 2. Brock model (17) x = −6.614 4 + (0.6467 x sex) + (−5.5537 x 
diameter) + (0.9309 x burr sign) + (0.6009 x upper 
lobe position).

Using the pathological diagnosis results as the gold standard, the 
receiver operating characteristic (ROC) curves of subjects for these 2 
models were plotted separately.

Statistical analysis

 1. SPSS 25.0 and R4.2. 2 were applied to perform statistical analysis; 
the mean ± standard deviation was used to express the 
measurement data that satisfied normal distribution, otherwise, 
the median and interquartile spacing were used to express the 
measurement data; frequency, rate and percentage were used for 
the count data; and the chi-square test or Fisher’s exact probability 
method and t-test were used for the comparison between groups.

 2. The infiltrative nature of lung nodules was used as the 
dependent variable, the general information of the patients and 
the imaging characteristics of the nodules were used as the 
independent variables, and statistically significant (p < 0.05) 
independent variables were distinguished by univariate 
analysis. The above independent variables were included in the 
multifactorial Logistic regression analysis to construct a clinical 
prediction model for predicting the degree of infiltration of 
lung nodules with CT image features extracted by the 
AI-assisted diagnosis system.

 3. The malignancy probability collected by the CNN system was 
used to draw the receiver operating characteristic (ROC) curve, 
the area under the ROC curve (AUC) was used to evaluate the 
diagnostic ability assessment of the risk prediction model, and 
the cut-off value was determined to indicate the critical value 
for clinical application.

Data availability

The radiomics processing code and synthetic test data are available 
at GitHub. Due to institutional restrictions and patient privacy 
protections under ethics approval, the trained model weights and 
original clinical data cannot be shared. However, all feature extraction 

FIGURE 3

Segmentation of the region of interest (lung nodule). Manual delineation was performed for each nodule to exclude unrelated structures (e.g., bronchi, 
vessels, bones), ensuring accuracy in ROI extraction for radiomics.
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procedures are fully described in Methods, all key extracted features are 
reported in Tables 1–3, and model architecture details were provided in 
Figure 4. A Docker image containing all dependencies is provided for 
replication. Due to IRB restrictions, clinical data cannot be shared but 
synthetic examples demonstrating the processing pipeline are included.

Results

Patient characteristics

A total of 670 patients were included in this study, including 469 
patients in the training set and 201 patients in the validation set. The 
baseline characteristics of included patients showed no significant 
differences from excluded cases (n = 535) in age or gender distribution 

(p > 0.05). Primary exclusion reasons were unanalyzable image quality 
(53.8%), size criteria (29.3%), and pathological confirmation unavailable 
(16.9%). The mean age was (58.43 ± 10.12) years, 46.72% were male and 
53.28% were female. The imaging characteristics of nodules such as 
nodule location, diameter, percentage of solid component, and 
pulmonary nodule characteristics were not significantly different in both 
groups (p < 0.05, Table 4). Therefore, the selection of patients for the 
training and validation sets met the requirements for subsequent 
analyses (Figure 5).

Inter-reader agreement analysis

The intraclass correlation coefficient (ICC) for ROI segmentation 
between two radiologists was 0.82 (95% CI: 0.76–0.87), indicating 

FIGURE 4

CNN main organizational structure. The CNN consisted of input, convolutional, pooling, fully connected, and output layers, enabling multilevel feature 
extraction and classification of nodules as benign or malignant.
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TABLE 3 Threshold results and test efficacy for independent risk factors.

Variant Thresholds Sensitivity Specificity AUC 95% Cl

Maximum diameter 

(mm) 12.63 mm 78.50% 80.5% 0.881 0.867–0.894

Volume (mm3) 663.1 mm3 76.10% 82.4% 0.875 0.870–0.892

Mean CT value (Hu) −445Hu 70.50% 79.4% 0.83 0.794–0.866

CTR 12.60% 75.90% 77.30% 0.783 0.721–0.84

Predictive modelling 0.55 82.40% 75.50% 0.887 0.871–0.898

TABLE 1 Univariate analysis of infiltrative GGN(mean ± SD) or n (%).

Variant Infiltrative (n = 317) Non-infiltrative (n = 152) X2 (t) p

Age(years) 60.04 ± 8.87 57.65 ± 11.2 2.501 0.013*

Gender, n (%)

Female 168 (53.00) 72(47.37)

1.303 0.254Male 149 (47.00) 80(52.63)

Smoking

Yes 132 (41.64) 59 (38.82)

0.34 0.56No 185 (58.36) 93 (61.18)

BMI (kg/m2) 55.78 ± 6.73 56.43 ± 7.39 0.948 0.344

History of malignant 

tumor

Yes 47 (14.83) 15 (9.87)

2.201 0.138No 270 (85.17) 137 (90.13)

Site of nodule

Upper left 96 (30.28) 51 (33.52)

7.26 0.123

Lower left 48 (15.14) 30 (19.74)

Upper right 109 (34.38) 50 (32.89)

Lower right 48 (15.14) 11 (7.23)

Middle right 16 (5.05) 10 (6.59)

Maximum diameter(mm) 16.23 ± 4.65 11.02 ± 5.11 10.99 <0.001*

Volume (mm3) 1433.51 ± 1150.5 623.19 ± 593.44 8.175 <0.001*

Mean CT value (Hu) −372.16 ± 153.11 −493.27 ± 126.3 8.467 <0.001*

CTR

<25% 21 (6.62) 42 (27.63)

147.9 <0.001*

25–50% 59 (18.61) 89(58.55)

50–75% 135 (42.59) 10(6.58)

>75% 102 (32.18) 15(9.87)

Phyllotaxy sign

Yes 180 (56.78) 77(50.66)

1.384 0.239No 137 (43.22) 74 (48.68)

Burr sign

Yes 88 (27.76) 5 (3.29)

38.7 <0.001*No 229 (72.24) 147 (96.71)

Blood vessel cluster sign

Yes 229 (72.24) 103 (67.76)

0.996 0.318No 88 (27.76) 49 (32.24)

Pleural depression sign

Yes 38 (11.99) 5 (3.29)

9.333 0.002*No 279 (88.01) 147 (96.71)

Vacuolar sign

Yes 48 (15.14) 30 (19.74)

1.564 0.221No 269 (84.86) 122 (80.26)

*indicates statistical significance at p < 0.05.

TABLE 2 Multifactorial logstic regression analysis of infiltrative GGN.

Variant β Wald X2 p OR 95% CI

Age (years) 0.031 2.769 0.092 1.039 0.989–1.118

Maximum diameter (mm) 0.155 13.77 <0.001* 1.335 0.921–1.891

Volume (mm3) 0.677 11.48 <0.001* 1.255 1.012–1.548

Mean CT value (Hu) 0.203 9.97 <0.001* 1.002 0.843–1.821

CTR 1.009 14.593 <0.001* 2.81 1.784–4.721

Burr sign 1.396 0.033 0.728 1.294 0.082–17.21

Pleural depression sign 1.016 0.012 0.0889 1.002 0.287–7.69

*indicates statistical significance at p < 0.05.

https://doi.org/10.3389/fmed.2025.1603472
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Chen et al. 10.3389/fmed.2025.1603472

Frontiers in Medicine 07 frontiersin.org

excellent agreement. For radiomic feature extraction, ICC values 
ranged from 0.75 to 0.91 across different feature categories (Table 5).

Univariate analysis of GGN infiltrability

In order to verify whether the infiltrative nature of GGN was 
correlated with general clinical data and CT imaging features, a 
one-way ANOVA was performed on the indicators included in 
this study. Statistical results revealed that patient age, nodule 
maximum diameter, volume, mean CT value, consolidation tumor 
ratio (CTR), burr sign and pleural depression sign were 
statistically significant between non-infiltrating and infiltrating 
nodules (p < 0.01).

Feature selection

Of 1,310 initial features, 42 received selection via minimum 
redundancy maximum relevance (mRMR) and LASSO regression 
(λ = 0.01). Dominant predictors included: texture: GLCM_Entropy 
(β = 0.32, p < 0.01); shape: Sphericity (β = −0.21, p < 0.05).

Multifactor regression analysis

The seven indicators screened in the above univariate analysis 
were included in the multifactorial logistic regression analysis, in 
which the maximum diameter of the nodule, volume, mean CT value, 
and CTR were independent predictors (Table 2).

TABLE 4 Analysis of general clinical data(mean ± SD) or n (%).

Variant Training session 
(n = 469)

Validation session 
(n = 201)

X2 (t) p

Age(years) 58.22 ± 10.65 59.17 ± 9.37 1.096 0.274

Gender, n (%)

Female 240 (51.17) 117 (58.21)

2.798 0.094Male 229 (48.83) 84 (41.79)

Smoking

Yes 191 (40.72) 69 (34.32)

2.424 0.12No 278 (59.28) 132 (65.67)

BMI (kg/m2) 56.16 ± 8.59 56.47 ± 8.72 0.426 0.67

History of malignant 

tumor

Yes 62 (13.22) 17 (8.46)

3.068 0.08No 407 (86.78) 184 (91.54)

Physiology

Benign 179 (38.16) 65 (32.33)

2.064 0.151Malignant 290 (61.83) 136 (67.66)

Site of nodule

Upper left 147 (31.34) 77 (38.31)

6.236 0.182

Lower left 78 (16.63) 23 (11.44)

Upper right 159 (33.9) 65 (32.33)

Lower right 59 (12.58) 29 (14.43)

Middle right 26 (5.55) 7 (3.48)

Maximum diameter (mm) 13.38 ± 4.21 13.92 ± 4.67 1.272 0.142

Volume (mm3) 845.33 ± 511.9 873.92 ± 532.81 0.654 0.513

Mean CT value (Hu) −447 ± 123.7 −459 ± 115.9 1.172 0.241

CTR

<25% 63 (13.43) 19 (9.45)

2.815 0.421

25–50% 148 (31.56) 61 (30.35)

50–75% 152 (32.40) 68 (33.83)

>75% 106 (22.60) 53 (26.37)

Phyllotaxy sign

Yes 257 (54.80) 113 (56.22)

0.115 0.735No 212 (45.29) 88 (43.78)

Burr sign

Yes 93 (19.83) 41 (20.40)

0.028 0.866No 376 (80.17) 160 (79.40)

Blood vessel cluster sign

Yes 322 (68.67) 143 (71.14)

0.410 0.522No 147(31.34) 58 (28.86)

Pleural depression sign

Yes 43 (9.17) 12 (5.97)

1.910 0.167No 426 (90.83) 189 (94.03)

Vacuolar sign

Yes 78 (16.63) 29 (14.43)

0.509 0.476No 391 (83.37) 172 (85.57)
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TABLE 5 Verification of the accuracy of modelling.

Variant Thresholds Sensitivity Specificity Number of 
correct cases

Accuracy (%)

Maximum diameter 

(mm) 12.63 mm 77.80% 83.1% 165 82.09

Volume (mm3) 663.1 mm3 77.30% 81.3% 169 84.07

Mean CT value (Hu) −445Hu 72.20% 80.4% 159 79.1

CTR 12.60% 73.70% 79.90% 155 77.11

Predictive modelling 0.55 80.10% 78.80% 171 85.07

Analysis of the correlation between 
predictive factors and pulmonary nodal 
infiltrates

The differential expression of independent factors in infiltrating 
and non-infiltrating nodules was further analyzed and their 
correlations were statistically determined. As shown in Figure 6, the 

maximum diameter of the nodule, volume, mean CT value, and CTR 
were all significantly highly expressed in infiltrating nodules (p < 0.05). 
Correlation analysis revealed that the predictive factors were positively 
correlated with the infiltrative nature of the nodules, with correlation 
coefficients of 0.642 for the maximum diameter, 0.53 for the volume, 
0.59 for the mean CT value, and 0.503 for the proportion of 
solid components.

Clinical prediction modelling

Combining the above independent prognostic factors, the ROC 
curve was drawn to calculate the prognostic value of GGN. The areas 
under the curve, 95% confidence intervals, thresholds, sensitivities and 
specificities of the four independent factors are shown below, and the 
thresholds of these four indexes were used as the thresholds to construct 
the composite scores of the prediction model of GGN infiltration. The 
scoring rule is as follows: prediction model = maximum diameter × 
0.642/(0.642 + 0.53 + 0.59 + 0.503) + volume × 0.53/(0.642 + 0.53 +  
0.59 + 0.503) + mean CT value × 0.59/(0.642 + 0.53 + 0.59 +  
0.503) + CTR × 0.503/(0.642 + 0.53 + 0.59 + 0.503) (maximal diameter 
≥12.63 mm was recorded as 1, otherwise 0; volume ≥663.1 mm3 was 
recorded as 1, otherwise 0; mean CT value ≥-445Hu was recorded as 1, 
otherwise 0; CTR ≥ 12.60% was recorded as 1, otherwise 0), and 
infiltrative nodules were considered when the composite score was 
≥0.55, and when less than 0.55, infiltrative nodules were considered. 
When the composite score was ≥0.55, it was considered non-infiltrating 
nodules. The ROC curve was plotted according to the prediction model, 
in which the scoring threshold was 0.55. CNN model demonstrated 
discriminative ability for malignant GGNs (sensitivity of 82.4%, 
specificity of 75.5%), with AUC of 0.887 and 95% Cl of (0.871–0.898) 
(Figure 7).

Correctness validation of predictive models

The accuracy of the modelling was assessed using the validation 
set, in which the accuracy of the validation set data for maximum 
diameter volume, mean CT value and CTR were judged correctly at 
82.9, 84.07, 79.1, and 77.11%, respectively. The accuracy of the 
predictive model was 85.07%, which is more effective compared to the 
test of independent factors.

In the 5-fold cross-validation, the model achieved a mean AUC of 
0.872 (95% CI: 0.858–0.886) with sensitivity and specificity of 
80.1% ± 3.2 and 74.6% ± 2.8%, respectively, indicating consistent 
performance across subsets.

FIGURE 5

Research sample screening flowchart.
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Evaluation of model building and AI 
performance in predicting the benign and 
malignant nature of lung nodules

The Mayo and Brock model is a nationally and internationally 
recognized model for predicting the probability of malignancy of 
lung nodules, and its performance in predicting the benign and 
malignant nature of nodules was verified by comparing the prediction 
models constructed in this study. The AUCs of the Mayo and Brock 
models were 0.655 and 0.574, respectively, whereas that of our 
prediction model was 0.826, demonstrating a stronger goodness-of-fit 
(Figure 8).

Discussion

In China, the incidence and mortality rates of lung cancer are at a 
high level, and it is the first among malignant tumors (18). Recently, 
adenocarcinoma has gradually replaced squamous carcinoma as the 

pathology with the highest incidence rate among lung cancers. GGN, 
as a possible form of early-stage lung adenocarcinoma, has also been 
gradually emphasized with the early screening of lung cancer (19). It 
has been found that patients with invasive lung adenocarcinoma also 
have a significantly lower 5-year survival rate than those with 
non-invasive adenocarcinoma (20). Therefore, correctly identifying the 
benign or malignant nature of GGN is important for improving the 
prognosis of lung cancer patients.

The screening of lung nodules requires the support of high-
resolution chest CT, which can clearly present the diameter, CT value, 
burr sign, lobular sign, pleural depression sign and other imaging 
features of lung nodules and is an important means of diagnosis for 
clinicians (21). However, the diagnosis of nodules is a difficult task 
when the number of nodules is unknown, and time is short. AI is 
expected to be integrated with medicine at this time to reduce the 
diagnostic burden of clinicians. Ciompi et  al. developed an AI 
algorithm that can differentiate between different types of nodules 
with certain reliability (22). Chen et al. based on big data, combined 
AI software with CT impact characterization can improve its 

FIGURE 6

Correlation of maximum nodule diameter, volume, mean CT value, CTR and infiltrative nature. Four independent predictive features showed 
significantly higher values in infiltrative GGNs and were positively correlated with nodule invasiveness.

FIGURE 7

ROC curve analysis. (a) ROC curve analysis of nodule maximum diameter, volume, mean CT value, consolidation tumor ratio versus infiltration. (b) 
ROC curve analysis for modelling. All four features showed good discrimination (AUC > 0.78), and the composite prediction model achieved higher 
predictive accuracy (AUC = 0.887).
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diagnostic and screening ability (23). Ardila et al. (24) used 42,290 
CT data from the NLST dataset and constructed a composite 
convolutional neural network with a three-dimensional Inception 
network as its core. It identified and extracted both global and local 
features of chest CT images, as well as analyzed chest CT images at 
different time points, and verified that the AUC reached 0.944, 
achieving the highest existing accuracy of artificial intelligence in 
predicting the risk of lung cancer. A large number of studies have 
revealed the application value of CNN model in benign and 
malignant screening of lung nodules. Based on the existing studies, 
the CNN model constructed in this study has higher efficiency and 
accuracy in feature extraction of nodule regions and can classify lung 
nodules as benign or malignant through accurate classification and 
judgement, and give the corresponding prediction probability, which 
strengthens the validity and feasibility of CNN in the clinical practice. 
Feasibility of CNN in clinical practice.

In this study, we firstly investigated the relevant factors affecting 
the infiltration of GGN, and the results revealed that there was a 
significant difference in age, maximum diameter of the nodule, 
volume, mean CT value, CTR, burr sign and pleural depression sign 
between patients with invasive and non-invasive GGN (p < 0.05) The 
age of patients with invasive GGN (60.04 ± 8.87) was higher than that 
of the non-invasive group (57.65 ± 11.2), which may be due to the 
fact that increasing age increases the risk of immune escape of tumor 
cells, thus increasing the incidence of lung cancer. Zhang et  al. 
revealed that age was one of the independent risk factors for invasive 
and non-invasive GGN using CT (25), which is in line with the 
results of our study. Fleischner’s guideline states that nodule size is 

one of the most important factors in differentiating the benign and 
malignant nature of GGN (26), and the probability of malignancy 
increases with every 2 mm increase in the maximum diameter of a 
subsolid nodule (27). Among the 469 patients included in the 
training set of this study, the maximum diameter of infiltrating GGN 
(16.23 ± 4.65) was significantly larger than that of the non-infiltrating 
group (11.02 ± 5.11), similar to Jiang et al. who reported that the 
diameter of the nodule correlated with the degree of infiltration, 
which is a predictor of infiltrating adenocarcinoma (28). Further 
correlation analysis between the maximum diameter and the 
infiltrative nature of GGN showed that they were positively correlated 
to some extent and the correlation coefficient was 0.642. In addition, 
some studies revealed that the volume of the nodule was also related 
to the infiltrative nature of GGN (29), and our study similarly 
revealed a positive correlation between the volume and the infiltrative 
nature of GGN as well, and it could be used as one of the independent 
predictive factors of GGN. The density of the material is linearly 
related to the CT value, which has been shown by several studies to 
correlate with the degree of tumor infiltration (30), where tumor cells 
continuously proliferate along the alveolar wall, resulting in a local 
increase in alveolar density. The present study revealed that CT value 
is an independent predictor of infiltrative GGN, which is in line with 
the findings of Junji Ichinose et al. that maximum CT value is an 
independent predictor of tissue invasiveness (31).

Several studies have pointed out that the area of the solid component 
reflects the degree of infiltration of tumor cells and that CTR and its CT 
value correlate with tumor invasiveness (32, 33). In addition, burr sign 
and pleural depression are common features of malignant GGN22-23. 

FIGURE 8

ROC curve analysis of Mayo models, Brock models and Combinatorial model. Compared to Mayo and Brock models, the combinatorial CNN-based 
model demonstrated superior predictive performance in malignancy assessment of GGNs.
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In this study, burr sign and pleural depression and age were found to 
be risk factors for the degree of infiltration of GGN by univariate analysis, 
but the inclusion of multivariate analysis of roar was found not to have 
an effect on the degree of infiltration of GGN.

The novelty of this study is the combination of four variables: 
maximum diameter, volume, mean CT value, and CTR to infer the 
infiltrative nature of the nodule, determine its threshold value and 
develop a prediction model to predict the probability of malignant 
nodules. The accuracy of the determined thresholds was explored 
using a validation set, and the prediction model showed a certain 
degree of improvement in sensitivity, specificity, and correctness 
compared with the individual variables. The prediction model 
constructed in this study also has certain advantages over the Mayo 
and Brock models, which are recognized nationally and 
internationally for predicting the malignancy probability of lung 
nodules. While the CNN model demonstrated superior discriminative 
ability in imaging-based diagnosis, Mayo and Brock models retain 
clinical utility for rapid risk stratification without advanced imaging 
analysis. The hybrid approach’s performance gain suggests potential 
synergies between radiomic and clinical features-a direction for 
future multimodal AI development.

Compared to existing radiomics studies, our work specifically 
addresses two key literature gaps: integration of deep learning with 
handcrafted radiomic features for GGN analysis, and systematic 
comparison against clinical risk models. However, like multiple prior 
studies, our current validation remains institution-specific. While 
we  employed rigorous cross-validation to mitigate overfitting, 
we fully acknowledge the necessity of external testing—a limitation 
shared by approximately 78% of similar AI-radiomics studies 
according to recent reviews. Our group will initiate a multicenter trial 
to formally assess generalizability across different scanner types and 
populations. While MATLAB served our research needs effectively, 
we  recognized industry preference for TensorFlow/PyTorch in 
production environments. We have open-sourced a PyTorch version 
achieving identical performance and containerized the model using 
Docker for cloud deployment. The single-center retrospective design 
may introduce selection bias, and external validation is required to 
confirm generalizability. The term “effective” in this context 
specifically refers to internal validation results, not established 
clinical utility. Future multicenter prospective studies with larger 
cohorts will be essential to translate this model into clinical practice. 
Moreover, the method used to validate the predictive performance of 
the model in this study is limited to logistic regression, and more 
methods such as random forests and elasticity network regression 
should be added for comparison to develop a model with the best 
predictive performance. Additionally, while we  openly share the 
implementation code and processing pipeline, institutional policies 
prevent distribution of the trained model weights and original clinical 
data. Researchers may replicate the approach using the provided 
architecture details and synthetic data or contact the corresponding 
author for collaborative verification. While manual segmentation 
ensures precision in this exploratory study, its labor-intensive nature 
limits clinical scalability. Recent advances in deep learning show 
promise for GGN segmentation but require large, annotated 
datasets-a focus of our ongoing work. A semi-automated pipeline 
with manual correction may balance efficiency and accuracy in future 
implementations. Furthermore, while our evaluation focused on 

AUC, sensitivity and specificity-metrics most clinically relevant for 
malignancy screening-we recognize that additional measures like 
precision, F1-score and confusion matrix analysis could provide 
deeper model characterization. These metrics will be prioritized in 
our upcoming multicenter validation study where class imbalance 
management becomes more critical.

The benign and malignant diagnosis of GGN, as well as the 
aggressiveness of the nodule is the focus and difficulty in clinical work, 
and in the imaging diagnosis and follow-up of lung adenocarcinoma, 
the CT imaging features have a high degree of accuracy in determining 
the degree of tumor infiltration. In this study, the correlation between 
clinical features and GGN infiltration was analyzed by CNN, and a 
prediction model of GGN infiltration probability with high specificity 
and sensitivity was constructed, so as to provide a strong imaging basis 
for the clinicians to grasp the patient’s condition quickly and to make 
the choice of appropriate surgical plan.
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