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Alzheimer’s disease (AD) is the most frequent cause of dementia worldwide,

and it is estimated that the number of patients will increase to 131 million

by 2050. Most of the current methods of dealing with AD are designed to

alleviate the symptoms, and there is no effective way of stopping the progression

of the disease. Personalized immunotherapy has the potential to be highly

effective and cut down on side effects because it can be targeted accurately and

intervened early. Considering the genetic factors, many studies are increasingly

looking at taking the immune status into account. This article further discusses

the genetic and immune characteristics of AD, the methods of integrating

multiple histological data, the identification of biomarkers, the stratification of

patients, the precise treatment plans, and the application and future trends of

immunotherapy, giving new directions for the future treatment of AD. In this

mini-review, the authors address the critical role that genetic background and

immune status play in shaping therapeutic strategies for AD, noting that there is

a unique immune response in carriers of the APOEε4 allele compared to non-

carriers, and that this difference may affect the course of the disease as well as

the efficacy of immunotherapy. The aim of this review is to give an overview of

the current understanding of the influence of genetic and immune factors on

each other in AD, focusing on the impact of the APOEε4 allele on the immune

response and its implications for immunotherapy.

KEYWORDS
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1 Introduction

Alzheimer’s disease (AD) is the most common form of dementia, affecting
approximately 47 million people worldwide, with projections indicating an increase to 131
million cases by 2050 (1–5). The growing prevalence of AD places a significant burden on
healthcare systems and social support services, while also imposing substantial economic
pressures (6). Core pathologic features of AD include the deposition of Aβ plaques in
the brain and the hyperphosphorylation of tau protein in neurofibrillary tangles (7). Aβ

is produced through abnormal cleavage by β- and γ-secretases, forming Aβ40 and Aβ42
monomers, which subsequently aggregate into amyloid plaques (8). These plaques, at high
concentrations, trigger microglial infiltration and activation. However, microglia activation
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also plays a role in exacerbating neuronal injury through excessive
immune responses and inflammation (9–12).

Current pharmacological treatments of AD are represented
essentially by acetylcholinesterase inhibitors and the glutamate
antagonist memantine (13). They inhibit acetylcholinesterase to
reduce the breakdown rate of acetylcholine and therefore enhance
central cholinergic neurotransmission (14). They may even exert
an additional beneficial effect, such as delaying cognitive decline
or improving functional activities in everyday life in the first year
of treatment. However, they cannot impede the progress of the
disease, and the cognitive functions continue to deteriorate rapidly
after drug withdrawal (15–17). Besides, great variability concerning
their efficacy is exhibited among different patients, and the risk
of side effects associated with prolonged administration limits its
long-term clinical application (18–20).

So far, immunotherapy aimed at controlling immune function
has achieved striking successes in treating tumors, including but
not limited to immune checkpoint inhibitors and CAR-T cell
therapy (21–24). In AD, immunotherapy aims to stimulate the
immune system to target and clear Aβ deposits, offering promise
as a disease-modifying therapy (25). Personalized immunotherapy,
in particular, holds significant potential for targeted precision,
early intervention, and minimizing side effects (26–29). Early
detection, facilitated by biomarker-based diagnostics, allows for
timely interventions that may prevent or delay neuronal damage
(30). Accordingly, tailored treatment plans in accordance with
patient profiles, by adjusting dosages and treatment schedules,
can ensure optimal immune response and reduction in side
effects. This will definitely improve patient compliance and
tolerance (31). By elucidation of the pathophysiological mechanism
of AD, personalized immunotherapy will be incorporated into
the benefits and innovations of genomics, proteomics, and
other interdisciplinary disciplines that enable more appropriate
and effective disease management (32). This review specifically
examines the role of genetic and immune characteristics in AD,
focusing on how the APOEε4 allele affects the immune response
and disease progression, and we discuss how this knowledge can
lead to the development of personalized immunotherapies that take
into account individual genetic and immune differences, which can
improve efficacy and cut down on adverse effects.

2 Genetic background and immune
system in AD

APOE4 encoded by APOE ε4 is very different from APOE3 in
lipid metabolism, resulting in disturbances of cholesterol transport
and distribution in the brain, thereby affecting the stability and
function of neuronal membranes (33). APOE4 is easier to bind
with Aβ, promoting the aggregation and deposition of Aβ to form
amyloid plaques, which is one of the typical pathologic features
of AD. The interaction of APOE4 with mitochondria triggers
mitochondrial dysfunction, which is manifested as increased
mitochondrial calcium levels and increased reactive oxygen species
generation, further aggravating energy metabolism disorders and
oxidative stress and impairing neuronal survival (34). From the
perspective of the immune response, compared with other APOE
isoforms, APOE4 is more susceptible to proteolytic hydrolysis

under stress conditions, and the generated products promote
neurofibrillary tangle formation, affect the function of immune cells
including microglia, and decrease the efficiency of Aβ clearance,
thereby contributing to AD. APOE4 is able to translocate into
the nucleus, where it drives the expression of genes involved in
senescence, Aβ production, inflammation, and apoptosis, further
exacerbating the pathologic changes in AD (35–39).

Familial Alzheimer’s Disease (FAD) is primarily caused by
mutations in the APP, PSEN1, and PSEN2 genes, which encode
proteins critical to Aβ generation and clearance (40, 41). Mutations
in the APP gene result in the abnormal accumulation of Aβ

following the cleavage of amyloid precursor protein by β- and
γ-secretases at the cell membrane, thus promoting the formation
of amyloid plaques (42, 43). The PSEN1 and PSEN2 genes encode
the key components of the γ-secretase complex, and mutations in
these genes lead to abnormal γ-secretase activity, increasing Aβ

generation and deposition. Notably, mutations in the PSEN1 gene
are the most common pathogenic factor in FAD (Figure 1) (44–47).
While the occurrence of PSEN2 gene mutations is seldom observed
to be causing AD, it functions much like PSEN1; that is, Aβ tends
to accrue abnormally.

Genes regulate the intensity of immune responses by
influencing the development and differentiation of immune cells,
as well as by modulating cellular signaling pathways (48–50).
Studies suggest that the TREM2 gene, expressed in microglial cells,
plays a crucial role in regulating their phagocytic function and
inflammatory response. By contrast, PSEN1 mutations modulate
γ-secretase activity and hence Aβ generation and immune
cell activation (51–54). Some of them induce an inappropriate
expression of immune markers and lead or maintain inflammatory
responses. For example, APOE ε4 allele is associated with higher
levels of inflammation markers such as IL-6 and TNF-α whereas
mutations in TREM2 impact the inflammatory response in
microglial cells (55–58).

AD involves a dual function of microglia and astrocytes
in the pathologic process. These glial cells promote tissue
repair and maintain neurological homeostasis through clearing
of Aβ plaques and neurofibrillary tangles, secretion of anti-
inflammatory cytokines such as IL-10 and TGF-β (59–61). On
the contrary, over-activated microglia and astrocytes lead to the
chronic inflammatory response that results from releasing a huge
amount of pro-inflammatory cytokines such as TNF-α and IL-
1β (62–64). These pro-inflammatory factors, while promoting
further neuroinflammation, causing neuronal damage and death,
promote Aβ production and Tau proteins over-phosphorylation via
activating several signaling pathways such as NF-κB, thereby setting
up a vicious circle (65, 66).

3 Integration of genetic and immune
profiles

3.1 Integration methods of multi-omics
data

In this respect, GWAS in genomics found genetic variants
that are associated with AD and definitely confirmed that APOE
ε4 is a major genetic risk of the disease. Besides regulating
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FIGURE 1

The APOEε4 allele disrupts lipid metabolism, promotes Aβ aggregation, impairs mitochondrial function, alters immune responses, and regulates
gene expression. These changes further lead to the formation of amyloid plaques, oxidative stress, impairment in energy metabolism, chronic
inflammation, and neuronal damage. Mutations within the APP, PSEN1, and PSEN2 genes promote abnormal Aβ production and γ-secretase
activities, thus acting to further promote the amyloid plaque formation and neurodegeneration (by Figdraw).

Aβ metabolism, these variants also enhance neuroinflammation
by modulating the activity of immune cells (67–70). While
transcriptomics offers information on dynamic gene expression
changes, single-cell RNA sequencing has indeed enabled cell-
type-specific investigation into AD-dependent shifts in gene
expression at previously unparalleled resolution (71, 72). Indeed,
microglia from AD brains have been found to express characteristic
transcriptional phenotypes. It was noted that AD patients had
a particular microglial transcriptional state in the brain that
was strongly associated with inflammatory responses and lipid
processing. Genomic and transcriptomic information is further
complemented by proteomics, which examines protein expression
and function, representing the end product of gene expression
and their roles in diseased conditions (73, 74). Proteome-wide
association studies integrate GWAS results with proteomic data to
identify genes that influence AD risk by altering protein abundance.
Bioinformatics tools and algorithms are thus very important
for the integration of multi-omics data, enabling researchers to
uncover more holistic insights into disease mechanisms (75).
Weighted gene co-expression network analysis is one of the most
popular methods used to identify gene modules associated with
AD and their key hub genes. By constructing gene co-expression
networks, researchers can pinpoint modules closely linked to
disease progression and further explore their biological significance
through functional annotation (76). Moreover, machine learning
and artificial intelligence technologies have become crucial in the
integration and analysis of multi-omics data (77). Approaches like
deep learning can automatically identify patterns and trends from

complex multi-omics datasets, enabling the discovery of novel
biomarkers and the prediction of disease outcomes (Figure 2) (78).

3.2 Limitations of current omics
technologies and barriers to
implementation in clinics

Even with the significant development of multi-omics
technologies, there are still some limitations and obstacles to
their implementation in the clinical setting, one of which is the
high cost and complexity of multi-omics technologies, which may
affect their large-scale application in normal clinical practice (79,
80). Single-cell RNA sequencing, for example, contains a huge
amount of information but requires specialized instrumentation
and expertise, making it difficult to perform in small clinical
laboratories. Furthermore, the sheer volume of data generated
by these technologies requires sophisticated bioinformatics and
computing resources, which are not readily available in all clinical
settings (81). Another shortcoming is the lack of a standardized
process for data collection, processing, and analysis, which can
lead to different or even conflicting results from different studies
or laboratories (82). Moreover, because of differences in data types,
formats, and quality, fusion of multi-omics data from different
sources may be challenging, requiring the creation of robust and
flexible bioinformatics programs to ensure accurate and reliable
data fusion (83). Translating the new insights from genomics into
clinically feasible insights remains a major problem. Biological
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FIGURE 2

This figure combines genomics, transcriptomics, and proteomics in the investigation of Alzheimer’s disease. It identifies genetic variations through
genomics, transcriptomics through differences in gene expression, and changes in protein abundance through proteomics. Bioinformatics analysis
links them in the identification of the key gene modules and prediction of the disease outcome (by Figdraw).

systems are complex and AD is highly variable, and it is difficult to
identify clear and actionable biomarkers that can be used to make
diagnoses, predict disease progression, and determine therapeutic
response (84). The most common biomarkers are those that can
be used for diagnostic purposes and that can be used in a clinical
setting. Overcoming these limitations will require researchers,
clinicians, and bioinformaticians to work together to develop
more accessible, standardized, and clinically relevant genomic
techniques and data analysis tools (85).

3.3 Identification and validation of
biomarkers

High-throughput genomics technologies have made it possible
to identify genes associated with AD and their expression pattern
(86). Machine learning algorithms enhance the efficiency and
accuracy of the analysis of gene data. By using machine learning
algorithms like support vector machines and random forests,
predictive models could be developed which could differentiate AD
patients from healthy controls based on their sEV profiles (87–90).
The immune system is a very important player in the pathology of
AD. Inflammation markers, like sTREM2 and YKL-40, have been
reported to be increased in AD patients and serve as biomarkers
of neuroinflammation (91). Moreover, immune cell activation,
especially microglia, is highly related to AD development, and
proteins involved in immune signaling pathways can also be
used as potential biomarkers. Immunomics analysis combined

with machine learning methods could more effectively screen and
validate immune-related biomarkers (92, 93). Further, it has been
shown that plasma levels of p-tau181 provide high diagnostic
accuracy for the early stages of AD (94, 95). Further sensitivity
and specificity can be obtained by using an integrated diagnostic
model that combines multiple biomarkers with clinical data. Such
a model will help not only in the early identification of AD patients
but also form a basis for developing personalized treatment plans,
ultimately improving the prognosis and quality of life of patients
(96, 97).

3.4 Patient stratification and precision
therapy

APOE ε4 allele is the most important genetic risk factor for
AD, and the patients carrying this allele have a higher incidence
and faster development of the disease (98). The identification of
such genetic alterations allows the division of patients according to
different genetic subtypes and provides a rationale for personalized
treatment approaches (99, 100). Inflammatory responses have
been identified as one of the early features of AD and are
closely related to disease progression. According to the immune
cell types and levels of inflammatory factors, patients can be
divided into different immune subtypes (101). High levels of pro-
inflammatory factors, including IL-1β and TNF-α, indicate an
active inflammatory process. Higher levels of anti-inflammatory
factors, such as IL-10, reflect the patient’s immune regulation
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status (102). In patients with high-risk genetic mutations, lifestyle
intervention, cognitive training, and other approaches may delay
disease onset and progression. Personalized treatment plans should
take both the patient’s genetic and immune profiles into account,
often employing multi-target drug combination therapies (103).
Given the long and complex course of AD, patient conditions
change over time (104), necessitating dynamic adjustments to
treatment plans based on ongoing assessments. Regular monitoring
of genetic and immune biomarkers can provide critical insights
into treatment efficacy and disease progression (105). Personalized
treatment means the precise adjustment of medication doses and
methods according to personal genetic background and medication
metabolism capability, therefore (106).

3.5 Structural variability of Aβ and tau
aggregates and its implications for
personalized immunotherapy

Recent studies have shown that Aβ plaques and tau protein
aggregates in the brains of AD patients have distinct individual
and subtype-specific structural differences, a phenomenon known
as “strain.” This conformational diversity alters the pathogenicity
and spread of aggregates in the brain, and this structural change
can make biomarker detection extremely difficult, as conventional
diagnostic tests may not detect all forms of aggregates (107). From
an immunotherapeutic perspective, antibodies targeting a specific
conformation may not be effective in all patients, even to the extent
that they do not work at all in those with different aggregation types
(108). Therefore, future personalized immunotherapy strategies
will have to take into account the biophysical properties of
pathological aggregates, perhaps in combination with specific
antibodies, aggregate sequencing technologies, and aggregate
resolving imaging to achieve a higher degree of accuracy, which
will also further subdivide patient stratification, thus driving the
development of more effective and personalized therapies (109).

4 Current status and prospects of
immunotherapy in AD

4.1 Types and mechanisms of
immunotherapeutic approaches

Before elaborating on the types of immunotherapy for AD,
it is important to clarify the fundamental differences between
active and passive immunotherapy. Active immunotherapy relies
on triggering the patient’s own immune system to recognize and
fight against specific antigens, and this type of therapy often
involves the use of vaccines or other medications that can trigger
an immune response. Passive immunotherapy, on the other hand,
refers to the injection of pre-prepared antibodies or other immune
components directly into the patient, without the need for a
response from the patient’s own immune system (110). These
antibodies bind to and neutralize pathogenic proteins to reduce
their harmful effects, and both approaches are aimed at improving
the progression of AD, but they differ greatly in their principles

of operation and possible side effects (111). The most important
difference between the two approaches is that they have been
shown to be effective in improving the progression of AD. Passive
immunotherapy accelerates the process of pathologic protein
removal through injecting certain monoclonal antibodies directly
into a patient’s body. Aducanumab, Lecanemab, and Donanemab
were permitted by the U.S. FDA for treating early AD (112). These
antibodies delay cognitive decline by binding Aβ and promoting
the removal of Aβ. Some adverse reactions, including brain
edema and microhemorrhages, have been developed in clinical
trials. Therefore, structural optimization and delivering strategy
development to optimize safety and efficacy will probably be a
more critical direction of the antibody-related therapy in future
research (113).

Active immunotherapy, in contrast, elicits an immune response
from the body by the administration of antigens or vaccines, which
then clears the pathological proteins. Early research involving Aβ

vaccines seemed promising, as vaccination in animal models led
to a decrease in Aβ deposition and improved cognitive function.
However, early clinical trials in humans were halted because
some patients developed meningoencephalitis. With improved
vaccine design and adjuvant selection, incidences of such side
effects have been relatively rare in recent years (114). Several
studies have demonstrated that vaccination against Aβ deposition,
using antigens composed of non-Aβ peptides folded into a
conformation similar to that of Aβ oligomers, effectively reduces
Aβ deposition and improves cognitive function. Meanwhile,
active immunotherapies do face some other major problems in
clinical practices, including individual variation within immune
responses, and the major call of inducing long-term immunity
for many diseases (115, 116). Tau pathology is one of the key
drivers of neurodegenerative, cognitive decline in AD, and an
increasing number of studies are demonstrating the importance
of tau pathology. Several monoclonal antibodies (semorinemab,
gosuranemab, zagotenemab) have entered clinical trials that
attempt to target extracellular tau proteins, but with mixed results
(117). The results of this study have been reported in a number
of studies. It is important to note that tau vaccines and antisense
oligonucleotides (e.g., BIIB080) have the potential to reduce
pathologic tau burden and slow cognitive decline in early trials,
and other investigational treatments such as synaptic modulators,
neuroprotectants, metabolic modulators, and anti-inflammatory
drugs are changing the landscape of AD treatment (118). The
current study of tau vaccines and antisense oligonucleotides has
shown that they are effective in reducing pathologic tau burden.

Cell therapies belong to a new direction in the field of AD
treatment with great potential, involving the transplantation of
certain cells with the aim of strengthening the immune response
or repairing damaged neural tissues, the two main types of cell
therapies undergoing research are listed below: CAR-T cell therapy
involves engineering the patient’s T cells so that these T cells exhibit
chimeric antigen receptors that specifically recognize and destroy
cells bearing disease-associated antigens (Figure 3). In the setting
of AD, CAR-T cells can be programmed to specifically target Aβ or
tau proteins, and CAR-T therapies have had significant success in
cancer treatment, although their use in AD is still in the early stages
of research. Clinical studies have shown that CAR-T cells shrink
Aβ plaques and optimize cognitive function in animal models
(119) (Table 1). iPSCs can differentiate into a variety of cell types

Frontiers in Medicine 05 frontiersin.org

https://doi.org/10.3389/fmed.2025.1603553
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1603553 May 28, 2025 Time: 19:8 # 6

He et al. 10.3389/fmed.2025.1603553

FIGURE 3

The mechanisms of three immunotherapies for AD. Passive Immunotherapy involves the direct administration of monoclonal antibodies to bind with
Aβ for clearance, which may cause side effects such as edema and microhemorrhage. Active Immunotherapy stimulates the immune system
through vaccination to produce antibodies that clear Aβ deposits, requiring optimized antigen design to reduce side effects. Cell Therapy uses stem
or immune cell transplantation to repair damaged neural tissue or clear pathological proteins, although its clinical application is still in early stages.
All three therapies target Aβ to slow the pathological progression of AD.

containing neurons and glial cells, which can be used as cellular
replacement therapies, and iPSC-derived cells give the possibility
of replacing damaged neurons and supporting neurologic repair.
Numerous studies have shown that iPSC-derived neurons can be
incorporated into the brain and improve cognitive function in
animal models of AD to judge the safety and efficacy of iPSC-
derived cell therapies in AD patients (120, 121).

4.2 Review and analysis of clinical trials

Clinical Evaluation of Aducanumab: Primarily Two Phase
III Studies-EMERGE and ENGAGE Both of these studies were
designed as a randomized, double-blind, placebo-controlled,
multicenter trials to evaluate the efficacy and safety of Aducanumab
in early AD patients. The EMERGE and ENGAGE trials were
designed to enroll thousands of patients with mild cognitive
impairment and mild AD, respectively, for 78-week-long studies
using variable dosing of Aducanumab for treatment, including
high dosing at 10 mg/kg (123). In the EMERGE study, the
high-dose Aducanumab group demonstrated a 30% reduction in
the Clinical Dementia Rating-Sum of Boxes (CDR-SB) score at
78 weeks, a clinically significant symptom benefit. However, the
ENGAGE trial failed to achieve the difference in the CDR-SB score
statistically, comparing Aducanumab treatment and the placebo

group. Potential causes may come from various aspects such as
patients with baseline characteristics, different disease stages, and a
progressive condition or even dosages during the treatment (124).
The results of the EMERGE and ENGAGE trials have been the
subject of much debate, particularly with regard to the U.S. Food
and Drug Administration’s (FDA) granting of accelerated approval
for Aducanumab, a pathway that permits approval of a drug on
the basis of surrogate endpoints that may be indicative of clinical
benefit, and which on the one hand is widely lauded for granting
access to potential therapeutic treatments. On the other hand, it
has been criticized for perhaps curtailing standards for drug efficacy
and safety (125). Differences in the results of the EMERGE and
ENGAGE trials have led to an enduring debate about the reliability
of the accelerated approval process, as well as the need for more
stringent post-marketing surveillance of Aducanumab’s long-term
safety and efficacy (126). The results of the EMERGE and ENGAGE
trials were not the same as those of the ENGAGE trial, which
led to an enduring debate about the reliability of the accelerated
approval process.

The Phase III clinical trial, Clarity AD, of lecanemab,
in a double-blind randomized placebo-controlled fashion in
approximately 2,000 patients with early-stage AD, was conducted.
This single trial was designed to assess the effects of Lecanemab
on cognitive function and Aβ deposition, with a fixed-dose, 18-
month duration of treatment (127). The results of the Clarity
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TABLE 1 Therapeutic strategies for AD.

Therapy type Mechanism description Clinical application and challenges References

Passive immunotherapy Injection of monoclonal antibodiesto clear
pathological proteins.

Approved for early AD treatment, optimization needed
for safety.

(112)

Active immunotherapy (Vaccine) Injection of antigens or vaccines to stimulate
immune response.

Improved to reduce side effects, individual differences
and immune memory maintenance are still challenges.

(114)

Cell therapy Transplantation of immune cells or stem cells to
repair neural tissue.

In early stages, further validation of safety and efficacy
is required.

(122)

AD trial revealed that Lecanemab was able to slow the rate
of cognitive and functional decline by 27%, while significantly
reducing Aβ levels in patients. Furthermore, lecanemab showed
statistically significant benefit for three alternate cognition and
function measures. Clinical benefits for Lecanemab in slowing
the course of AD would therefore seem possible from these
results (128).

The success of Lecanemab may be due to precision targeting
and improved clinical trial design, where Lecanemab selectively
neutralizes soluble and toxic Aβ aggregates, cuts down on non-
specific binding, and reduces side effects, as well as a rigorous
patient selection and stratification strategy that ensures credible
trial results, factors that contributed to the success of Lecanemab
in clinical trials (129). In contrast, the inconsistent results of
the Aducanumab trial have generated much debate, and have
demonstrated the importance of personalized treatment planning
and rigorous trial design to prevent inconsistent efficacy due
to patient heterogeneity, and that future clinical trials should

incorporate genetic and immune profiling to better predict patient
response and improve treatment outcomes (130).

4.3 Strategies and prospects of
personalized immunotherapy

These advances in genomics have, in one way, helped to
identify specific genetic variants linked with AD and have thus
allowed the design of targeted approaches for treatment. In
the case of genetic mutations in Aβ and tau proteins, specific
small molecules or monoclonal antibodies can be developed.
Moreover, new gene-editing technologies such as CRISPR/Cas9
offer new possibilities in the field of personalized gene therapy by
allowing the direct repair or replacement of pathogenic genes. This
approach not only increases the specificity of treatment but also
reduces the destruction of normal cells, giving the patients more

FIGURE 4

Four mechanisms of personalized immunotherapy in AD treatment. Genomics involves identifying gene variants associated with AD to design small
molecule antibodies targeting Aβ and tau proteins. Gene editing technologies such as CRISPR/Cas9 enhance precision by repairing or replacing
pathogenic genes, thereby reducing side effects. Immunomodulatory drugs, including PD-1/PD-L1 and CTLA-4 inhibitors, modulate the immune
system’s response to pathological proteins, enhancing their clearance. Personalized nanovaccines induce an immune response using
patient-specific antigens, improving the vaccine’s immunogenicity and specificity.
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precise therapeutic options (131–134). Development of immune-
modulating drugs is another important part of personalized
immunotherapy. Very recently, immune checkpoint inhibitors
including PD-1/PD-L1 and CTLA-4 inhibitors have shown
tremendous achievements in several diseases. By modulating
the immune response against Aβ and tau proteins, these drugs
improve pathological protein clearance (135). Relevant studies
have demonstrated that personalized nanovaccines, designed using
tumor cell membrane vesicles from a patient, induce immune
responses against patient-specific antigens. Such an approach
enhances the immunogenicity and specificity of the vaccine, hence
offering more effective options for the treatment of patients (136–
138). Case studies related to integrated personalized strategies have
pointed out that collaborative efforts and data sharing between
disciplines hold immense potential to drive the development of
personalized immunotherapies further. These have potential in
the elucidation of AD with integrated genomic, proteomic data,
and clinical information for personalized patient treatment options
(139, 140). Establishment of a data-sharing platform: Clinical trial
data, biomarkers, response to treatments-all this information can
be shared on the data-sharing platform. This will help hasten the
further development and validation of new therapies (141–143)
(Figure 4). Further acceleration can be achieved by developing and
validating new therapies through integration of patient genomic,
proteomic data, and clinical information.

5 Conclusion and perspectives

In recent years, individualized immunotherapy has slowly
become a key part of AD treatment. Individualized protocols
based on each patient’s unique immune status and genetic profile
can improve treatment efficiency and reduce side effects. Genetic
situation and immune status play a very crucial role in the
integration of AD salvage, and patients who carry the APOEε4
allele have a different immune response than non-carriers. Patient’s
immune status also alters the efficacy of immune salvage. To better
understand the mechanism of individualized strategies for AD
immune salvage and to improve the salvage plan, there is an urgent
need to explore in depth the effects of different genotypes and
immune statuses on immune salvage response, and to combine
the latest bioinformatics analysis techniques and AI algorithms,
which are useful to facilitate the creation of accurate stratification
and salvage prognostic models. Clinical trial design should be
more individualized, and multicenter, large-scale clinical studies
can be used to re-validate whether individualized immunotherapy
is safe and effective. Regarding the future direction of research,
we propose to carry out some specific actions, such as increasing
the integration of multi-omics in clinical trials, forming biomarker
clusters, adopting artificial intelligence and machine learning
technologies, focusing on patient categorization and personalized
trial design, implementing longitudinal observation and adopting
adaptive trial design, and creating a platform for data sharing. It is
also necessary to strengthen the search for basic research on genes
and immune mechanisms, so as to give stronger theoretical support
to the development of immunotherapy, and to pay attention to
the study of the genetic backgrounds and immune characteristics
of different races, so as to ensure the universality and usability of

therapeutic strategies. In drug research and development, attention
should be paid to the design and improvement of multi-target
drugs to achieve all-round therapeutic results. In clinical practice,
a long-term follow-up mechanism should be created to judge
the long-term safety and efficacy of immunotherapy, thereby
improving the quality of life of Alzheimer’s disease patients. For
future research directions, we will pay special attention to the
integration of multi-omics technology in clinical trials. Researchers
should consider comprehensive multi-omics analysis as a standard
procedure in clinical trials, including genomics, transcriptomics,
proteomics and metabolomics, etc., so as to fully grasp the
mechanism of disease and reflect the differences in the responses
of individuals to treatments. Moreover, the integration of multi-
omics data is useful for identifying new biomarkers and predicting
disease outcomes more accurately, and the creation of multi-omics
databases and data sharing platforms will enhance collaboration
among researchers and accelerate the translation of research results
into the clinic.
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