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Introduction: The coronavirus disease 2019 (COVID-19) pandemic

threatened public health and placed a significant burden on medical

resources. The Immunophenotyping Assessment in a COVID-19 Cohort

(IMPACC) study collected clinical, demographic, blood cytometry,

serum receptor-binding domain (RBD) antibody titers, metabolomics,

targeted proteomics, nasal metagenomics, Olink, nasal viral load,

autoantibody, SARS-CoV-2 antibody titers, and nasal and peripheral blood

mononuclear cell (PBMC) transcriptomics data from patients hospitalized
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with COVID-19. The aim of this study is to select baseline biomarkers and build

predictive models for 28-day in-hospital COVID-19 severity and mortality with

most predictive variables while prioritizing routinely collected variables.

Methods: We analyzed 1102 hospitalized COVID-19 participants. We used the

lasso and forward selection to select top predictors for severity and mortality,

and built predictive models based on balanced training data. We then validated

the models on testing data.

Results: Severity was best predicted by the baseline SpO2/FiO2 ratio obtained

from COVID-19 patients (test AUC: 0.874). Adding patient age, BMI, FGF23, IL-

6, and LTA to the disease severity prediction model improves the test AUC by

an additional 3%. The clinical mortality prediction model using SpO2/FiO2 ratio,

age, and BMI resulted in a test AUC of 0.83. Adding laboratory results such as

TNFRSF11B and plasma ribitol count increased the predictionmodel by 3.5%. The

severity and mortality prediction models developed outperform the Sequential

Organ Failure Assessment (SOFA) score among inpatients and perform similarly

to the SOFA score among ICU patients.

Conclusion: This study identifies clinical data and laboratory biomarkers of

COVID-19 severity and mortality using machine learning models. The study

identifies SpO2/FiO2 ratio to be the most important predictor for both severity

and mortality. Several biomarkers were identified to modestly improve the

predictions. The results also provide a baseline of SARS-CoV-2 infection during

the early stages of the coronavirus emergence and can serve as a baseline for

future studies that inform how the genetic evolution of the coronavirus a�ects

the host response to new variants.

KEYWORDS

COVID-19, severity, mortality, machine learning, SpO2/FiO2, TNFRSF11B, ribitol, FGF23

1 Introduction

The coronavirus disease 2019 (COVID-19) has caused a global

pandemic. By the end of November 2024, over seven million

COVID-19 deaths globally have been reported by theWorld Health

Organization (WHO) (1). It has caused significant stress to the

healthcare infrastructure, especially early during the pandemic

(2). COVID-19 vaccines have been widely administered; however,

vaccine policies vary across the international community, and

unvaccinated populations still exist. In the U.S., the percentage

of U.S. persons vaccinated with at least one dose was 82%,

and 4% in some other areas in the world (3). New leadership

at the Centers for Disease Control has announced the removal

of COVID-19 vaccinations from the schedule for children and

pregnant women. In addition, updated vaccines for 2025–2026

have been approved only for those 65 years or older or those

with a preexisting condition. Vaccine availability in the US is

currently in a state of flux. It is well known that protection from

vaccination wanes over time (4). Waning immunity coupled with

recent restrictions on primary vaccine or booster availability in the

under-65 population will create an increase in the number of people

with no previous exposure or a weakened immune response to

SARS-CoV-2. Thus, understanding the natural immune process in

naive populations could inform treatments for future hospitalized

patients, particularly those who have not had a natural infection

or booster in several years. This study is unique in that it was

conducted prior to the availability of a SARS-CoV-2 vaccine.

Researchers worldwide have identified many factors associated

with COVID-19 outcomes and developed models to predict

these outcomes (5–8). For example, the Sequential Organ Failure

Assessment (SOFA) score has been used to predict in-hospital

mortality (9). Moreover, elevated interleukin-6 (IL-6), associated

with the host immune response, has been found to be associated

with COVID-19 severity (10). However, developing accurate, easy-

to-use models using sparse, convenient, and immediately obtained

predictors is essential and has not been sufficiently explored.

The primary objective of this study is to develop predictive

models for COVID-19 severity and mortality with the most

predictive variables while prioritizing routinely collected variables.

The secondary objective is to compare the predictivity value of the

model with routinely collected variables with the SOFA score. First,

we develop predictive models based on routinely collected features

at baseline and compare them to the SOFA score for predicting

COVID-19 severity and mortality. Then, we assess the predictive

value of adding features from an extensive set of immunologic,

virologic, proteomic, metabolomic, and genomic variables collected

from the same patients.

We explore other baseline predictors in combination with

baseline respiratory status to predict 28-day outcomes on

admission when only baseline data is available. We examined over

123,000 baseline variables, including clinical variables, serology,

receptor-binding domain (RBD) antibody titers, metabolomics,

targeted proteomics, nasal metagenomics, Olink, nasal viral load,

autoantibody, SARS-CoV2 antibody titers, nasal and PBMC
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transcriptomics, and whole blood frequencies measured by CyTOF

(mass cytometry or cytometry by time-of-flight) for predicting 28-

day COVID-19 severity and mortality. The number of variables

for each category is specified in Supplementary Table 3. We further

show that SpO2/FiO2 is superior to the SOFA score in predicting

in-hospital 28-day severity and is similar to the SOFA score in

predicting 28-day in-hospital mortality among ICU patients.

2 Methods

2.1 Ethics, study design, and setting

The study followed the Strengthening the Reporting of

Observational Studies in Epidemiology (STROBE) guidelines

for reporting observational studies (11). The study design and

biological sample processing have been previously published (12).

The IMPACC study team created five trajectories based on the

longitudinal degree of respiratory illness over the first 28 days after

admission (13), defined as follows: trajectory 1 = brief length of

stay; trajectory 2 = intermediate length of stay; trajectory 3 =

intermediate length of stay with discharge limitations; trajectory

4 = prolonged hospitalization; and trajectory 5 = fatal. Severe

cases were defined as those with prolonged hospitalization or fatal

outcomes by day 28 (trajectory 4 or 5).

2.2 Study participants and data collection

Patients who were 18 years and older admitted to 20 US

hospitals (affiliated with 15 academic institutions) were enrolled.

Only symptomatic cases with confirmed positive SARS-CoV-2 PCR

were followed longitudinally. Biologic samples consisted of blood

and mid-turbinate nasal swabs on enrollment, day 4, day 7, day 14,

day 21, and day 28 post-hospital admission. Specific data elements

were acquired via a review of electronic medical records during the

inpatient period and participant interviews during the outpatient

period (13).

2.3 Statistical analysis

R version 4.2.3 was used to perform all data analyses. Dummy

variables of categorical variables, not including missing categories,

were created for least absolute shrinkage and selection operator

(lasso) selection. A feature was removed from data analysis if the

percentage of its missing values was >20% of all the individuals

in a single dataset. Continuous variables with missing values,

including continuous BMI (kg/m2), symptom onset to admission

days, continuous laboratory test variables, and variables from

proteomics, Olink, and viral load datasets, were imputed with

missForest (maxiter= 10, ntree= 100) for the training data before

balancing the training data. Features used for imputing missing

data include clinical features, trajectory group (five categories) (13),

and laboratory features if it is a merged dataset.

To ensure balanced training and prevent prediction bias that

favors themajority class, training data were balanced by duplicating

the data for each outcome class until the sample size for each

outcome class reached the least common multiple of the outcome

classes of the original dataset. Feature selection was then performed

on the balanced training data, and a logistic regression was trained

on the balanced training data using the selected features. The

training performance was obtained by testing the model on the

imputed training data before the dataset was balanced. The model

was then tested on unimputed testing data, where observations

with missing values in the selected features were removed if the

percentage of missing values was <5% in the test data.

We used the lasso regression, where dummy variables were used

instead of categorical variables, to select the combination of the

top features in a dataset predicting severity and mortality. Akaike

information criterion (AIC) based forward selection (categorical

variables were used) was used as a complementary method to

select the top clinical predictors predicting severity and mortality

from clinical and laboratory features. To select robust top routinely

collected predictors for the clinical model, we chose predictors

determined by both lasso and forward selection. We then retained

the selected variables in the model and used lasso to select up to

four additional features from merged clinical and laboratory data,

as laboratory features were either continuous or binary.

Two-sided two-sample t-tests were used to compare

continuous variables between independent groups (non-severe

vs. severe and alive vs. deceased). Chi-squared tests were used to

compare categorical variables between these groups. The DeLong

method was used to calculate the confidence intervals (CIs) of the

area under the curve (AUC), and the paired DeLong test was used

to compare two receiver operating characteristic (ROC) curves

(14). A p-value < 0.05 was considered statistically significant for

all tests.

3 Results

3.1 Baseline characteristics

From May 2020 to March 2021, 1,164 participants with

COVID-19 were enrolled and followed for up to 28 days while

hospitalized. One thousand one hundred two of the 1,164

participants with complete baseline SpO2/FiO2 ratio data from

20 hospitals associated with 15 academic centers were included

in this analysis (12). None of the patients were vaccinated

before enrollment because vaccines were not widely deployed

during the conduct of the study. SpO2/FiO2 ratio (S/F) has

been identified as a non-invasive clinical predictor for COVID-

19 outcomes such as imminent ventilatory needs and mortality

(15, 16). We classified patients into severe and non-severe

cohorts based on the five trajectories defined by the IMPACC

study (13). The severe cases were those in either trajectory

4 or 5, which were associated with a longer hospital stay

and required more medical resources. Demographics, baseline

clinical characteristics including comorbidities and symptoms, and

common laboratory examination results by disease severity are

provided in Supplementary Table 1. The median age of the 1,102

participants was 59 years [interquartile range (IQR): 49–69]. Of

these patients, 669 (61%) were men. By day 28 of hospitalization,

99 (9%) patients died. SpO2/FiO2 at lowest saturation was 369.68

± 87.18 for the non-severe cohort and 200.37 ± 111.93 for the

severe cohort.
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In Supplementary Table 1, severe COVID-19 cases are

significantly associated with older age, male sex, Hispanic or Latinx

ethnicity, White ethnicity, bilateral lung infiltrates, prolonged

symptom onset to hospitalization days, lower SpO2/FiO2

hypertension, diabetes, chest pain, shortness of breath, lymphocyte

count (<500/microliter), reduced platelets (<100,000/ml), higher

creatinine level (≥1.5 mg/dL), and body mass index (BMI). The

severe cohort has a much smaller proportion of underweight

patients. Training/test datasets were created for the machine

learning model by randomly selecting 40% of the 1,102 participants

from each of the 15 academic centers as testing data (n = 444,

119 severe cases including 42 deaths) and using the remaining

(n = 658, 186 severe cases including 57 deaths) as the training

data. Of the selected features, continuous creatinine and platelets

contain missing values. The percentages of missing values of the

two variables are <5% in both the training and test datasets.

3.2 Clinical features predict 28-day
in-hospital severity

We selected features from non-invasive clinical features and

common laboratory features. Both the lasso and forward feature

selection methods selected SpO2/FiO2 as the top feature, with

SpO2/FiO2 and age being the top two clinical features combined,

predicting severity and mortality. We chose categorical BMI

(underweight, normal weight, overweight, class 1–2 obesity, class

3 obesity, unknown) as the third non-invasive predictor, as

categorical BMI was selected as the next predictor by the forward

selection, and it had a greater training AUC than that of the next

predictor selected by lasso.

Using logistic regression, SpO2/FiO2 alone yielded a training

AUC of 0.865 (95% CI: 0.8308–0.8992) and a test AUC of

0.874 (95% CI: 0.8345–0.9131). A probability threshold of

0.62(SpO2/FiO2 = 249) yields training specificity and sensitivity

of 90.3% and 73.1%, respectively; test specificity and sensitivity are

90.8% and 69.7%, respectively.

The coefficients of the logistic regression model predicting

severe cases, derived from balanced training data, are expressed as

3.835–0.01343 ∗ SpO2/FiO2.

Thus, the probability of a case being severe is as follows:

Probability of severe = 1/(1+ exp(−3.835

+ 0.01343 ∗ SpO2/FiO2)) (1)

Adding age and categorical BMI to the SpO2/FiO2 logistic

model minimally improved prediction. The new model increased

training AUC by 2% (AUC: 0.885, 95% CI: 0.8561–0.9145,

sensitivity=79.6%, specificity=81.8%, probability cut-off=0.5)

and test AUC by 1% (AUC: 0.884, 95% CI: 0.8465-0.9222,

sensitivity=77.3%, specificity=83.4%). The coefficients of the

logistic regression predicting severe cases are expressed as follows:

2.05 − 0.014 ∗ SpO2/FiO2 + 0.04 ∗ age− 1.48 ∗ IUnderweight

− 0.59 ∗ IOverweight,or Class 1−2 Obesity (30−39.9)

+ 0.09 ∗ IClass 3 Obesity (40+) − 1.4 ∗ IUnknown, (2)

where I= 1 (yes) or 0 (no) is an indicator variable.

When excluding patients with missing BMI, the coefficients are

similar and are expressed as follows:

2.03 − 0.014 ∗ SpO2/FiO2 + 0.04 ∗ age− 1.5 ∗ IUnderweight

− 0.59 ∗ IOverweight, or Class 1−2 Obesity (30−39.9)

+ 0.1 ∗ IClass 3 Obesity (40+). (3)

To explore the performance of the clinical selector vs. the

existing SOFA score approach, we compared SpO2/FiO2 and the

SOFA score in predicting 28-day severity. The SOFA score is

calculated based on the number and severity of organ dysfunction

in respiratory (PaO2/FIO2, SaO2/FIO2), coagulation (platelets),

liver (bilirubin), cardiovascular (hypotension), renal (creatinine),

and neurologic (coma) organ systems (17). The SOFA score has

been used to inform COVID-19 severity and mortality (18, 19).

In our dataset, we do not have missing values in the SOFA score.

SpO2/FiO2 outperformed SOFA scores in both training data and

testing data (Figure 1. Training AUC: 0.865 vs. 0.805, p =0.015.

test AUC: 0.874 vs. 0.743, p < 0.001). We used SpO2/FiO2 as

the single predictor to compare with SOFA because it is the top

non-invasive predictor predicting severity; it alone is significantly

more predictive than the SOFA score, while adding age and BMI

minimally improves the prediction.

We then compared SpO2/FiO2 and the SOFA score in

predicting 28-day severity among ICU patients at baseline, using

the same models derived from ICU and non-ICU patients as

described in Equation 1. The AUC for SpO2/FiO2 was slightly

better than that for the SOFA score, but the difference was not

statistically significant. Among the 154 ICU patients in the training

data, 112 were severe and 42 were non-severe. The AUC for

SpO2/FiO2 was 0.826 (95% CI: 0.7485–0.9029), while the AUC for

SOFA score was 0.806 (95% CI: 0.7344–0.8781), with a p-value of

0.719. Among the 98 ICU patients in the testing data, 68 were severe

and 30 were non-severe. The AUC for SpO2/FiO2 was 0.778 (95%

CI: 0.679–0.8774), and the AUC for the SOFA score was 0.741 (95%

CI: 0.6471–0.8358), with a p-value of 0.56. When using 0.5 as the

probability cut-off, SpO2/FiO2 showed higher sensitivity and lower

specificity than the SOFA score (Supplementary Figure 1).

Next, we examined the sensitivity and specificity discrepancies

predicted by SpO2/FiO2 among ethnicity and sex subgroups, as

shown in Supplementary Table 2. When compared with White

people, Black people had lower sensitivity (72.7% vs. 79.9%, nBlack
= 44 vs. nWhite = 159, p = 0.31) and higher specificity (87% vs.

80.8%, nBlack = 208 vs. nWhite = 375, p = 0.057), significance

was marginal, indicating Black people with severe COVID-19 may

appear to have better (higher) SpO2/FiO2 than White people on

admission. Hispanic or Latinx individuals appear to have better

sensitivity than non-Hispanic or Latinx (83.8% vs. 74.9%, nHispatic

= 117 vs. nnon−Hispanic = 167, p = 0.0739). Taken together,

there are statistically insignificant differences in sensitivity and

specificity among ethnicity, and sex subgroups using SpO2/FiO2.

The insignificant differences may be due to a lack of other less

predictive predictors, such as age, ethnicity, sex, other covariates,

and randomness of the samples.
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FIGURE 1

Comparison of receiver operating characteristic (ROC) curves of SpO2/FiO2 and SOFA for predicting 28-day COVID-19 severity among inpatients. (A)

ROC on the training set (severe, n = 186; non-severe, n = 472). SpO2/FiO2: AUC = 0.865 (95% CI: 0.8308–0.8992, sensitivity = 79.6%, specificity =

81.1%, probability cut-o� = 0.5, i.e., SpO2/FiO2 = 285.5). SOFA score: AUC = 0.805(95% CI: 0.7659–0.8438, sensitivity = 58.1%, specificity = 87.7%).

(B) ROC on the testing set (severe, n = 119; non-severe, n = 325). SpO2/FiO2: AUC = 0.874 (95% CI: 0.8345–0.9131, sensitivity = 78.2%, specificity =

83.4%). SOFA score: AUC = 0.743 (95% CI: 0.6869–0.7985, sensitivity = 56.3%, specificity = 85.8%). Paired Delong’s test was used to obtain p-values.

3.3 The addition of laboratory features
improves the predictive capability of the
clinical model for severity

Next, the added predictive power of laboratory features

that require a blood draw or sample collection method was

assessed. We used the logistic regression model with SpO2/FiO2,

age, and categorical BMI variables as the reference model. In

Supplementary Table 3, we merged the clinical dataset, including

non-invasive clinical features and common laboratory features,

with each of the CyTOF, RBD antibody titers, metabolomics,

targeted proteomics, nasal metagenomics, Olink, nasal viral load,

autoantibody, SARS-CoV-2 antibody titers, nasal and PBMC

transcriptomics datasets representing the expression of 58,302

genes. The laboratory datasets were normalized as detailed in the

multi-omics longitudinal study (20). To select sparse features, using

the coefficients of the reference model as offset, we used the lasso to

select up to four additional predictors from each merged dataset.

We built logistic regression models using selected features. We

show that adding Fibroblast growth factor 23 (FGF23), IL-6, and

Lymphotoxin-alpha (LTA, also known as TNF-β) from the Olink

features to the clinical model increased training AUC by 3.8% (p <

0.001) and test AUC by 3.1% (p = 0.007). Figures 2A–C compares

the levels of FGF23, IL-6, and LTA between the severe and non-

severe cohorts in the entire merged dataset. Increased FGF23 and

IL-6, and decreased LTA levels were associated with severe COVID-

19 (p < 0.001 for all three comparisons). Figures 3A, B shows ROC

curves for full model (SpO2/FiO2 + age + BMI + FGF23 + IL-

6 + LTA, training AUC: 0.922, 95% CI: 0.8993–0.9446; test AUC:

0.916, 95% CI: 0.882–0.9491) are slightly better than that of the

clinical model (SpO2/FiO2 + age + BMI, training AUC: 0.884,

95% CI: 0.8539–0.9141; test AUC: 0.886, 95% CI:0.8474–0.9241),

the difference is statistically significant (training p < 0.001, test p

= 0.007).

Adding nasal transcriptomics features or Global

Plasma Metabolomics features increased training AUC

by at least 4%. However, adding features from remaining

datasets did not increase training AUC by more than

3%, and adding laboratory features other than the Olink

features did not increase test AUC by more than 1%

(Supplementary Table 3).

3.4 Clinical features predict 28-day
in-hospital mortality

We identified non-invasive clinical predictors SpO2/FiO2, age,

and BMI combined to be the most predictive of 28-day in-hospital

mortality. Table 1 lists the coefficients of the models derived from

balanced training data. Confidence intervals of the coefficients are

not provided because the training data are balanced. AUCs were

obtained from the original training data (n = 658, deceased =

57) and testing data (n = 444, deceased = 42). SpO2/FiO2 or

age alone had similar predictive capability (AUC 0.7∼0.78) and

combined to reach an AUC of 0.8. Adding BMI to the model

increased AUC by around 2%. Figures 4A, B shows that the

clinical model (SpO2/FiO2, age, and BMI) outperformed the SOFA

score predicting 28-day in-hospital mortality, the difference was

statistically significant on the testing data (AUC: 0.834 vs. 0.711,

p= 0.016), and not significant on the training data (AUC: 0.827 vs.

0.774, p= 0.18).

We then compared the SpO2/FiO2 + age+ BMImodel and the

SOFA score in predicting 28-day mortality among ICU patients at

baseline. The samemodels derived from ICU and non-ICU patients

were used, as shown in Table 1. The AUC of the SpO2/FiO2 +

age + BMI model was slightly better than the AUC of the SOFA

score, but the difference was not statistically significant. Among

the 154 ICU patients in the training data, 34 were deceased and

120 were alive. The AUC for SpO2/FiO2 + age + BMI model was

0.766 (95% CI: 0.6753–0.8563), and the AUC for the SOFA score

was 0.709 (95% CI: 0.6077–0.8107), with a p-value of 0.469. Among

the 98 ICU patients in the testing data, 22 were deceased and 76

were alive. The AUC for SpO2/FiO2 + age + BMI model was 0.69

(95% CI: 0.5737–0.8055), and the AUC for the SOFA score was

0.641 (95% CI: 0.5085–0.7726), with a p-value of 0.606.When using

0.5 as the probability cut-off, the SpO2/FiO2 + age + BMI model
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FIGURE 2

(A–C) Comparison of normalized FGF23, IL-6, and LTA between the severe and non-severe cohort in the merged dataset (Olink data merged with

clinical data, severe n = 292, non-severe n = 761). P < 0.001 based on two-sample t-tests for all three comparisons. (D–F) Comparison of

normalized TNFRSF11B (Olink feature, alive n = 958, Deceased n = 95), ribitol, and urea (metabolomics features, alive n = 908, deceased n = 90)

between the deceased and alive cohorts in the merged datasets (merged with the clinical dataset, respectively). P < 0.001 based on two-sample

t-tests for all three comparisons.

had higher sensitivity and lower specificity than the SOFA score

(Supplementary Figure 2).

3.5 The addition of laboratory features
improves the predictive capability of the
clinical model for 28-day in-hospital
mortality

In Supplementary Table 4, we show that laboratory features

improve the predictive capability of the clinical model for mortality

in each merged dataset using the SpO2/FiO2 + age + BMI

logistic model as the clinical reference model. We identified

that tumor necrosis factor receptor superfamily member 11B

(TNFRSF11B) from the Olink features and ribitol from the Global

Plasma Metabolomics features increased training AUC by 5.4%

and 6.5%, and increased test AUC by 3.5% and 4.6%, respectively.

Adding TNFRSF11B to the ribitol + clinical model improved

test AUC by <1%. Adding quinolinate to the ribitol + clinical

model increased the training and test AUC by around 1%.

Adding creatinine (≥1.5 mg/dL) and platelets to the clinical model

increased test AUC by 2.2%, and increased the training and test

AUC by 1–2% sequentially. Adding other laboratory features to

the clinical model did not increase test AUC by more than 1%.

Supplementary Table 5 shows the model parameters for SpO2/FiO2

+ age+ BMI+ TNFRSF11B, and SpO2/FiO2 +age+ BMI+ribitol.

A higher level of TNFRSF11B or ribitol is associated with higher
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FIGURE 3

Comparison of ROC curves of the clinical model (SpO2/FiO2+age+BMI) and the full model (SpO2/FiO2+age+BMI + FGF23 + IL-6 + LTA) for

predicting 28-day in-hospital severity. (A). ROC on the training set (severe, n = 177; non-severe, n = 450). Clinical model: AUC = 0.884 (95% CI:

0.8539–0.9141, sensitivity = 0.802, specificity = 0.82). Full Model: AUC = 0.922 (95% CI: 0.8993–0.9446, sensitivity = 0.836, specificity = 0.867). (B).

ROC on the testing set (severe, n = 115; non-severe, n = 311). Clinical model: AUC = 0.886 (95% CI: 0.8474–0.9241, sensitivity = 0.783, specificity =

0.83). Full Model: AUC = 0.916 (95% CI: 0.882–0.9491, sensitivity = 0.817, specificity = 0.859). Paired Delong’s test was used to obtain p-values.

TABLE 1 Univariate and multivariable logistic regressions for 28-day in-hospital mortality.

Model components Model
SpO2/FiO2

Model
Age

Model
SpO2/FiO2 + Age

Model
SpO2/FiO2 + Age + BMI

Training AUC

(95%CI, n= 658)

0.735 (0.658–0.811) 0.73 (0.67–0.79) 0.802 (0.743–0.862) 0.827 (0.774–0.881)

Test AUC (95%CI, n= 444) 0.78 (0.706–0.854) 0.709 (0.634–0.783) 0.82 (0.763–0.878) 0.834 (0.782–0.887)

Intercept 1.834 −4.0018 −2.1237 −1.344

SpO2/FiO2 −0.00672 - −0.00636 −0.00688

Age - 0.0635 0.0608 0.0636

Underweight - - - −17.46

Overweight - - - −1.5

Class 1–2 Obesity (30–39.9) - - - −0.82

Class 3 Obesity (40+) - - - −0.49

Unknown BMI - - - −16.8

The reference level of BMI is “normal weight.” Confidence intervals of the coefficient estimates are not provided because the models are derived from the balanced training set.

FIGURE 4

Comparison of ROC curves of the clinical model (SpO2/FiO2 + age + BMI) and SOFA for predicting 28-day in-hospital mortality. (A) ROC on the

training set (deceased, n = 57; alive, n = 601). Clinical model: AUC = 0.827(95% CI: 0.774–0.881, sensitivity = 77.2%, specificity = 73.2%). SOFA

score: AUC = 0.774(95% CI: 0.71–0.838, sensitivity = 50.9%, specificity = 83.9%). (B) ROC on the testing set (deceased, n = 42; Alive, n = 402):

Clinical model: AUC = 0.834 (95% CI: 0.782–0.887, sensitivity = 81%, specificity = 75.9%). SOFA score: AUC = 0.711 (95% CI: 0.629–0.793, sensitivity

= 42.9%, specificity = 84.6%). Paired Delong’s test was used to obtain p-values.
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odds of death after adjusting for SpO2/FiO2, age, and BMI. The

confidence intervals or p-values of the model coefficients were not

shown because the training data were balanced, so the sample

size used for model training was not the same as the original

sample size.

3.6 Olink and global plasma metabolomics
features independently predict 28-day
in-hospital mortality

We performed analyses on each merged dataset listed in

Supplementary Table 4. Using the lasso and logistic regression, we

identified TNFRSF11B as the most predictive feature for mortality

among the Olink features and clinical features in the training data.

TNFRSF11B alone yielded training AUC 0.803 (95% CI: 0.741–

0.865, n= 627, deceased n= 54, sensitivity: 74.1%, specificity:74%,

logistic model parameters: −19.58 + 1.79 ∗ TNFRSF11B). Its test

AUC is 0.762 (95% CI: 0.682–0.842, n = 426, deceased n = 41,

sensitivity: 63.4%, specificity: 76.9%), and is similar to SpO2/FiO2

(AUC:0.777, 95% CI: 0.702–0.852, n= 426, deceased n= 41).

We identified urea as the most predictive feature for mortality

among the Global Plasma Metabolomics and clinical features in

the training data. Urea alone yielded a training AUC 0.823 (95%

CI: 0.781–0.873, n = 599, deceased n = 52, sensitivity: 78.8 %,

specificity: 75.1%, logistic model parameters: −0.771 + 2.785 ∗

urea), and a test AUC 0.778 (95% CI: 0.696–0.86, n= 399, deceased

n= 38, sensitivity: 71.1 %, specificity: 76.5%). Additionally, adding

Global Plasma Metabolomics features hydantoin-5-propionate,

ribitol, and 3,4-dihydroxybutyrate to the urea only model yielded

a training AUC 0.877 (95% CI: 0.844–0.911), and a test AUC 0.837

(95% CI: 0.779–0.896). Figures 2D–F shows that higher levels of

TNFRSF11B, plasma ribitol, and plasma urea are associated with

higher mortality; p < 0.001 for all comparisons.

4 Discussion

In this study, we derived easy-to-use prediction formulas

for severity and 28-day in-hospital mortality from large-scale

clinical, Olink, CyTOF, metabolomics, proteomics, metagenomics,

viral load, autoantibody, serum RBD antibody titers, serum

SARS-CoV-2 antibody titers, and transcriptomics data collected

from 1,102 hospitalized COVID-19 participants prospectively

enrolled at 15 study sites with available baseline SpO2/FiO2 data.

Models including easily obtainable clinical features, with and

without laboratory biomarkers, were developed. The laboratory

biomarkers, which are not immediately available at the bedside

to clinicians, provide more prognostic information once results

become available. Predictive models were trained on balanced

datasets to reduce prediction bias toward the majority class (non-

severe, alive). We selected combinations of features that maximize

prediction while considering the convenience of obtaining the

features. Sparse features selected for predictive models allow

for convenient implementation of the tool in practice. While a

small number of variables were selected for building models, this

does not imply that the deselected variables were not predictive.

The deselected variables may still have some predictive power

individually or in combination with other features; however, these

variables did not improve overall model predictivity given the

variables already included. The predictability of deselected variables

is not the scope of this study.

SpO2/FiO2 has been reported to be predictive for respiratory

outcomes such as imminent ventilatory use among COVID-19

patients (15). We identified SpO2/FiO2 as the most predictive

predictor for both severity and mortality among routinely collected

variables. It is non-invasive, easy, and fast to measure and

implement in clinical practice. We explored over 123,000 variables

and found that the benefit of adding more predictors is statistically

significant but marginal in predicting severity (Figure 3) and

mortality, increasing the AUC by 1–2% per added predictor.

Therefore, the magnitude of this improvement has limited clinical

relevance and may not translate into meaningful clinical benefit

or justify the added cost of incorporating these laboratory

predictors in a clinical setting. While these predictors may be

useful in understanding the natural immunity for COVID-19, it

is important to balance statistical significance with clinical utility

when translating predictive models for clinical benefit.

Therefore, SpO2/FiO2 can be used to quickly screen for severe

cases in places such as homes or clinics.

The SOFA score has been demonstrated to predict in-hospital

mortality among COVID-19 patients and ICU patients (9, 21, 22).

However, calculating a SOFA score requires an invasive blood

draw; a convenient, non-invasive alternative is desirable. In our

data, 28-day in-hospital mortality among severe patients was 1

out of 3. We showed that non-invasive SpO2/FiO2 was superior

to the SOFA score in predicting 28-day severity (p < 0.05), thus

has the potential to replace the SOFA score in COVID-19-related

severity prediction. We showed that the SpO2/FiO2 + age + BMI

clinical model was better than the SOFA score in predicting 28-day

in-hospital mortality among a cohort of hospitalized COVID-19

patients, and similar to the SOFA score in predicting severity and

mortality among ICU patients.

We identified that higher IL-6, higher FGF23, and lower

lymphotoxin-alpha (LTA) slightly improved the severity prediction

by the clinical model. IL-6 stimulates FGF23 production through

STAT3 signaling (23). FGF23 regulates cell proliferation and

the reabsorption of phosphate by the kidney and is associated

with heart failure and impaired host response to infection.

Persistent elevated FGF23 in chronic kidney disease has been

reported to increase mortality (24–26). Kidney damage in COVID-

19 patients is common and ranges in severity. Notably, a

bidirectional relationship exists between COVID-19 and kidney

disease. Multiple cohort studies identify chronic kidney disease as

a risk factor for severe COVID-19, and severe COVID-19 may

predispose surviving patients to developing chronic kidney disease

(27). A study performed on 85,687 patients reported acute kidney

injury due to severe COVID-19 at >20% (28). Our result confirms

previous work that circulating FGF23 is associated with acute

kidney injury and predicts survival in COVID-19 (29).

In addition, FGF23 has been shown to decrease vitamin D

by suppressing 1α-hydroxylase in the kidney (30). Vitamin D can

down-regulate pro-inflammatory cytokines, including IL-6 (31).
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While IL-6 production increases FGF23 and FGF23 functions to

reduce vitamin D, it is unclear if low vitamin D levels in COVID-19

are associated with an inability to downregulate IL-6 and prevent a

cytokine storm. In addition, while a correlation between vitamin D

deficiency and increased COVID-19 severity has been shown, the

link has been drawn from indirect association studies (32). Future

studies can extend observations to examine the role of vitamin D in

the disease course of COVID-19. In addition to IL-6 upregulating

the production of FGF23, IL-6 can induce the synthesis of C-

reactive protein, serum amyloid A, and other acute-phase proteins.

IL-6 also stimulates antibody production and the development of

effector T-cells (33). Elevated IL-6 is an endogenous mediator of

fever and granulopoiesis and is associated with the induction of a

cytokine storm.

LTA, formerly known as tumor necrosis factor-beta (TNF-

β), is a pro-inflammatory cytokine and activates the NF-κB

pathway. Activation of the NF-κB transcription factor leads to the

production of interleukins, including IL-6. It has been suggested

that immunomodulation at the level of NF-κB activation and

inhibitors of NF-κB degradation may reduce the cytokine storm

and thus reduce COVID-19 severity (34). Our results show a

decrease in LTA with increased IL-6, suggesting that LTA is not

the driver of elevated levels of IL-6 production in COVID-19. It

has been reported that viral proteins nsp1, nsp3a, nsp7a, spike, and

nucleocapsid protein cause excessive NF-κB activation, possibly

contributing to severe disease and high case-fatality rate (34).

However, LTA was reported to be involved in eliminating viral

infections (35). We show that LTA is significantly lower in the

severe group than the non-severe group (p < 0.001). Our findings

are contrary to a small study that found no significant difference in

LTA levels between healthy donors (n = 20), COVID-19 survivors

(n= 13), and COVID-19 non-survivors (n= 16) (36).

Our study shows that elevated TNFRSF11B and ribitol improve

the prediction of the clinical model for mortality, and urea alone

is predictive of mortality. TNFRSF11B level has been reported to

be elevated in neuro-COVID cases, which is associated with higher

in-hospital mortality (37, 38). Interestingly, increased TNFRSF11B

has also been reported to be elevated in the plasma of patients

with sepsis–acute respiratory disease syndrome (ARDS) associated

with vascular endothelial dysfunction (39). Ribitol is a pentose

alcohol formed by the reduction of ribose. Several sugars, including

ribitol, are increased in severe COVID-19 cases (40). Our study

shows that ribitol improved the prediction ofmortality. In addition,

ribitol and other pentose-related metabolites have been shown to

be higher in male vs. female severe COVID-19 patients (41). In

contrast, our study shows that ribitol is lower in men vs. women

in severe or deceased COVID-19 patients, but the differences were

not significant (Supplementary Table 6). Finally, our results show

that urea alone is a strong predictor of mortality. Other studies

have associated increased urea level at presentation with COVID-

19 predictive of ICU admission and a blood urea nitrogen (BUN;

≥7.37 mmol/L) with increased 28-day mortality and increased

admittance to the ICU among COVID-19 patients (42, 43).

Therefore, we should consider ribitol, urea, and TNFRSF11B as

good predictors of mortality.

This study has several limitations. First, the study sample

collection occurred betweenMay 2020 and April 2021, and patients

were infected with the original Wuhan or very early variants

of SARS-CoV-2 and were unvaccinated. It is unknown if the

prediction performance can be generalized to patients infected with

more recent variants and patients with hybrid immunity, as the

potential differences in immune response and treatment practice

may affect outcome model performance. Our study is a multicenter

study and does not fully capture the variability that may be

encountered in other clinical settings. Future studies are needed to

assess its applicability across different variants and external clinical

settings. Second, the cohort did not include pregnant women,

children, asymptomatic cases, or cases that were not hospitalized

(13). Finally, vitamin D level was not measured; thus, the added

predictive capability of vitamin D was unclear. However, this study

provides a baseline to aid future studies in understanding how the

immune system response changes in response to the evolution of

new SARS-CoV-2 variants and the impact on treatment practices.

In conclusion, our study suggests that measuring SpO2/FiO2,

age, and BMI can be used as a rapid predictive tool for the

severity and mortality associated with COVID-19. In addition,

increased levels of IL-6 and FGF23 and decreased levels of LTA

improve the prediction of the clinical model for severity. Elevated

TNFRSF11B and ribitol improve the prediction of the clinical

model for mortality.
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