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Background: Nucleoside and nucleotide analogs are one of the mainstays of 
treatment for chronic hepatitis B, but their effects on bone density are highly 
controversial.

Methods: In this study, four pharmacovigilance analysis methods and Bonferroni-
corrected p-values were used to analyze the FDA Adverse Event Reporting 
System database to investigate the relationship between adefovir and tenofovir 
and osteoporosine-related adverse events. In addition, the biological pathways 
and target proteins were studied by network toxicology and molecular docking 
techniques.

Results: Adefovir showed signs of adverse skeletal events at the two PT levels of 
OSTEOPOROSIS and BONE DENSITY DECREASED, while tenofovir showed signs 
of adverse skeletal events at the five PT levels of BONE DENSITY DECREASED, 
BONE LOSS, OSTEOPENIA, OSTEOPOROSIS and OSTEOPOROTIC FRACTURE. 
Furthermore, at the overall SMQ level, positive signals of adverse skeletal events 
were also valid. Subgroup analysis showed that adefovir was more likely to 
cause osteoporosis in the elderly and women, while tenofovir exhibited the 
opposite trend. Furthermore, GO and KEGG analyses indicated that both drugs 
may jointly promote osteoporosis through pathways such as cell migration, G 
protein-coupled receptor and Toll-like receptor signaling pathways. Molecular 
docking technology further reveals that the two drugs can produce pathological 
effects by binding to osteoporosis-related genes such as ADORA1 and JAK1.

Conclusion: This study comprehensively reported the risk and mechanisms 
of osteoporosis caused by the clinical use of NAs drugs, and provided more 
detailed recommendations for clinical improvement and prevention of adverse 
events.
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1 Introduction

Chronic hepatitis B (CHB), a chronic inflammatory disease of the 
liver caused by hepatitis B virus (HBV) infection, has a large patient 
population (1). According to the World Health Organization, by 2022, 
254 million people worldwide will have CHB, with up to 1.2 million 
new infections each year, making it one of the world’s major health 
problems (2, 3) As the disease continues to progress, patients with 
CHB will face the development of advanced liver disease such as liver 
cirrhosis and liver cancer (4). In addition, the total medical cost of 
hepatitis B related diseases accounts for 151.6% of the annual income 
of patients’ families, and the annual treatment cost exceeds 700 million 
US dollars, which seriously affects the quality of life of patients and 
brings a huge burden to families and society (5, 6).

The primary treatment for chronic hepatitis B (CHB) is nucleoside 
and nucleotide analog (NAs) therapy (7). They are the first-line choice 
for the treatment of CHB, mainly by inhibiting the activity of HBV 
deoxyribonucleic acid polymerase, which in turn exerts a good 
antiviral effect (8, 9). Currently, the NAs commonly used in clinical 
practice are entecavir, adefovir, telbivudine and tenofovir (10, 11). 
Among them, adefovir and tenofovir are representative of the first- 
and second-generation anti-hepatitis drugs, respectively, so this study 
will focus on adefovir and tenofovir (12).

It is worth noting that there is still controversy about the adverse 
effects of Adefovir and Tenofovir, and their effects on bone health are 
high on the list of points of contention (13). Long-term use of both 
Entecavir and Tenofovir disoproxil fumarate is associated with an 
increased risk of bone and kidney damage, according to an analysis of 
211 patients with CHB who received entecavir monotherapy (13). 
Another retrospective study similarly noted that long-term use of 
low-dose Adefovir for the treatment of hepatitis B may result in bone 
pain accompanied by adverse effects such as hypophosphatemia and 
elevated alkaline phosphatase (14). However, the adverse effects of 
Adefovir and Tenofovir on bone health are not widely recognized. In 
some cases, patients with chronic hepatitis with osteoporosis have 
instead experienced improved bone safety with Tenofovir (15). In 
addition, a retrospective study with a four to five years follow-up 
found that patients with CHB treated with tenofovir disoproxil 
fumarate or entecavir did not have a significant increase in the 
incidence of bone loss and osteoporosis (16). Therefore, there is an 
urgent need for real-world evidence to clarify the specific link that 
exists between Adefovir and Adefovir and bone health.

The FDA Adverse Event Reporting System (FAERS) database is 
the world’s largest self-reported adverse event database designed to 
help the FDA better monitor the post-market safety of drugs and 
therapeutic products (17, 18). In addition, emerging network 
toxicology translates complex multi-component, multi-target toxicity 
pathways into intuitive graphical representations that systematically 
reveal how target toxins trigger pathological mechanisms (19). 
Molecular docking analysis predicts ligand-protein binding capacity 
and binding sites, and identifies relevant core active ingredients, 
providing molecular docking for key targets and actions to further 
explore the potential mechanism of action of drugs (20).

Therefore, using the FAERS database and molecular docking 
analysis, the present study focused on the real-world bone health 
adverse effects profile of Adefovir and Tenofovir esters and clarified 
the specific mechanisms involved, with the aim of providing a 
theoretical basis for the rational use of anti-hepatitis virus medications 

in the clinic and for the prevention and management of associated 
bone health risks.

2 Materials and methods

2.1 Real-world data analysis

2.1.1 Data sources
FAERS is a publicly available database containing data on adverse 

events (AEs) and medication errors that are spontaneously reported 
to the FDA. Of these, Individual Case Safety Reports (ICSRs) from Q1 
2004 to Q3 2024 were included in this study and were subjected to 
pharmacovigilance studies. The FAERS dataset used consists of seven 
data tables and includes demographic information (DEMO), Drug 
Information (DRUG), Adverse Event Codes (REAC), Patient 
Outcomes (OUTC), Reporting Sources (RPSR), Treatment Start and 
End Dates Associated with Reported Drugs (THER), and Indications 
for Medication Administration (INDI). The database identifies the 
content of each record by PRIMARY ID. To minimize data bias, 
we performed case deduplication prior to statistical analysis according 
to the FDA-recommended methodology for removing duplicate 
reports. In addition, subsequent case reports in the FAERS database 
may contain updated information on the initial case report, so 
we needed to remove redundancy in this part of the dataset based on 
a combination of the following six fields: event date, age, gender, 
adverse event, drug group administered, and country of report, and 
to select the most recent record from the available cases. As FAERS is 
a public database containing de-identified data, ethical approval was 
not required.

2.1.2 Standardized definition of adverse events
Suspected adverse reaction data in the FAERS database were 

categorized using the Preferred Terminology (PT) levels in the 
Medical Dictionary for Regulatory Activities (MedDRA) version 26.1. 
The Standardized MedDRA Queries (SMQs) is a comprehensive, 
proven, predefined set of preferred terminology used to assist 
regulators and pharmaceutical companies with drug safety issues (21). 
PT is a term reserved for the specific expression of a single medical 
concept such as a symptom, sign, disease, diagnosis, indication, 
examination, surgical and medical operation, medical, social or family 
history (22). The 10 PTs associated with osteoporosis (“bone density 
decreased,” “bone formation decreased,” “bone loss,” “bone marrow 
oedema syndrome,” “osteopenia,” “osteoporosis,” “osteoporosis 
postmenopausal,” “osteoporotic fracture,” “resorption bone increased” 
and “senile osteoporosis”) were included in the study and identified in 
the database. In addition, drugs in the FAERS database are reported 
using four classifications that designate the role of the drug for the 
reported adverse event: primary suspect drug, secondary suspect 
drug, concomitant drug, and interacting drug. We only considered 
reports labeled as primary suspect drugs based on the “role_
code” field.

2.1.3 Statistical analysis
Pharmacovigilance studies were conducted by disproportionate 

analysis to identify potential drug-adverse event associations after 
removing duplicate data. Based on disproportionality analysis, four 
methods of Reporting Odds Ratio (ROR), Proportional Reporting 
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Ratio (PRR), Information Component (IC) and Empirical Bayesian 
Geometric Mean (EBGM) were used for the study. These four 
methods were used to detect signals, and according to the 
pharmacovigilance consensus, the adverse event was considered drug-
related when at least one of the signals in the algorithm met the 
requirements (18). See Supplementary Table 1, for specific equations. 
The Weber distribution test describes the risk that the AE will increase 
or decrease over time. Its shape parameter β determines the shape of 
the distribution function. When the shape parameter β is less than 1 
and its 95% CI is less than 1, the risk of adverse events is considered 
to decrease over time (early failure curve). When the shape parameter 
β is equal to or close to 1 and its 95% CI includes a value of 1, adverse 
events continue to occur over time (random failure curves). Finally, 
when the shape parameter β > 1 and its 95% CI value does not include 
1, the incidence of adverse events is thought to increase over time 
(wear failure curve) (23). The data were organized and statistically 
analyzed in this study using R (version 4.4.1) and the corresponding 
version of Rstudio.

2.2 Network toxicology

2.2.1 Screening of drug targets
3D structure and SMILES codes were obtained from PubChem 

database1 (24). Gene targets of adefovir and tenofovir were screened 
from Binding DB2 (25), Comparative Toxicogenomics database 
(CTD)3 (26), and TargetNet4 (27).

2.2.2 Weighted gene coexpression network 
analysis (WGCNA)

GSE56814 analyzed for this study was downloaded from NCBI 
Gene Expression Omnibus (GEO) database. This dataset contained 
gene expression data of blood mononuclear cells from 80 participants, 
including 40 women with high bone density and 40 women with low 
bone density. WGCNA analysis was performed to screen the modules 
which were significantly associated with osteoporosis. Cluster analysis 
was performed to detect samples with outliers, which should 
be removed from the subsequent analysis. The “soft” threshold power 
(β) and scale-free network coefficients were computed to construct a 
scale-free network. The modules significantly associated with 
osteoporosis were then identified. The minimum of genes per module 
was set to 30. The intersection of significant module genes and drug 
targets was employed to identify potential gene targets for drugs 
influencing osteoporosis.

2.2.3 Enrichment analyses
To explore the significantly enriched biological pathways involved 

in the intersection of adefovir, tenofovir and osteoporosis-related 
genes, the cluster Profiler R package was used for Gene Ontology 
(GO) annotation and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis of differentially expressed genes 
(DEGs). Specifically, adefovir and tenofovir target genes were obtained 

1 https://pubchem.ncbi.nlm.nih.gov/

2 https://www.bindingdb.org

3 http://ctdbase.org/

4 http://targetnet.scbdd.com/home/index/

from step 2.2.1. In addition, osteoporosis-related genes were obtained 
from the GSE56814 dataset (28, 29).

2.3 Molecular docking

The PDB structure files of target proteins were retrieved from the 
Protein Data Bank (PDB) database5 (30). Using PyMOL 2.3.0, water 
molecules, heteroatoms and other non-critical non-protein elements 
were removed to ensure a clean structure of the target protein. The 
SDF structure files of adefovir and tenofovir were downloaded from 
PubChem database (see text footnote 1) (24) and then were converted 
to pdbqt format by AutoDockTools (v1.5.7). Autodock Vina software 
was used to perform molecular docking process. PyMol 2.3.0 software 
was used to facilitate the visualization of the docking results pertaining 
to the optimal conformation.

3 Results

3.1 Real-world data analysis

3.1.1 Descriptive analyses
During the period of testing from Q1 2004 through Q3 2024, the 

FAERS database recorded 1,834 and 68,862 reports related to adverse 
reactions triggered by Adefovir and Tenofovir treatment of CHB, 
respectively (Figure 1). The basic characteristics of the patients are 
shown in Table  1. In the gender distribution of treatment with 
Adefovir, the incidence of AE was significantly higher in the male 
patient population (n = 1,154, 62.9%) than in the female patient 
population (n = 454, 24.8%). When specific to osteoporotic events, the 
number of male patients (n = 163) was approximately three times that 
of female patients (n = 65). The gender distribution of AEs induced by 
Tenofovir was similar to that of Adefovir (male n = 42,205, female 
n = 17,948). In terms of age composition, Adefovir produced adverse 
reactions that were prevalent in the 18–65-year-old patient population 
(n = 994, 54.2%). Tenofovir, on the other hand, had a very low 
incidence in patients aged 18–65 years (n = 70, 0.1%), and was more 
common in the older patient group aged 65–85 years (n = 36,949, 
53.7%). In addition, among patients taking Adefovir or Tenofovir, 
compared with patients weighing less than 50 kg (Adefovir n = 25; 
Tenofovir n = 1,325) and more than 100 kg (Adefovir n = 8; Tenofovir 
n = 998), patients weighing between 50 kg and 100 kg had a larger 
proportion of people (Adefovir n = 181; Tenofovir n = 6,233).

3.1.2 Signal detection
According to the statistics, a total of 27 organ systems were 

affected by Adefovir and Tenofovir-related adverse events at the SOC 
level. The system that was accrued the most was musculoskeletal and 
connective tissue disorders (n = 45,997), while the SOC with the 
lowest number of accrued SOCs was congenital, familial and genetic 
disorders (n = 2,620). In terms of signal intensity, renal and urinary 
disorders showed the strongest positive signals in both drugs, 

5 https://www.rcsb.org/

https://doi.org/10.3389/fmed.2025.1605024
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://pubchem.ncbi.nlm.nih.gov/
https://www.bindingdb.org
http://ctdbase.org/
http://targetnet.scbdd.com/home/index/
https://www.rcsb.org/


Di et al. 10.3389/fmed.2025.1605024

Frontiers in Medicine 04 frontiersin.org

especially in Tenofovir (ROR = 11.23, 95% CI = 11.12–11.34) 
(Figures 2A,B).

When focusing on osteoporosis-related adverse events caused by 
Adefovir and Tenofovir, the presence of positive signals was retrieved 
for both (Figure 2C). Of these, only two positive PTs were retrieved in 
Adefovir-associated osteoporosis-associated PTs, namely osteoporosis 
(ROR = 38.42, 95% CI = 33.46–44.13, p = 0) and bone density 
decreased (ROR = 11.56, 95% CI = 8.78–15.23, p = 7.21E−103) 
(Figure 2D). Secondly, the highest number of osteoporotic events 
complicated by Tenofovir administration (n = 45,216) contained five 
positive PTs. Bone loss (ROR = 579.00, 95%CI = 557.46–601.37, 
p = 0) was the strongest positive signal intensity for an osteoporosis 
adverse reaction. In addition, the highest number of occurrences was 
bone density decreased (n = 19,916), which was also retrieved with a 
high positive signal. (ROR = 423.92, 95%CI = 413.63–434.46, p = 0) 
(Figure 2E).

In addition, SMQ further improves the consistency and 
comparability of the data by having a more rigorous screening 
and integration mechanism to group multiple PTs with similar 
presentations or common pathological pathways. Studies based 
on the SMQ level showed that strong positive signals were 
detected for both Adefovir and Tenofovir, and the positive signal 
value for Tenofovir (ROR = 197.88,95% CI = 195.28–200.52) was 
much greater than that for Adefovir (ROR = 18.96, 95% 
CI = 16.78–21.42).

Subsequently, we further explored the potential association between 
Adefovir and Tenofovir induced hair osteoporosis risk in different 
populations. There were differences in the results of Adefovir versus 
Tenofovir in different gender populations. The results of SMQ levels 
showed that in Adefovir, osteoporosis-related adverse events in the 
female group (female SMQ ROR = 21.49, 95%CI = 16.84–27.43, 
p < 0.05) presented a stronger signal intensity than in the male group 
(male SMQ ROR = 14.81, 95%CI = 12.73–17.22, p < 0.05). In contrast, 
the overall positive signal value for osteoporosis adverse events in women 
was much lower than the overall positive signal value in men in those 
treated with Tenofovir. The intensity of positive signals for adverse events 
in the male group (male SMQ ROR = 349.27, 95%CI = 341.33–357.4, 

p < 0.05) was approximately two times higher than in the female group 
(female SMQ ROR = 164.63 95%CI = 161.14–168.2, p < 0.05).

In addition, the study was divided into two cohorts, low 
(<60 years) and high (≥60 years), for age subgroup analysis. At the 
SMQ level, the results in Adefovir were opposite to those in Tenofovir. 
In Adefovir, stronger positive signals were detected in the higher age 
group (SMQ ROR = 22.87, 95%CI = 18.14–28.84, p < 0.05) than in the 
lower age group (SMQ ROR = 17.45, 95%CI = 14.82–20.55, p < 0.05) 
(Figure 3; Table 2).

3.1.3 Time-to-onset analysis
In an assessment to evaluate the time to osteoporotic events after 

Adefovir versus Tenofovir treatment, the mean time to induction for 
Adefovir was 1,302.48 ± 1,001.47 days and the median time to 
induction was 1,089 days. The time to induction subgroup showed 
that approximately 78.26% of Adefovir users experienced osteoporosis 
adverse events after 1 year. The mean induction time for Tenofovir was 
2,123.37 ± 1,567.41 with a median induction time of 1,814 days. As 
with Adefovir, the majority of its adverse events occurred after 1 year 
(approximately 90.31%). In addition, we analyzed the time of onset of 
osteoporosis adverse events associated with both drugs. The results 
showed a statistically significant difference in the induction time 
between Adefovir and Tenofovir (p = 0.00092) (Figure 2F). Weibull 
distribution modeling studies have been used to determine whether 
the risk of drug-related AE exhibits a time trend. Of these, osteoporosis 
was mainly randomized after Adefovir treatment and showed a 
random failure curve. Tenofovir, on the other hand, exhibited a wear 
failure curve, which suggests that Tenofovir-induced osteoporosis 
adverse events progressively increase with duration of dosing (Table 3).

3.2 Network toxicology

3.2.1 Identification of genes related to 
osteoporosis

GSE56814 dataset, which included 40 women with high bone 
density and 40 women with low bone density, was downloaded from 

FIGURE 1

Schematic illustration of studies of adefovir and tenofovir causing adverse reactions to osteoporosis. GO, Gene Ontology; KEGG, Kyoto Encyclopedia 
of Genes and Genomes.
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GEO database and analyzed in this study. Normalization was 
performed and visualized in Figure  4A. WGCNA was applied to 
identify the modules significantly associated with osteoporosis. 
GSM1369791 was identified as abnormal sample and was removed 
(Figure 4B). A soft threshold power of β = 9 (scale-free R2 = 0.858) 
was selected (Figure 4C). As shown in Figures 4D,E, 17 co-expression 
modules were identified, of which the brown module, green module, 
tan module, gray 60 module, and lightgreen module were significantly 
associated with osteoporosis. Combine genes in these modules, a total 

of 1,473 genes were identified as genes closely associated 
with osteoporosis.

3.2.2 Identification of genes related to drugs 
influencing osteoporosis

Synthesizing Binding DB, CTD, and TargetNet, a total of 83 genes 
were identified as the potential targets of adefovir 
(Supplementary Table 2), 115 genes were identified as the potential 
targets of tenofovir (Supplementary Table 3). By intersecting these 

TABLE 1 Basic information about adefovir and tenofovir and osteoporosis events.

Characteristics Adefovir Tenofovir

Total SMQ-Osteoporosis Total SMQ-Osteoporosis

Number of events 1,834 254 68,862 23,579

Sex, n %

Female 454 (24.8%) 65 (25.6%) 17,948 (26.1%) 6,330 (26.8)

Male 1,154 (62.9%) 163 (64.2%) 42,205 (61.3%) 15,621 (66.2)

Missing/unknown 226 (12.3%) 269 (10.2%) 8,709 (12.6%) 1,628 (6.9)

Age, n %

<18 7 (0.4%) 0 (0%) 702 (1.0%) 23 (0.1%)

18–64.9 994 (54.2) 173 (68.1%) 70 (0.1%) 5 (0.0%)

65–85 245 (13.4%) 35 (13.8%) 36,949 (53.7%) 14,590 (61.9%)

>85 1 (0.1%) 1 (0.4%) 3,337 (4.8%) 863 (3.7%)

Missing/unknown 587 (32.0%) 45 (17.7%) 27,804 (40.4%) 8,098 (34.3%)

Weight, n %

<50 kg 25 (1.4%) 3 (1.2%) 1,325 (1.9%) 73 (0.3%)

>100 kg 8 (0.4%) 0 (0%) 998 (1.4%) 361 (1.5%)

50–100 kg 181 (9.9%) 15 (5.9%) 6,233 (9.1%) 1,659 (7.0%)

Missing/unknown 1,620 (88.3%) 236 (92.9%) 60,306 (87.6%) 21,486 (91.1%)

OUTC_COD

CA 9 (0.5%) 0 (0%) 1,444 (2.1%) 1 (0.0%)

DE 115 (6.3%) 1 (0.4%) 3,053 (4.4%) 244 (1.0%)

DS 45 (2.5%) 6 (2.4%) 665 (1.0%) 40 (0.2%)

HO 566 (30.9%) 144 (56.7%) 8,500 (12.3%) 1,231 (5.2%)

LT 20 (1.1%) 3 (1.2%) 699 (1.0%) 4 (0.0%)

OT 981 (53.5%) 99 (39.0%) 39,061 (56.7%) 18,808 (79.8%)

RI 1 (0.1%) 0 (0%) 39 (0.1%) 1 (0.0%)

Missing 97 (5.3%) 1 (0.4%) 15,401 (22.4%) 3,250 (13.8%)

OCCP_COD

Consumer 342 (18.6%) 26 (10.2%) 14,933 (21.7%) 4,021 (17.1%)

Health professional 115 (6.3%) 14 (5.5%) 5,452 (7.9%) 69 (0.3%)

Lawyer – – 24,607 (35.7%) 18,438 (78.2%)

Physician 692 (37.7%) 110 (43.3%) 11,400 (16.6%) 690 (2.9%)

Other health-professional 448 (24.4%) 101 (39.8%) 6,054 (8.8%) 278 (1.2%)

Pharmacist 68 (3.7%) 1 (0.4%) 5,075 (7.4%) 64 (0.3%)

Registered Nurse – – 1 (0.0%) 0 (0%)

Missing 169 (9.2%) 2 (0.8%) 5,075 (7.4%) 64 (0.3%)

CA, Congenital Anomaly; DE, Death; DS, Disability; HO, Hospitalization-Initial or Prolonged; LT, Life-Threatening; OT, Other Serious Important Medical Event; RI, Required Intervention to 
Prevent Permanent.
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FIGURE 2

Scanning for adverse osteoporosis events associated with adefovir and tenofovir based on the FAERS database. (A) Bar graph showing the number of 
AE cases reported for each SOC level of adefovir in the FAERS database. (B) Bar graph showing the number of AE cases reported for tenofovir at each 
SOC level in the FAERS database. (C) Heatmap showing the ROR of 10 osteoporosis adverse events in the FAERS database under different NAs 
treatment strategies including adefovir, tenofovir. (D) Risk signal volcano map of adefovir in the North American population. (E) Risk signal volcano plot 
for tenofovir in the North American population. (F) Adverse event induction time plots for adefovir and tenofovir. NAs, nucleoside/nucleotide analogs; 
FAERS, Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS); AE, adverse event; SOC, systemic organ classification; ROR, 
reporting odds ratio; CI, confidence interval.
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gene targets with 1,473 genes closely associated with osteoporosis, 14 
overlapping genes were identified as potential gene targets for adefovir 
influencing osteoporosis (Figure 5A), and 19 overlapping genes were 
selected as potential gene targets for tenofovir influencing osteoporosis 
(Figure  5B). For adefovir, GO enrichment analysis (Figure  5C) 
suggested that cell migration, sphingosine-1-phosphate receptor 
signaling pathway, sphingolipid mediated signaling pathway, G 
protein-coupled receptor binding, G protein-coupled amine receptor 
activity and so on were significantly enriched. KEGG enrichment 
analysis indicated the significant enrichment of cGMP-PKG signaling 
pathway, PI3K-Akt signaling pathway, Toll-like receptor signaling 
pathway and so on (Figure 5D). For tenofovir, GO enrichment analysis 
revealed that migration of epithelial cell and endothelial cell, 
differentiation of endothelial cell, muscle system process, G protein-
coupled receptor binding, and cytokine activity, and so on were 
significantly enriched (Figure  5E). KEGG enrichment analysis 
suggested that Toll-like receptor signaling pathway, Sphingolipid 
signaling pathway, MAPK signaling pathway, and IL-17 signaling 
pathway, and so on were significantly enriched (Figure 5F).

3.3 Molecular docking

Using molecular docking methods, we  further assessed the 
interaction between adefovir, tenofovir and gene targets of them 
influencing osteoporosis. As shown in Figure 6, there was a good 
combination ability between adefovir and ADORA1, HTR5A, JAK1, 
LCN2, NR2F2, PDE3A, PIK3CG, and RAC1. As shown in Figure 7, 
the combination between tenofovir and ACACB, ADORA1, CA4, 
CXCL8, IL1B, JAK1, MPO, NR2F2, PTGS2, RAC1, ROCK1, and TNF 
was excellent. The detailed information about the binding energies 
was shown in Table 4.

4 Discussion

HBV is one of the most important causes of liver disease and 
poses a major threat to global public health. Currently, NAs drug 

therapy such as adefovir and tenofovir are recommended as first-line 
HBV regimens and are widely used in clinical practice (11, 12). 
However, there is no conclusive information about the effects of these 
two drugs on bone mineral density (BMD) (31, 32). Therefore, this 
study confirmed the association between adefovir and tenofovir and 
osteoporotic events through real-world feedback. This confirmation 
was based on the assessment of overall SMQ and PT level signaling. 
In addition, we delved into the specific associations of these drugs 
through further network toxicology and molecular docking studies.

Specifically, in the present study, there was a signal for skeletal 
adverse events at the PT level for both adefovir and tenofovir. 
Subgroup analyses showed that adefovir was more likely to cause 
osteoporosis in older adults and women, while tenofovir showed the 
opposite trend. In addition, GO and KEGG analyses showed that both 
drugs may jointly promote osteoporosis through pathways such as cell 
migration, G protein-coupled receptor and Toll-like receptor signaling 
pathways (Figure  8). The latest study further proves our point. 
Regarding adefovir, several case reports have indicated that patients 
taking adefovir are prone to bone problems such as osteochondrosis. 
In addition, patients’ skeletal conditions improved significantly after 
discontinuing adefovir (33, 34). Also, tenofovir has been found to 
increase the risk of osteoporosis, which was confirmed by continuous 
monitoring of bone mineral density in patients with chronic hepatitis 
B treated with tenofovir, which showed a significant decrease in the 
tenofovir group from the mean percentage of baseline throughout the 
course of treatment (35).

Notably, our subgroup analysis of different populations 
suggests that the bone effects from adefovir and tenofovir accrue 
to different populations. Adefovir was more likely to affect the 
elderly and women. Tenofovir, on the contrary, often induces 
osteoporosis in young people and men. The specific metabolism 
of the two drugs may play a key role in this particular 
phenomenon. Adefovir is mainly excreted in its native form via 
the kidneys, a relatively simple metabolic process that makes renal 
function crucial for its excretion (36). In the elderly, renal function 
tends to decline significantly due to reduced renal units, vascular 
aging, and dysregulation of the renin-angiotensin-aldosterone 
system, which results in the inability to metabolize adefovir 

FIGURE 3

Differential risk signal analyses for adefovir and tenofovir at the PT and SMQ levels, respectively. PTs, preferred term; SMQ, Standardized MedDRA 
Queries.
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properly, leading to a higher signal for adverse events of bone loss 
(37). In addition, the elderly population is often associated with 
multiple chronic diseases such as diabetes mellitus, implying that 

further impairment of renal function in the elderly due to factors 
such as high glucose provides a synergistic effect on bone loss due 
to adefovir (38). Similarly, in the female population, the effects of 

TABLE 2 Subgroup analysis of adefovir and tenofovir based on age and gender.

Drug Category AEs N ROR (95%Cl) PRR (χ2) EBGM 
(EBGM05)

IC (IC025) p value

Adefovir PT Bone density decreased 51 11.56 (8.78–15.23) 11.5 (488.22) 11.48 (9.12) 3.52 (3.12) <0.001

Bone loss 1 0.47 (0.07–3.34) 0.47 (0.59) 0.47 (0.09) −1.09 (−3.13) >0.99

Bone marrow oedema 

syndrome

- - - - - -

Osteopenia 7 3.35 (1.59–7.02) 3.34 (11.5) 3.34 (1.8) 1.74 (0.72) >0.99

Osteoporosis 207 38.42 (33.46–44.13) 37.45 (7,308.06) 37.25 (33.17) 5.22 (5.02) <0.001

Osteoporotic fracture 1 4.11 (0.58–29.2) 4.11 (2.35) 4.11 (0.8) 2.04 (0) >0.99

Bone formation 

decreased

- - - - - -

Osteoporosis 

postmenopausal

- - - - - -

Resorption bone 

increased

1 8.82 (1.24–62.73) 8.82 (6.93) 8.81 (1.71) 3.14 (1.1) >0.99

SMQ SMQ − TOTAL 268 18.96 (16.78–21.42) 18.35 (4,393.38) 18.31 (16.53) 4.19 (4.02) <0.001

SMQ − MALE 175 14.81 (12.73–17.22) 14.36 (2,171.41) 14.31 (12.61) 3.84 (3.62) <0.001

SMQ − FEMALE 67 21.49 (16.84–27.43) 20.74 (16.91) 4.37 (4.02) 20.77 (1,261.24) <0.001

SMQ − YOUNGER 67 21.49 (16.84–27.43) 20.74 (16.91) 4.37 (4.02) 20.77 (1,261.24) <0.001

SMQ − OLDER 74 22.87 (18.14–28.84) 22.2 (1,494.95) 22.13 (18.22) 4.47 (4.13) <0.001

Tenofovir PT Bone density decreased 19,916 423.92 (413.63–434.46) 393.37 (2,557,866.25) 129.69 (127.05) 7.02 (6.99) <0.001

Bone loss 10,533 579 (557.46–601.37) 556.91 (1,498,769.8) 143.51 (139.03) 7.17 (7.13) <0.001

Bone marrow oedema 

syndrome

3 9.76 (3.06–31.14) 9.76 (22.45) 3.22 (1.74) 9.34 (3.54) 0.59

Osteopenia 5,066 111.33 (107.53–115.26) 109.3 (346,508.18) 70.01 (68.01) 6.13 (6.08) <0.001

Osteoporosis 9,542 68.9 (67.29–70.54) 66.55 (457,793.55) 49.67 (48.7) 5.63 (5.6) <0.001

Osteoporotic fracture 159 20.85 (17.7–24.56) 20.84 (2,708.72) 18.89 (16.48) 4.24 (4) <0.001

Bone formation 

decreased

1 1.35 (0.19–9.66) 1.35 (0.09) 0.43 (−1.62) 1.35 (0.26) >0.99

Osteoporosis 

postmenopausal

1 1.54 (0.21–10.99) 1.54 (0.19) 0.62 (−1.44) 1.53 (0.3) >0.99

Resorption bone 

increased

2 0.51 (0.13–2.04) 0.51 (0.95) −0.97 (−2.64) 0.51 (0.16) >0.99

SMQ SMQ − TOTAL 45,223 197.88 (195.28–200.52) 165.59 (3,979,447.71) 89.37 (88.38) 6.48 (6.46) <0.001

SMQ − MALE 30,091 349.27 (341.33–357.4) 291.21 (2,211,339.52) 74.58 (73.15) 6.22 (6.2) <0.001

SMQ − FEMALE 12,938 164.63 (161.14–168.2) 136.31 (1,298,795.73) 101.96 (100.14) 6.67 (6.64) <0.001

SMQ − YOUNGER 26,387 248.53 (243.48–253.69) 206.45 (2,009,876.54) 77.37 (76.05) 6.27 (6.25) <0.001

SMQ − OLDER 4,778 191.88 (185.34–198.66) 159.01 (582,776.21) 123.57 (120.04) 6.95 (6.9) <0.001

ROR, Report Odds Ratio; PRR, Proportional Reporting Ratio; IC, Information Component; EBGM, Empirical Bayesian Geometric Mean; p value, Adjusted p value.

TABLE 3 Weibull shape parameter test for adefovir and tenofovir.

Drug Average (d) ± SD Median (d) Scale parameter: α 
(95% CI)

Shape parameter: β 
(95% CI)

Type

Adefovir 1,302.48 ± 1,001.47 1,089 1,331.68 (801.73–1,861.63) 1.07 (0.70–1.44) Random failure

tenofovir 2,123.37 ± 1,567.41 1,814 2,287.95 (2,238.97–2,336.93) 1.29 (1.26–1.32) Wear failure
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FIGURE 4

(A) Box plots of raw data normalized between samples. (B) Sample clustering to detect outliers. (C) Determination of the optimal soft threshold. 
(D) Dendrogram illustrating hierarchical clustering of genes based on their modular characteristics. (E) Correlation analysis between gene modules and 
clinical traits. The color intensity in the image denotes the strength and direction of the correlation between gene modules and clinical traits: red 
signifies a positive correlation, blue indicates a negative correlation, and deeper colors reflect stronger correlations. A lower p-value suggests a higher 
level of significance.
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adefovir on bone mass are also exacerbated by reduced renal 
blood flow due to decreased ovarian function and estrogen levels 
during menopause (39). Unlike adefovir, tenofovir has a more 
complex metabolic pattern, and it has even been able to rescue 
renal impairment caused by other NAs (40). This causes it to 
accrue to a population with completely different characteristics 

than adefovir. A retrospective study from Hong Kong, China 
suggests that men are more likely to experience osteoporosis and 
fractures after tenofovir use (41). In addition, in a study of a 
Human Immunodeficiency Virus (HIV)-negative population 
using tenofovir, men also showed a predisposition to reduced 
bone density (42). Furthermore, tenofovir has been observed to 

FIGURE 5

Venn diagrams of gene targets for adefovir (A), and tenofovir (B) influencing osteoporosis. The GO (C) and KEGG (D) plots of the 14 gene targets for 
adefovir influencing osteoporosis. The GO (E) and KEGG (F) plots of the 19 gene targets for tenofovir influencing osteoporosis.
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FIGURE 6

Molecular docking analyses of adefovir and ADORA1, HTR5A, JAK1, LCN2, NR2F2, PDE3A, PIK3CG, and RAC1.
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FIGURE 7

Molecular docking analyses of tenofovir and ACACB, ADORA1, CA4, CXCL8, IL1B, JAK1, MPO, NR2F2, PTGS2, RAC1, ROCK1, and TNF.
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exhibit a greater capacity to regulate cytokine and ion levels in 
comparison to adefovir (43). Furthermore, hormonal secretion 
regulation mechanisms, such as parathyroid hormone, exhibit 
heightened sensitivity in younger populations (44). Consequently, 

when Tenofovir leads to the downregulation of calcium ions and 
other levels in the body, the younger organism will activate the 
release of bone calcium levels more quickly than the older group, 
which will lead to the occurrence of osteoporosis more easily.

TABLE 4 Results of molecular docking.

Drug Targets PDB ID Binding affinity (kcal/mol)

Adefovir ADORA1 5UEN −5.6

HTR5A 7UM4 −6.3

JAK1 4E5W −6.6

LCN2 3S26 −5.8

NR2F2 3CJW −5.8

PDE3A 7L27 −6.5

PIK3CG 6AUD −6.5

RAC1 2NZ8 −6.3

Tenofovir ACACB 3GLK −6.5

ADORA1 5UEN −6

CA4 3FW3 −6.5

CXCL8 6WZM −5.9

IL1B 8C3U −7

JAK1 4E5W −7.1

MPO 5MFA −8.2

NR2F2 3CJW −5.9

PTGS2 5F19 −7.5

RAC1 2P2L −6.9

ROCK1 3V8S −6.9

TNF 5M2J −6.2

FIGURE 8

Schematic diagram of the molecular mechanism of GO and KEGG pathway enrichment analysis and molecular docking analysis.
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Time-series analysis suggested that Adefovir caused osteoporosis 
to exhibit random failure curve, suggesting that osteoporosis 
symptoms persisted over time (45). Tenofovir, on the other hand, 
exhibits a wear failure curve, implying that osteoporosis adverse 
events progressively increase with Tenofovir dosing time (46). This 
suggests that long-term use of these two drugs should be avoided as 
much as possible in the clinic, and when they have to be used, they 
should be  used prophylactically as early as possible with anti-
osteoporotic drugs.

GO analysis suggested that cell migration and G-protein-coupled 
receptor binding are shared pathways by which adefovir and tenofovir 
trigger osteoporosis. This suggests that adefovir and tenofovir may 
inhibit endothelial cell migration and the process of neovascularization 
through mechanisms such as disrupting endothelial cell microfilament 
structure and producing endothelial cytotoxicity (47, 48). This 
inhibition leads to a decrease in the production of vascular endothelial 
growth factor, which decreases the number of cells and new blood 
vessels reaching the bone-forming region, ultimately resulting in a 
paucity of blood supply to the bone tissue and a slowing of bone-
forming activity (48). In addition, mitochondria play an important 
role in cell migration. Adefovir and tenofovir induce mitochondrial 
damage by inhibiting the mitochondrial chaperone TRAP1 and the 
mtDNA replication protein SSBP1, thereby affecting the energy supply 
required for cell migration. This cascade of events further impairs 
osteoblast activity during bone formation, ultimately promoting 
osteoporosis (49, 50).

Furthermore, upregulation of G protein-coupled receptor binding 
(GPCR) is another factor in the induction of osteoporosis by adefovir 
and tenofovir. Among them, 5-hydroxy tryptamine (5-HT) receptor 
as a GPCR was shown to be  widely present in osteoclasts and 
osteoblasts (51). Up-regulation of 5-HT receptor inhibits the cAMP/
PKA pathway, and inhibition of PKA leads to phosphorylation of 
activating transcription factor 4 (ATF4), which stimulates osteoclast 
differentiation and causes a decrease in bone density (52). More 
in-depth studies of pathway mechanisms have shown that both 
adefovir and tenofovir have been found to exert their effects on bone 
density through the Toll-like receptor signaling pathway. The Toll-like 
receptor (TLR) signaling pathway is an important pathway for the 
activation of immune responses, and the majority of TLRs use a 
MyD88-dependent pathway to activate the transcription factors 
NF-κB and protein kinase to induce inflammatory cytokine release 
(53). Among them, the inflammatory response and mitogen activated 
protein kinase (MAPK) cascade can promote osteoclast activity, which 
in turn leads to an imbalance in bone resorption and bone formation, 
an important causative factor in osteoporosis (54).

In addition to the common pathway, adefovir regulates cell 
proliferation and differentiation by affecting the PI3K-Akt signaling 
pathway. PI3K activation recruits the downstream signaling molecule 
protein kinase B (AKT), which promotes mammalian target of 
rapamycin (mTOR) activation, affects osteoblast differentiation and 
inhibits apoptosis, improves osteoblast survival (55). Whereas, the 
nucleotide analog Adefovir cellular metabolite can inhibit normal 
bone formation function by binding to Akt proteins and blocking 
their movement to the cell membrane and phosphorylation (56). In 
addition to this, deletion of Akt2, another isoform of AKT, has also 
been found to decrease the bone resorption capacity of osteoclasts 
(57). Therefore, when this pathway is upregulated, it increases 
osteoclast activity and further develops osteoporosis.

Notably, unlike adefovir, tenofovir additionally contributes to the 
development of osteoporosis by affecting inflammatory cytokine 
pathways such as IL-17, IL-1β, and TNF. A study on the effects of 
tenofovir on the mucosal tissue environment likewise found that 
tenofovir upregulates cytokine gene expression in epithelial cells and 
fibroblasts, which can increase the level of secretion of inflammatory 
factors such as tumor necrosis factor-alpha (TNF-α) and IL-8, which 
in turn can have some negative effects on bone health (58, 59). Further 
studies found that IL-17 can promote the expression of matrix 
metalloproteinase-9 (MMP-9) in osteoblasts and enhance their ability 
to degrade bone matrix (60). In addition, IL-1β and TNF-α can also 
regulate the number of osteoblasts by up-regulating Fas-mediated 
apoptosis of osteoblasts, which results in an inhibitory effect on the 
bone formation process (61).

Molecular docking further suggested that adefovir and tenofovir, 
respectively, could promote the development of osteoporosis by 
binding to different proteins. Both adefovir and adefovir bind to 
ADORA1, JAK1, and NR2F2. In addition, adefovir binds well to 
proteins such as LCN2, PIK3CG, and RAC1, while tenofovir has good 
binding ability to CXCL8, IL1B, and TNF. The specific mechanisms of 
some of these related proteins have been elucidated. Adora1 acts as an 
adenosine receptor and when it is significantly up-regulated, mouse 
bone density is significantly reduced (62). As a key target, it binds to 
Adefovir and Tenofovir to promote the development of osteoporosis. 
Furthermore, when assessing the BMD profile of de-ovulated rats, 
JAK1 was found to promote bone resorption by co-activation with 
STAT3 (63). The link between NR2F2 and bone density is unclear, but 
some studies suggest that its downstream HMGB1 protein may be its 
core protein affecting bone density (64, 65). In addition to this, 
adefovir and tenofovir are able to bind specific proteins to act. For 
example, LCN2 was found to be reduced after laparoscopic sleeve 
gastrectomy (LSG) in obese Chinese women, and hormonally reduced 
bone density in the patients (66). Adefovir causes increased bone loss 
in patients by binding to LCN2, while CXCL8, a specific target of 
tenofovir, interferes with the expression of CXLC8, and patients 
ultimately experience adverse events of osteoporosis (67). Clarifying 
the specific protein targets of adefovir and tenofovir-induced 
osteoporosis will help provide more detailed recommendations for 
future clinical improvement of the drugs or prevention of 
adverse events.

Our study has the following strengths, first, we confirmed the 
presence of osteoporotic adverse events with adefovir and tenofovir 
treatment using real-world adverse event data. In addition, GO and 
KEGG pathway enrichment analyses clarified the biological processes 
and pathways that play a key role in this. Supplementarily, molecular 
docking techniques were used to further explore specific protein 
targets and direct binding processes.

However, this study still has some limitations. First, the FAERS 
database suffers from many selection biases and contains 
inaccurate or incomplete information, so we need to conduct more 
rigorous prospective studies to obtain a more comprehensive and 
accurate view. Additionally, although relevant targets and pathways 
can be screened by GO and KEGG pathway enrichment analysis 
methods, the specific mechanisms of action of adefovir and 
tenofovir on these signaling pathways have not been sufficiently 
investigated, and more experimental evidence is needed to support 
them in the future. Finally, the molecular docking-based approach 
has the disadvantage of failing to predict target up-and 
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downregulation, which is detrimental to accurately understanding 
the mechanism by which chemical components act on 
disease targets.

5 Conclusion

Our study reveals the effects of Adefovir and Tenofovir on bone 
health from a real-world perspective and, through further analysis, 
identifies their core active ingredients and key target pathways that 
lead to OP. The aim is to provide a theoretical basis for the rational 
clinical use of anti-hepatitis virus drugs and the prevention and 
management of associated bone health risks. To provide more detailed 
recommendations for future clinical improvement of nucleotide 
analogs or prevention of their adverse events.
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Glossary

5-HT - 5-hydroxy tryptamine

AEs - Adverse events

AKT - Protein kinase B

ATF4 - Activating transcription factor 4

BMD - Bone mineral density

CaSR - Calcium-sensitive receptor

CHB - Chronic hepatitis B

DEMO - Demographic information

DRUG - Drug Information

EBGM - Empirical Bayesian Geometric Mean

FAERS - FDA Adverse Event Reporting System

GEO - Gene Expression Omnibus

GPCR - G protein-coupled receptor binding

HBV - Hepatitis B virus

HCC - Hepatocellular carcinoma

HIV - Human Immunodeficiency Virus

IC - Information Component

ICSRs - Individual Case Safety Reports

INDI - Indications for Medication Administration

LSG - Laparoscopic sleeve gastrectomy

MAPK - Mitogen-activated protein kinase

MedDRA - Medical Dictionary for Regulatory Activities

MMP-9 - Matrix metalloproteinase-9

mTOR - Mammalian target of rapamycin

NAs - Nucleotide and nucleoside analogs

OUTC - Patient Outcomes

PDB - Protein Data Bank

PRR - Proportional Reporting Ratio

PT - Preferred Terminology

REAC - Adverse Event Codes

ROR - Reporting Odds Ratio

RPSR - Reporting Sources

SMQs - Standardized MedDRA Queries

THER - Treatment Start and End Dates Associated with 
Reported Drugs

TLR - Toll-like receptor

TNF-α - Tumor necrosis factor-alpha

WGCNA - Weighted Gene Coexpression Network Analysis
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