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Background: Soluble programmed cell death 1 (sPD-1) and its ligand (sPD-L1) have 
emerged as potential biomarkers for early identification and risk stratification in 
patients with severe pneumonia (SP). However, there is a lack of robust laboratory 
evidence supporting their clinical utility. This study aimed to explore the relationship 
between sPD-1/sPD-L1 levels and clinical outcomes in SP patients.

Methods: This study included SP patients admitted to the Department of 
Critical Care Medicine at the Affiliated Hospital of Zunyi Medical University 
between November 2022 and December 2023. Patients were categorized into 
survivor and non-survivor groups based on 28-day clinical outcomes. Baseline 
characteristics and laboratory data were collected upon admission. Serum levels 
of sPD-1 and sPD-L1 were quantified using enzyme-linked immunosorbent 
assay. Cox regression analysis was performed to identify prognostic factors, and 
a nomogram was developed to predict outcomes. The predictive performance 
of sPD-1, sPD-L1, and their combined indices was evaluated using receiver 
operating characteristic (ROC) curve analysis.

Results: A total of 125 patients with severe pneumonia (SP) were included in this 
study. Compared to survivors, non-survivors were older, had more severe disease 
(as indicated by higher SOFA and APACHE II scores), and exhibited lower body mass 
index (BMI), hemoglobin levels, lymphocyte counts, CALLY index, and albumin 
levels. Additionally, non-survivors showed significantly elevated levels of systemic 
inflammatory markers (NLR, PLR, MLR, CLR, CAR, and SII) and higher serum sPD-1 
concentrations. Multivariate Cox regression analysis identified age, SOFA score, and 
sPD-1 levels as independent risk factors for poor prognosis in SP patients. Restricted 
cubic spline (RCS) curves revealed a linear relationship between age, SOFA score, 
and the risk of poor prognosis. A nomogram incorporating age, SOFA score, and 
sPD-1 levels demonstrated strong predictive performance for 28-day mortality 
in SP patients, with an area under the curve (AUC) of 0.80. Incorporating sPD-1 
measurements significantly improves the prognostic accuracy of both SOFA and 
APACHE II scores in critically ill patients.

Conclusion: sPD-1 levels were significantly elevated in non-surviving SP patients, 
suggesting its potential role as a biomarker for disease severity and immune 
dysregulation. The combination of sPD-1 with other clinical parameters may 
provide valuable insights into the prognosis and immune status of SP patients.
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Introduction

Severe pneumonia (SP) is characterized by acute respiratory 
failure, severe hypoxemia, and potential multi-organ dysfunction, 
often necessitating life support. These clinical manifestations arise 
from the progressive worsening of inflammation in lung tissues, 
including the fine bronchioles, alveoli, and interstitium (1, 2). 
According to the 2021 report on the management of community-
acquired pneumonia in intensive care units (ICUs), the mortality rate 
among SP patients admitted to ICUs remains alarmingly high at 
approximately 30%. In the United States alone, SP contributes to over 
100,000 deaths annually, posing a significant public health 
burden (3, 4).

Immune dysfunction plays a central role in the pathophysiology 
of SP-related mortality, involving intricate interactions among various 
immune cells and their molecular regulators (5, 6). Early monitoring 
and assessment of immune function, coupled with timely diagnosis 
and risk stratification, have been shown to improve clinical outcomes 
in SP patients (7, 8). Despite the identification of over 200 biomarkers 
over the past two decades, only a limited number, such as C-reactive 
protein (CRP) and procalcitonin (PCT), have demonstrated clinical 
utility. However, these biomarkers are often limited by low specificity 
and sensitivity (9). Consequently, there is an urgent need to identify 
novel biomarkers—or combinations thereof—that can enhance the 
diagnosis, risk stratification, and therapeutic management of SP.

Programmed cell death 1 (PD-1), a transmembrane receptor 
belonging to the immunoglobulin (Ig) superfamily, is predominantly 
expressed on the surface of activated T cells. Its major ligand, PD-L1, 
plays a critical role as a co-inhibitory molecule in both innate and 
adaptive immune responses. PD-1/PD-L1 signaling has been shown 
to be  pivotal in regulating immune dysfunction, particularly in 
conditions such as sepsis (10), the soluble forms of these molecules, 
sPD-1 and sPD-L1, have emerged as rapid immune biomarkers and 
have demonstrated utility in the diagnosis and risk stratification of 
various critical illnesses similar to severe pneumonia (SP) (11–14). 
However, their specific role in SP remains poorly understood.

This study aimed to investigate the relationship between serum 
concentrations of sPD-1 and sPD-L1 and disease severity in SP 
patients. Additionally, we sought to evaluate the prognostic value of 
sPD-1/sPD-L1  in predicting clinical outcomes, with the goal of 
providing insights that could enhance the diagnosis, treatment, and 
prognostic assessment of SP in clinical practice.

Methods and material

Study population

This prospective cohort study enrolled 125 SP patients (>18 years) 
admitted to the Intensive Care Unit of Zunyi Medical University 
between November 2022 and December 2023. Diagnostic criteria 
followed the 2015 Chinese Guidelines for Emergency Management of 
Community-Acquired Pneumonia for severe community-acquired 
pneumonia (CAP). Exclusion criteria included: (1) Pregnancy or 
lactation (2) Sepsis from non-pulmonary etiologies (3) Comorbidities 
affecting biomarker kinetics: Hepatic dysfunction (Child-Pugh class 
C), Advanced renal disease (CKD stage ≥4 or AKI stage 3), 
Immunodeficiency disorders, Malignancy, and Current 

immunosuppressive therapy. Serum samples were collected after 
obtaining written informed consent from patients or their legal 
guardians. Serum levels of soluble PD-1 (sPD-1) and PD-L1 (sPD-L1) 
were quantified using enzyme-linked immunosorbent assay (ELISA). 
Comprehensive clinical parameters were concurrently recorded for all 
SP patients.

Data collection

During hospitalization, baseline demographic and clinical data 
were collected, including age, sex, underlying disease, comorbidity 
with shock, days in ICU, 28-day mortality, and routine laboratory 
markers (white blood cell count, neutrophil count, lymphocyte count, 
monocyte count, hemoglobin, C-reactive protein, procalcitonin, 
bilirubin, platelet count, D2 polymerase, albumin, and creatinine) and 
indicators of disease severity (APACHE II and SOFA scores).

Blood sample

2 mL of peripheral blood were collected within 24 h of ICU 
admission; the samples were allowed to stand for 30 min and 
centrifuged at 1,000 g for 15 min at 4°C, and the supernatant was 
frozen at-80°C for subsequent analysis.

Serum sPD-1/sPD-1 L measurement

The sPD-1/sPD-1 L levels were determined using an enzyme-
linked immunosorbent assay kit (Shanghai Thrive Color 
Biotechnology Co., Ltd.) in a multifunctional enzyme labeling 
instrument (Shanghai Meigu Molecular Instrument Co., Ltd.), and 
each sample was analyzed in duplicate. The testing procedure was 
performed according to the manufacturer’s instructions.

Statistical analysis

SPSS 29.0 software was applied for statistical analysis. All data 
were tested for normality, and normally distributed measures were 
expressed as `X ± S, and skewed distributions were expressed as M 
(P25, P75). A t-test was used for intergroup comparisons for those 
with normal distribution, and the chi-square test was used for 
quantitative value comparisons between two groups for those with 
chi-square or skewed distribution, and the Kruskal-Wallis test was 
used for quantitative value comparisons between multiple groups. 
Correlation analysis was performed using Pearson (normal 
distribution) or Spearman (skewed distribution). Logistic regression 
analysis was performed to identify risk factors associated with 28-day 
mortality. The predictive power of the biomarkers was determined by 
analyzing the subjects’ work characteristics (ROC) curves and 
calculating the area under the curve (AUC). p < 0.05 indicates a 
statistically significant difference. Finally, to validate the efficacy of our 
nomogram, the entire cohort was randomly divided into testing 
cohorts with distinct clinical characteristics using R’ s built-in sample 
function, and the validity of our risk prediction model was assessed 
across both cohorts.
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Result

Patient characteristics

A total of 125 patients with severe pneumonia (SP) were enrolled 
in this study, including 84 survivors and 41 non-survivors. The clinical 

and demographic characteristics, laboratory findings, and prognostic 
data are summarized in Table 1. Compared to survivors, non-survivors 
were significantly older, had a lower body mass index (BMI), and 
exhibited higher Acute Physiology and Chronic Health Evaluation II 
(APACHE II) and Sequential Organ Failure Assessment (SOFA) 
scores (p < 0.01).

TABLE 1 Patient characteristics.

Variable Total (n = 125) Survival (n = 84) Non-survival (n = 41) p-value

Age 71.00 (57.00,76.00) 66.5.00 (55.75,75.00) 75.00 (67.00,79.00) <0.01

BMI 24.10 (21.60,26.70) 24.50 (22.38,27.15) 22.80 (20.80,24.30) <0.01

Gender (n, %) 0.540

  Man 76 (60.08) 49 (58.33) 27 (65.85)

  Woman 49 (39.92) 35 (41.67) 14 (34.15)

Complication (n, %)

  Hypertension 16 (12.80) 9 (10.71) 7 (17.07) 0.475

  CVD 15 (12.00) 7 (8.33) 8 (19.51) 0.130

  Diabetes 18 (14.40) 11 (13.10) 7 (17.07) 0.965

  COPD 12 (9.60) 6 (7.14) 6 (14.63) 0.312

  Shock 84 (67.20) 51 (60.71) 33 (80.49) 0.156

Severity score

  Apache II 24.00 (18.00,28.00) 22.00 (18.00,26.00) 26 (23.00,29.00) <0.01

  SOFA 11.00 (9.00,14.00) 9.00 (9.75,13.00) 13.00 (11.00,15.00) <0.01

Laboratory examination

  CPR (mg/L) 132.41 (96.54,165.98) 128.94 (88.68,162.89) 149.04 (117.33,172.78) 0.060

  PCT (ng/mL) 14.33 (9.21,22.78) 12.49 (7.96,22.17) 16.48 (11.18,24.65) 0.050

  D-2 polymer (ug/mL) 4.01 (1.68,6.68) 3.97 (1.56,11.40) 4.05 (1.78,5.45) 0.410

  Hemoglobin (g/L) 114.00 (102.00,122.00) 114.00 (104.75,125.00) 108.00 (101.00,119.00) 0.140

  WBC 12.34 (8.50,16.34) 12.40 (9.00,15.34) 12.34 (7.58,17.67) 0.840

  Neutrophil 9.91 (6.96,13.93) 9.24 (7.09,12.62) 10.23 (6.76,15.55) 0.650

  Lymphocyte 0.89 (0.57,1.34) 1.01 (0.60,1.59) 0.75 (0.42,0.99) <0.01

  Monocyte 0.89 (0.50,1.23) 0.90 (0.50,1.22) 0.89 (0.52,1.25) 0.560

  PLT 149.00 (98.00,207.00) 149.00 (94.75,192.75) 156.00 (107.00,212.00) 0.910

  Albumin (g/L) 35.10 (31.20,41.20) 36.40 (32.28,48.83) 34.50 (32.20,36.70) 0.040

  Creatinine (umol/L) 134.00 (81.00,194.00) 125.00 (74.50,184.00) 162.00 (86.00,241.00) 0.070

  Bilirubin (umol/L) 19.30 (12.30,50.80) 20.65 (11.40,51.05) 16.80 (12.30,50.10) 0.960

Combination inflammatory indicators

  NLR 12.34 (6.29,22.20) 10.41 (5.44,18.82) 17.37 (9.86,23.57) <0.01

  MLR 1.00 (0.53,1.51) 0.80 (0.44,1.26) 1.34 (0.79,2.06) <0.01

  PLR 136.58 (73.28,244.50) 143.48 (77.36,242.42) 220.39 (123.78,371.05) <0.01

  CLR 135.00 (84.16,261.40) 123.18 (72.88,221.85) 179.98 (133.07,314.50) <0.01

  SII 1611.11 (899.00,3021.93) 1240.19 (723.71,2770.98) 2581.81 (1315.74,3381.40) <0.01

  CAR 3.53 (2.71,4.79) 3.30 (2.58,4.25) 4.15 (3.44,5.32) <0.01

  CALLY 26.80 (13.07,44.38) 32.56 (14.57,52.99) 18.95 (11.07,26.69) <0.01

Programmed death receptor 1

  sPD-1 182.79 (133.17,231.62) 171.44 (126.96,220.49) 218.60 (171.26,283.03) <0.01

  sPD-L1 19.29 (15.61,28.81) 18.73 (16.69,27.36) 20.61 (15.23,35.91) 0.450

Apache II, Acute Physiology And Chronic Health Evaluation II; SOFA, Sequential Organ Failuer Assessmen; NLR, Neutrophil–Lymphocyte Ratio; MLR, Monocyte-Lymphocyte Ratio; PLR, Platelet–
Lymphocyte Ratio; CLR, C-reactive protein-Lymphocyte Ratio; SII, Systemic Immune Inflammation Index; CAR, C-reactive protein-Albumin Ratio; CALLY, CRP-Albumin-Lymphocyte Index.
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Laboratory analyses revealed that non-survivors had significantly 
lower hemoglobin levels, albumin levels, and lymphocyte counts 
(p < 0.01). Among the combined inflammatory indices, non-survivors 
demonstrated elevated neutrophil-to-lymphocyte ratio (NLR), 
monocyte-to-lymphocyte ratio (MLR), platelet-to-lymphocyte ratio 
(PLR), C-reactive protein-to-lymphocyte ratio (CLR), systemic 
immune-inflammatory index (SII), and C-reactive protein-to-
albumin ratio (CAR) (p < 0.01). In contrast, the C-reactive-albumin-
lymphocyte Index (CALLY index) was significantly lower in 
non-survivors (p < 0.01). Additionally, non-survivors exhibited 
significantly higher serum levels of soluble programmed cell death 1 
(sPD-1) (p < 0.01). However, no significant difference was observed 
in sPD-L1 levels between the two groups. Consequently, subsequent 
analyses focused primarily on sPD-1.

Correlation between serum sPD-1 and 
serum combined inflammatory markers 
and severity scores

For SP patients, our results showed that serum sPD-1 levels were 
positively correlated with APACHE II (R = 0.346, p < 0.01), SOFA 
(R = 0.421, p < 0.01), and MLR (R = 0.238, p < 0.01), and showed a 
negative correlation with CALLY (R = −0.184, p = 0.040). There was 
no correlation with CAR (R = 0.050, p > 0.05), CLR (R = 0.176, 
p > 0.05), NLR (R = 0.150, p > 0.05), SII (R = 0.138, p > 0.05), and PLR 
(R = 0.113, p > 0.05) (Table 2).

Factors associated with 28 days mortality 
rate in SP patients

To identify risk factors for death in SP patients, we  included 
statistically significant variables and possible outcome risk factors in 
baseline comparisons and used multifactorial COX regression 
analysis to identify factors affecting death in SP patients. Our results 
showed (Table  3) that after adjusting for age, BMI, APACHE II, 

SOFA, albumin, lymphocyte count, CRP, NLR, MLR, CLR, and 
CALLY, the independent risk factor for death in patients with SP was 
increased age (OR = 1.040, 95% CI: 1.003–1.079, p = 0.032), elevated 
sPD-1 levels (OR = 1.006, 95% CI: 1.001–1.011, p = 0.015), and SOFA 
score (OR = 1.208, 95% CI: 1.037–1.407, p = 0.015). Similarly, the 
KM survival curves further confirmed the association of the above 
independent risk factors with 28-day mortality in SP patients 
(Figures 1A–C). Meanwhile, the RCS curves showed (Figures 1C–E), 
that age and SOFA score were positively and linearly associated with 
28-day mortality in SP patients, whereas sPD-1 did not exhibit a 
linear or nonlinear relationship.

Nomogram for predicting 28-day mortality 
in patients with SP

To accurately and early identify SP patients who may die within 
28 days, we constructed a column-line diagram (Supplementary Figure S1) 
based on appealing three (age, SOFA, sPD-1) independent risk factors 
and assessed its screening effect by ROC curves. The ROC curves showed 
(Figures 2A–D) that the screening effect of this column-line diagram for 
28-day death in SP patients (AUC = 0.80) was greater than age alone 
(AUC = 0.69), sPD-1 (AUC = 0.69), and SOFA (AUC = 0.74). 
Furthermore, the risk prediction model consistently demonstrated high 
predictive accuracy in both validation cohorts (Cohort 1: AUC = 0.80; 
Cohort 2: AUC = 0.79) (Supplementary Figures S2A,B), further validating 
the robustness of our findings.

Incremental effect of sPD1

We assessed the impact of adding sPD1 to existing scoring models 
(Age, APACHE II, SOFA) on predicting 28-day ICU mortality using area 
under the curve (AUC) analysis. As shown in 
Supplementary Figures S3A–C, the inclusion of sPD1 consistently 
enhanced predictive accuracy across all models: Age (AUC 
0.692 → 0.748), APACHE II (0.699 → 0.738), and SOFA (0.738 → 0.776).

Discussion

Despite significant advancements in recent years, SP remains a 
life-threatening condition with a poor prognosis, posing substantial 
challenges in clinical practice (3, 4). The dysregulated immune 
response associated with SP underscores the need for a deeper 
understanding of its underlying immune mechanisms and the 
identification of reliable biomarkers. Such insights could enhance 
clinical management and ultimately improve patient outcomes (5–8). 
A critical challenge in managing SP is the lack of a clearly defined 
transition point from the hyperinflammatory phase to the 
immunosuppressive phase, making it essential to monitor complex 
biomarkers that can capture this dynamic shift (15). However, in this 
study, although we observed that SP patients exhibited higher levels 
of combined inflammatory indices (NLR, PLR, MLR, CLR, CAR, SII) 
and serum sPD-1, multifactorial COX regression analysis showed that 
only sPD-1 could serve as an independent risk factor for SP patients.

PD-1 is an immune checkpoint receptor that plays a critical role 
in regulating T-cell proliferation and function. Upon binding to its 

TABLE 2 Correlation between traditional clinical indicators and serum 
sPD-1.

Variable r p

ApacheII 0.346 <0.01

SOFA 0.421 <0.01

PCT 0.044 0.625

NLR 0.150 0.093

MLR 0.238 <0.01

PLR 0.113 0.210

CLR 0.176 0.050

SII 0.128 0.159

CAR 0.050 0.580

CALLY −0.184 0.040

Apache II, Acute Physiology and Chronic Health Evaluation II; SOFA, Sequential Organ 
Failuer Assessmen; PCT, Procalcitonin; NLR, Neutrophil–Lymphocyte Ratio; MLR, 
Monocyte-Lymphocyte Ratio; PLR, Platelet–Lymphocyte Ratio; CLR, C-reactive protein-
Lymphocyte Ratio; SII, Systemic Immune Inflammation Index; CAR, C-reactive protein-
Albumin Ratio; CALLY, CRP-Albumin-Lymphocyte Index.
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TABLE 3 Univariate and multivariate regression analysis of variables for patient.

Variable Univariable analysis Multivariable analysis

HR Lower Upper p value HR Lower Upper p value

Age 1.056 1.023 1.090 <0.01 1.040 1.003 1.079 0.032

BMI 0.883 0.800 0.973 0.012 0.936 0.845 1.038 0.212

apacheII 1.105 1.053 1.159 <0.01 0.992 0.912 1.079 0.857

SOFA 1.331 1.195 1.482 <0.01 1.208 1.037 1.407 0.015

PCT 1.020 0.999 1.041 0.061 1.005 0.977 1.034 0.717

Lymphocyte 0.448 0.248 0.809 <0.01 0.631 0.196 2.034 0.441

NLR 1.023 1.004 1.041 0.015 1.000 0.968 1.033 1.000

MLR 1.508 1.179 1.929 <0.01 0.852 0.600 1.208 0.368

PLR 1.000 1.000 1.001 0.371

CLR 1.002 1.001 1.003 <0.01 0.999 0.996 1.002 0.454

SII 1.000 1.000 1.000 0.281

Albumin 0.943 0.896 0.993 0.027 0.947 0.886 1.011 0.104

CAR 1.425 1.128 1.800 <0.01 1.164 0.760 1.781 0.485

CALLY 0.977 0.961 0.993 <0.01 1.000 0.972 1.028 0.980

sPD1 1.009 1.005 1.013 <0.01 1.006 1.001 1.011 0.015

Apache II, Acute Physiology and Chronic Health Evaluation II; SOFA, Sequential Organ Failuer Assessmen; PCT, Procalcitonin; NLR, Neutrophil–Lymphocyte Ratio; MLR, Monocyte-
Lymphocyte Ratio; PLR, Platelet–Lymphocyte Ratio; CLR, C-reactive protein-Lymphocyte Ratio; SII, Systemic Immune Inflammation Index; CAR, C-reactive protein-Albumin Ratio; CALLY, 
CRP-Albumin-Lymphocyte Index.

FIGURE 1

KM survival curve and restrictive cubic spline (RCS) curve. (A–C) KM survival curve, (A) Age, (B) SOFA, (C) sPD1; (D–F) RCS curve, (D) Age, (E) SOFA, 
(F) sPD1.
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ligand, PD-L1, PD-1 induces immunosuppression by inhibiting T-cell 
activation, suppressing the release of pro-inflammatory cytokines, and 
promoting T-cell apoptosis (11, 16, 17). Consequently, the soluble 
forms of these molecules, sPD-1 and sPD-L1, are increasingly 
recognized as biomarkers reflecting the immune status of the host 
(18), this has sparked growing interest in their potential to monitor 
disease progression in critically ill patients. For instance, a recent 
study demonstrated that sPD-1 levels are elevated in patients with 
acute respiratory distress syndrome (ARDS) and may serve as a risk 
factor for disease progression (15). Similarly, multiple studies have 
reported elevated sPD-1 levels in the peripheral blood of sepsis 
patients, suggesting its utility for risk stratification in this population 
(12, 13, 18). Additionally, research has shown that sPD-1 and sPD-L1 
levels are increased in patients with pancreatitis, with higher sPD-1 
levels correlating with an elevated risk of pancreatic infection 
complications (14). These findings collectively highlight the potential 
of sPD-1 as a diagnostic and risk stratification tool in SP patients, 
underscoring its feasibility for clinical application in this context.

In our research, we evaluated the predictive ability of sPD-1 for 
28-day mortality in severe pneumonia (SP) patients. The receiver 
operating characteristic (ROC) curve analysis revealed that sPD-1 

demonstrated moderate predictive performance (AUC = 0.69). However, 
relying on a single biomarker often has limitations, including lower 
sensitivity and specificity, and may not comprehensively reflect a patient 
clinical status (9, 19). To address these limitations, recent studies have 
advocated for the use of combined biomarker panels to improve early 
risk assessment and quantify mortality risk more accurately (19–21). In 
line with this approach, our study integrated three independent risk 
factors—age, SOFA score, and sPD-1 levels—to develop a nomogram 
with enhanced predictive performance (AUC = 0.80). This model 
provides a more robust tool for quantifying the risk of death in individual 
SP patients. Furthermore, our findings demonstrate that incorporating 
sPD1 significantly enhances the predictive accuracy of established risk 
scores (SOFA and APACHE II) for 28-day ICU mortality in SP patients, 
underscoring the clinical utility of sPD1 in SP management.

However, the underlying mechanisms linking sPD1 to poor 
prognosis in severe pneumonia patients remain unclear, though 
several plausible explanations have been proposed. Previous studies 
have demonstrated that sepsis can progress to immunosuppression, 
increasing the risk of secondary infections and poor clinical outcomes 
(22, 23). Elevated levels of sPD-1 are associated with excessive 
immune activation. Research suggests that serum sPD-1 may enhance 

FIGURE 2

ROC curve. (A) nomogram, (B) Age, (C) sPD1, (D) SOFA.
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T-cell responses by inhibiting the PD-1/PD-L1 signaling pathway (24, 
25). However, persistently high sPD-1 levels may act analogously to 
PD-1/PD-L1-blocking antibodies, triggering abnormal T-cell 
activation and proliferation (24, 25). This dysregulated immune 
response drives hyperinflammation during early sepsis, leading to 
inflammatory tissue and organ damage (26). Concurrently, 
lymphocyte depletion shifts the hyperinflammatory state toward 
immunosuppression, accelerating sepsis progression from immune 
activation to immune paralysis and ultimately worsening prognosis 
(22, 23, 26). These findings suggest that markedly elevated sPD-1 
levels may reflect more severe immune dysfunction in patients.

In contrast, sPD-L1 binds to PD-1 on T cells, mimicking the 
immune checkpoint function of membrane-bound PD-L1 to suppress 
T-cell activation and cytokine production, thereby preventing systemic 
immune overactivation. Elevated sPD-L1 levels typically indicate an 
immunosuppressive state, which is strongly linked to poor outcomes 
in sepsis (22–25). Paradoxically, our data did not identify elevated 
sPD-L1 as a mortality predictor in severe pneumonia patients. This 
discrepancy may stem from several factors. First, although sepsis 
involves coexisting immune activation and suppression, the early 
disease phase is predominantly hyperinflammatory (22, 23, 26). Thus, 
SPD-L1 levels may remain low during this stage. Notably, all analyzed 
serum samples were collected on ICU admission, which may not 
represent the optimal timeframe for detecting sPD-L1. These 
observations highlight the need for longitudinal monitoring to 
evaluate the clinical relevance of serum sPD-1 and sPD-L1 dynamics 
in guiding severe pneumonia management.

The SOFA score is a key component of the diagnostic criteria for 
sepsis. Previous studies have demonstrated its utility as an early 
prognostic marker for predicting 28-day mortality in sepsis patients (27, 
28). However, recent research has raised concerns about the limitations 
of the original SOFA score, particularly in patients with comorbid 
conditions such as chronic obstructive pulmonary disease (COPD), 
chronic kidney disease, and malignancies. Despite these limitations, our 
study found that the SOFA score remains an independent risk factor for 
mortality in patients with SP, as confirmed by multivariate Cox 
regression analysis. This underscores the continued relevance of the 
SOFA score as a valuable tool for risk stratification in SP patients.

This study has several limitations that should be acknowledged. 
First, as a single-center, prospective observational study, the sample 
size was relatively small, and all participants were recruited from the 
ICU, which may introduce selection bias. Second, although elevated 
serum levels of sPD-1 were observed in non-surviving SP patients, 
this study only measured sPD-1 and sPD-L1 levels at the time of 
enrollment. Continuous monitoring was not performed, leaving the 
potential clinical value of dynamic changes in these biomarkers—
such as their ability to track disease progression or predict 
prognosis—unexplored. Third, while the risk prediction model 
developed in this study demonstrates strong predictive performance, 
the absence of external validation means we cannot rule out potential 
overfitting. Future work should therefore prioritize prospective 
validation in larger, independent cohorts. Additionally, our study did 
not account for the influence of causative pathogen type (e.g., 
bacterial vs. viral) on sPD1 levels. Given that pathogens differentially 
modulate immune responses, future studies should incorporate larger 
cohorts and subgroup analyses to clarify their potential impact on 
clinical outcomes. Finally, while this study focused on the expression 
levels of serum sPD-1 and sPD-L1 in SP patients, it did not investigate 

the mechanisms by which these biomarkers influence immune 
function in SP. Future research, including animal models, is needed 
to elucidate the pathophysiological relationships between these 
markers and immune dysregulation in SP.

Conclusion

In summary, serum levels of sPD-1 were significantly elevated in 
non-surviving SP patients and showed strong correlations with disease 
severity scores, including the APACHE II scores and SOFA scores, as 
well as with various combined inflammatory markers. These findings 
suggest that sPD-1 and its associated biomarker panels can serve as 
valuable tools for assessing disease severity and immune status in SP 
patients. However, further exploration and larger-scale clinical studies 
are needed to fully elucidate the specific clinical utility and prognostic 
value of sPD-1 in this patient population.
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