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Aim: In recent years, with the change of social environment, the incidence 
and detection rate of hematological diseases have shown an increasing trend. 
Early diagnosis and detection of hematological diseases are very important to 
improve the quality of life and prognosis of patients.
Methods: In this study, we employed 54 clinical and conventional laboratory 
parameters. By optimally combining multiple feature selection methods and 
machine learning algorithms, we developed 7 machine learning models with 
varying feature set sizes. We  comprehensively evaluated the performance of 
these models, analyzed the interpretability of the optimal and simplified models 
using SHapley Additive exPlanations (SHAP), and compared these two models 
with the diagnostic performance of hematologists. Finally, we developed a user-
friendly diagnostic platform.
Results: The results showed that the ensemble model_1 with 46 feature 
parameters (EnMod1-46) and the simple ensemble model_2 with 12 feature 
parameters (EnMod2-12) demonstrated significant performance in diagnosing 
16 types of hematological diseases. On the temporally distinct test set_1, the 
EnMod1-46 achieved an accuracy of 0.804 and an area under the curve (AUC) of 
0.964, while EnMod2-12 attained an accuracy of 0.784 and an AUC of 0.961. To 
further validate the model’s generalization performance, EnMod1-46 achieved 
an accuracy of 0.738 and an AUC of 0.973 on the independent external test 
set_2, while EnMod2-12 yielded an accuracy of 0.705 and an AUC of 0.962. 
SHAP analysis showed that PLT, WBC, MCV, HGB, RBC and age were significant 
parameters in both models. Comparative analysis of clinical diagnosis revealed 
that the performance of EnMod1-46 and EnMod2-12 outperformed junior 
hematologists, while EnMod1-46 was comparable to senior hematologists. 
Concurrently, based on EnMod2-12, we developed a user-friendly diagnostic 
platform to facilitate risk assessment and improve access to accurate diagnosis.
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Conclusion: This study provides an efficient and accurate screening method for 
hematological diseases, especially in resource-limited countries and regions.
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1 Introduction

Hematological diseases include a wide range of benign and 
malignant disorders that affect the blood, bone marrow and lymphatic 
system. In recent years, with the change of social environment, 
especially the aging of population and the continuous development of 
medical technology, the incidence and detection rate of hematological 
diseases have shown an increasing trend (1). However, due to the 
strong heterogeneity of laboratory indicators in hematological diseases 
(2), diverse clinical manifestations, and frequent overlap with other 
systemic diseases, some patients have difficulty in obtaining timely 
and accurate diagnosis at the first visit. This often results in multiple 
medical consultations, increasing both patients’ suffering and the 
waste of medical resources. If benign hematological diseases are not 
detected early or managed properly, these conditions can lead to 
serious symptoms and complications that can significantly affect the 
quality of life for patients. According to the global cancer statistics 
from GLOBOCAN 2022, malignant hematological diseases such as 
non-Hodgkin lymphoma and leukemia exhibited high incidence and 
mortality rates worldwide (3). Modern treatment methods, such as 
targeted therapy, and hematopoietic stem cell transplantation, have 
significantly improved the prognosis of patients and increased the 
survival rate of patients (4, 5). However, misdiagnosis or delayed 
diagnosis in the early stages can significantly compromise patient’s 
prognosis (6).

Machine learning (ML) as a subset of artificial intelligence has 
been explored in various domains of hematological diagnosis, 
including laboratory testing, histopathology, flow cytometry and 
molecular data (7). Moreover, the model built using ML can 
accurately diagnose various types of hematological diseases and 
identify key parameters (8, 9). In clinical practice, easily accessible 
laboratory parameters have been proved to be an important data 
source for implementing disease diagnosis models. For example, 
Erler et al. improved the classification accuracy of thalassemia by 
building a backpropagation artificial neural network using 
erythrocyte related parameters such as red blood cell count and 
average red blood cell volume, with sensitivity and specificity both 
reaching 94.2% (10). With the employment of random forest 
algorithms, Guncar et  al. developed models with 181 and 61 
parameters to classify 43 hematological diseases. The accuracy for 
diagnosing the most likely hematological disease was 59% and 57%, 
respectively, while the accuracy for predicting the top five diagnoses 
improved to 88% and 86% (11). Park et al. further developed an 
ensemble model based on deep neural networks, using 88 different 
parameters to classify 39 hematological disorders, achieving 
accuracies of 65% and 93% for predicting the most likely single and 
top five diagnoses, respectively (12). These models achieved accurate 
prediction of hematologic diseases. However, some of them involve 
a large number of parameters, which complicates model training and 
computation. Moreover, the prediction accuracy for the most likely 

single disease remains relatively low. While other studies have 
reported accuracy above 0.90, these have generally focused on 
predicting or differentiating between specific diseases, such as certain 
types of leukemia (13, 14).

Therefore, developing highly accurate and computationally 
efficient prediction models and tools for common hematological 
diseases are significant in aiding clinical diagnosis and decision-
making. In this study, a total of 16 types of hematological diseases 
and a group of healthy individuals were included. The disease types 
cover about 80% of hematological diseases, which have a high 
prevalence. We developed a prediction model, named EnMod1-46, 
which was an ensemble model trained using 46 parameters selected 
by random forest combined with recursive feature elimination with 
cross-validation (RF-RFECV) and achieved a high classification 
accuracy. In order to facilitate clinical application, we simultaneously 
constructed a simplified model, EnMod2-12, which utilized an 
ensemble of four ML algorithms trained on 12 routine complete 
blood count (CBC) parameters. This model also supported a practical 
online prediction tool, facilitating real-world application. This study 
provided valuable decision-making support for clinical practice and 
helped to realize early diagnosis and screening of 
hematological diseases.

2 Materials and methods

2.1 Participants

This study included 10,401 patients newly diagnosed at the 
Medical Center of Hematology of the Second Affiliated Hospital of 
Army Medical University from January 2015 to March 2024. The 
cohort comprised 16 groups of patients with newly diagnosed 
hematological diseases and a group of healthy individuals as controls 
(including healthy donors and healthy medical examination patients). 
Malignant hematological diseases include ALL, APL, AML-nonAPL, 
CLL, CML, CMML, MDS, MM, MPN, and Lymphoma. Benign 
hematological diseases include Hemocytopenia, AA, Thalassemia, 
MgA, HA, and IDA. The full names of the disease types are provided 
in the Glossary. Additionally, 342 patients from April 2024 to June 
2024 were collected as the temporally distinct test set_1. The multi-
center and independent external test set_2 included 149 patients 
recruited from two tertiary medical centers: the First Affiliated 
Hospital of Chongqing Medical University and Southwest Hospital of 
Army Medical University. Inclusion criteria: (1) No restrictions were 
placed on sex or age; (2) All cases were confirmed and diagnosed 
clearly by the hospital; (3) Laboratory data were available for analysis; 
(4) Patients were not receiving any treatment at the time of diagnosis. 
Exclusion criteria: (1) Cases with unclear or ambiguous diagnoses; 
(2) Insufficient laboratory data for analysis; (3) Patients who had 
received relevant medications prior to diagnosis. This study was 
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approved by the Medical Ethics Committee of Second Affiliated 
Hospital of Army Medical University (2024–236-01).

2.2 Data collection

A total of 54 potential features were collected at the time of patient 
diagnosis. These parameters included 2 demographic parameters (sex 
and age) and 52 blood test parameters: WBC, HGB, PLT, MCV, 
NEUT%, LYM%, MXD%, BASO%, EO%, RBC, EO#, BASO#, HCT, 
LYM#, MCH, MCHC, MPV, MXD#, NEUT#, PDW, PCT, RDW-CV, 
RDW-SD, RET%, ALB, GLB, A/G, ALP, ALT, AST, CREA, DBIL, 
TBIL, GGT, LDH, PT, APTT, TT, Fg, IgA, IgE, IgG, IgM, Igκ, Igλ, 
EPO, FOL, VB12, SF, FE, IAT, and DAT. The full names of the blood 
test parameters are provided in the Glossary.

2.3 Data preprocessing

Among the 52 blood test parameters included, the missing value 
ratio of 23 CBC parameters was relatively low, all less than 15%, while 
the missing values ratio for the other parameters exceeded 30%. First, 
we performed data cleaning by removing special characters such as 
“>” and “<” from the parameters in the dataset. To address the 
missing values, categorical variables were imputed with the mode, 
while continuous variables were imputed with the median. 
Subsequently, we  standardized the units of all parameters to the 
international system of units (IS units). Additionally, to eliminate the 
influence of scales, we applied the StandardScaler to normalize all 
continuous variables.

2.4 Feature selection

To identify the key features for model training, we employed three 
feature selection methods to create three distinct feature subsets:

	 1	 RF-RFECV (15, 16)

Using random forest classifier (v1.5.1) with 5-fold cross-
validation (CV) and RFECV (v1.5.1), we  progressively 
eliminated less relevant features to obtain an optimal 
feature subset that enhanced model generalization while 
improving model interpretability.

	 2	 Light Gradient Boosting Machine (LightGBM) (17, 18)

We trained a LightGBM model (v4.4.0) and ranked 
features based on their importance in the tree structure, 
selecting those with above-average importance values.

	 3	 Information Gain (IG) (19)

We ranked features based on their entropy-based 
contribution to the target variable and selected those with 
information gain values above the average to form the IG 
feature subset, reducing noise features.

Additionally, we  included the complete dataset of all 54 
parameters and a clinically relevant subset of 12 parameters (WBC, 
HGB, PLT, RBC, MCV, NEUT%, LYM%, MXD%, EO%, BASO%, 
age and sex) validated by three hematology experts. The specific 
screening method was conducted as follows: from the 23 CBC 
parameters with minimal missing values, the experts unanimously 
agreed on 7 core parameters (WBC, HGB, PLT, RBC, MCV, age and 
sex) for direct inclusion in the model. For the remaining 
parameters, the experts chose to incorporate NEUT%, LYM%, 
MXD%, EO%, and BASO% after discussion, as these percentage-
based parameters are relative values unaffected by WBC count, 
making them more comparable across different individuals. This 
makes them particularly suitable for initial disease screening or 
classification, especially in the classification of leukemia. 
Parameters not selected by the expert panel were excluded. 
Therefore, a total of 5 parameter sets were used for the training of 
the model.

2.5 Model training and optimization

The dataset was randomly divided into a training set and a 
validation set at a 7:3 ratio. To address the issue of class imbalance, 
we  applied the synthetic minority over-sampling technique (20), 
which generates synthetic samples to balance the class distribution in 
the training set. The Optuna framework was utilized for automated 
hyperparameter tuning through bayesian optimization (21), with an 
objective function defined as maximizing the coefficient of 
determination (R2) on the validation set.

We evaluated candidate models, including k-nearest neighbor 
(KNN), random forest (RF), categorical boosting (CatBoost), extreme 
gradient boosting (XGBoost), LightGBM, alongside two ensemble 
models: EnMod1, which combines RF, XGBoost, and LightGBM, and 
EnMod2, which integrates RF, XGBoost, LightGBM, and CatBoost. 
Model performance was assessed using five-fold cross-validation, with 
evaluation metrics including precisions, recalls, F1-scores, and area 
under the curves (AUCs). The initial validation was conducted on the 
temporally distinct test set (test set_1) and the optimal model 
demonstrating superior performance was selected for further 
evaluation. This final model underwent rigorous validation on the 
multi-center and independent external test set (test set_2), confirming 
its robust generalization capabilities.

2.6 Interpretability

We used SHapley Additive exPlanations (SHAP; version 0.46.0), 
a widely recognized framework for explaining ML models, to 
quantify and interpret the contribution of input features. SHAP 
summary plots visualize the overall impact of each feature, while 
SHAP dependency plots reveal the relationship between individual 
features and model predictions. SHAP values quantitatively measure 
the contribution of each variable to the prediction outcomes, 
enabling us to rank and evaluate feature importance (22). This 
analysis enhanced the transparency and interpretability of our ML 
models, identifying the critical blood laboratory parameters that 
most influenced the predictions in hematological disease diagnosis.
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2.7 Clinical diagnostic comparison test

To further evaluate the diagnostic performance and practical 
application of these models, we  conducted a clinical diagnostic 
comparison test with 100 randomly selected patients from the dataset. 
The cases were randomly divided into two groups: a 46-parameter 
group and a 12-parameter group of 50 patients each, all covering 16 
disease categories and a group of healthy individuals. Specifically, 4 
senior hematologists and 4 junior hematologists were invited for 
diagnosis. The cases were randomly distributed to each hematologist, 
and each doctor needed to analyze 20 cases (10 cases in each of the 
two groups). Finally, the diagnostic accuracy of the two model’s and 
the two groups of hematologists was evaluated across the two distinct 
parameter sets.

2.8 Development of predictive tools

A web-based calculator using a simplified 12-parameter model 
has been developed to provide diagnostic support to clinicians and 
serve as a health assessment platform for users. This platform was 
employed using the Shiny for Python framework (shiny: version 0.5.0; 
shinyswatch: version 0.3.1), integrating libraries such as Pandas and 
Matplotlib for data processing and visualization. In our study, users 
can input clinical parameters to obtain predicted outcomes for the 
potential hematological diseases, thereby enhancing the model’s utility 
and accessibility in clinical diagnosis and patient health assessment.

2.9 Statistics method

Data analysis was performed using Python version 3.12.3. For 
continuous variables, median and quartile ranges (IQR) were used for 
representation, and comparisons were performed using the Mann-
Whitney U test. For discrete variables, they were represented as counts 
and precentages, and the Chi-square test was used for comparative 
analysis. During the significance test, the p value of parameters was 
calculated. When the p value was less than 0.05, the difference between 
the two groups of data was considered to be statistically significant.

3 Results

3.1 Study population

Our dataset comprised 10,401 patients representing 16 distinct 
hematological disease types and 1 healthy control group. We analyzed 
54 clinical and laboratory parameters for each patient. The dataset was 
randomly divided into training and validation sets at a 7:3 ratio, 
consisting of 7,280 and 3,121 cases, respectively. Demographic 
characteristics were comparable across all sets. The training set had a 
median age of 46.00 years (IQR: 29.00–57.00) with a male-to-female 
ratio of 0.85. Similarly, the validation set showed a median age of 
46.00 years (IQR: 29.00–58.00) with a male-to-female ratio of 0.88. 
The test set_1 included 342 patients with a median age of 49.00 years 
(IQR: 30.00–60.00), comprising 159 males (46.49%) and 183 females 
(53.51%). The test set_2 with 149 patients had a median age of 
55.0 years (IQR: 45.0–69.0) with 78 males (52.35%) and 71 females 

(47.65%). Supplementary Tables 1, 2 provide the full baseline 
characteristics of the training/validation sets and test sets. In addition, 
regarding the dataset distribution, Figure 1A illustrates the overall 
breakdown of the internal dataset into training, validation, and 
temporally distinct test sets, demonstrating the proportion of samples 
allocated to each subset for model development and evaluation. 
Figures 1B–D further detail the disease category distribution within 
each of these subsets, respectively. These pie charts show the 
proportion of each disease category and healthy control samples in the 
training, validation, and temporally distinct test sets.

3.2 Selection of feature parameters

For feature selection, Figure  2A illustrates the relationship 
between the number of parameters and the mean CV score as 
determined by the RF-RFECV method. The curve shows a gradual 
increase in CV scores as more parameters were included, reaching an 
optimal point at 46 parameters, beyond which the score plateaus. This 
indicated that 46 parameters were sufficient to capture the essential 
patterns in the data for optimal model performance. Figures 2B,C 
show the feature importance scores calculated using the LightGBM 
algorithm and IG scores, respectively. In total, 23 parameters scored 
above the average importance threshold with LightGBM, while 24 
parameters were selected by IG. Significant parameters like PLT, 
WBC, and PCT were identified as crucial for the prediction by all 
methods, although there are slightly different evaluation criteria 
among them. Detailed information about the selected parameters for 
each method is shown in Supplementary Table 3.

3.3 Model performance and feature 
importance analysis of the validation set

We assessed the performance of our model using accuracy and 
AUC as the primary evaluation metrics. On the validation set, the 
model with 54 parameters achieved a CV score of 0.796, while EnMod1-
46, which was developed using the RF-RFECV method to select 46 
parameters, achieved a slightly lower CV score of 0.793. Both models 
demonstrated identical AUC values of 0.979, indicating comparable 
predictive capabilities. While the performance of the two models was 
nearly equivalent, EnMod1-46 utilized fewer features, thereby reducing 
computational costs and minimizing dependence on parameters. Based 
on this analysis, we selected the 46-parameter EnMod1-46 as our final 
model. At the same time, EnMod2-12, which was constructed using a 
simplified parameter set of 12 features, achieved a CV score of 0.739 and 
an AUC of 0.962. Although its accuracy was lower than that of EnMod1-
46, EnMod2-12 offered a practical advantage by requiring fewer and 
more easily obtainable parameters. Table 1 presents the CV scores and 
AUCs of different feature subsets across the models.

3.3.1 Model EnMod1-46
The classification performance of the optimal EnMod1-46, 

constructed using the 46 key feature parameters was evaluated on the 
validation set, with results presented in Figure 3. Figure 3A displays 
the precision, recall, and F1-score for each group on the validation set 
using the EnMod1-46 model. It shows that the model achieved the 
highest precision and recall for healthy individuals, at 0.961 and 0.940, 
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respectively. The precision and recall of CLL, CML, MM, MPN, 
hemocytopenia, and IDA were all above 0.800. However, for ALL, 
APL, and AML-not APL, the precision were slightly lower, at 0.608, 
0.650 and 0.703, respectively. The precision of AA, CMML, MDS, and 
HA were below 0.600, with CMML showing the poorest performance, 
achieving precision and recall of only 0.333. This might be attributed 
to the limited sample size of CMML, with only 12 cases available, 
potentially leading to biased results.

Figure 3B presents the receiver operating characteristic (ROC) 
curves and AUC values for EnMod1-46 on the validation set. The 
results showed that the model exhibited excellent performance in 
diagnosing CLL and healthy group, achieving AUC values of 0.999 for 
both. In contrast, the AUC value for MDS was the lowest at 0.930. 
However, excluding MDS, all other groups achieved AUC values 
exceeding 0.950, demonstrating the model’s robust classification ability 
across most conditions. Figure 3C presents the confusion matrix for 
EnMod1-46 on the validation set. As shown in the matrix, the model 
faced challenges in accurately diagnosing APL, with approximately half 
of APL cases being misclassified as AML-nonAPL. Additionally, high 

classification errors were observed among AA, ALL, AML-nonAPL, 
MDS and Hemocytopenia, suggesting significant overlap in peripheral 
blood parameters across these conditions. However, the model 
demonstrated high accuracy in diagnosing CLL and CML, indicating 
strong differentiation capabilities for these two diseases.

Figures  3D–F present SHAP analysis for EnMod1-46. Eight 
parameters consistently emerged as top predictors across all three 
models, including PLT, HGB, WBC, MCV, RBC, PCT, MCH and age. 
Disease-specific patterns revealed PCT and HGB as primary 
contributors to Hemocytopenia predictions, while WBC showed 
strong predictive value for CML and MCV for Thalassemia. Age 
exhibited particular significance in ALL predictions, and MCH had a 
notable impact on IDA.

3.3.2 Model EnMod2-12
The classification performance of EnMod2-12 was evaluated on 

the validation set, with results presented in Figure 4. The figure 
shows that the classification report results of EnMod2-12 were 
consistently lower than those of EnMod1-46. Specifically, as 

FIGURE 1

(A) Dataset proportions. Disease distribution across datasets of (B) Training set. (C) Validation set. (D) Test set_1.
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demonstrated in Figure 4A, the lowest precision was observed for 
APL at 0.240, while the highest precision was achieved for MPN at 
0.929. In terms of recall, CMML showed the poorest performance 
at 0.250, while CML achieved the highest recall at 0.938. For 
F1-score, CMML exhibited the lowest value, while Healthy achieved 
the highest F1-score at 0.912. In addition, unlike EnMod1-46, 
which demonstrated precision and recall exceeding 0.800 for seven 
categories (Healthy, CLL, MPN, CML, Hemocytopenia, IDA, and 
MM), EnMod2-12 showed a significant decline in precision and 
recall for MM (Figure 4A).

Figure 4B illustrates the ROC and AUC values for EnMod2-12 on 
the validation set. The highest AUC value of 0.998 was achieved for 

CLL, while the AUC value for the healthy group decreased to 0.995 
compared to EnMod1-46. MDS still exhibited the lowest AUC value 
at 0.912, with Lymphoma showing the second lowest AUC value 
of 0.931.

The confusion matrices for EnMod2-12 on the validation set are 
presented in Figure 4C. Similar to EnMod1-46, this model struggled 
with APL diagnosis, frequently misclassifying it as 
AML-nonAPL. Significant confusion was observed among AA, ALL, 
AML-nonAPL, MDS, and Hemocytopenia cases, reflecting similarities 
in their peripheral blood parameters.

Figures 4D–G display corresponding analyses for EnMod2-12. Six 
of the eight most influential parameters (PLT, WBC, MCV, HGB, 

FIGURE 2

Feature selection. (A) RF-RFECV. (B) LightGBM. (C) IG.

TABLE 1  The CV scores and AUCs of different models and different parameter sets on the validation set.

Performance 
Metrics

Model Light GBM (23 
parameters)

IG (24 
parameters)

RF-RFECV (46 
parameters)

ALL* (54 
parameters)

Common* (12 
parameters)

CV scores KNN 0.706 0.699 0.666 0.680 0.661

RF 0.767 0.750 0.773 0.782 0.735

CatBoost 0.773 0.751 0.744 0.775 0.734

XGBoost 0.775 0.754 0.788 0.792 0.731

LightGBM 0.773 0.757 0.791 0.791 0.726

Ensemble* 0.7792 0.7612 0.7931 0.7962 0.7392

AUCs KNN 0.883 0.866 0.780 0.879 0.856

RF 0.968 0.968 0.975 0.976 0.959

CatBoost 0.971 0.967 0.966 0.975 0.959

XGBoost 0.972 0.968 0.977 0.975 0.952

LightGBM 0.971 0.966 0.977 0.975 0.957

Ensemble* 0.9742 0.9702 0.9791 0.979 2 0.962 2

*Ensemble model (1, EnMod1, an ensemble model comprising RF, XGBoost, and LightGBM; 2, EnMod2, an ensemble model comprising RF, XGBoost, LightGBM, and CatBoost).  
ALL indicates all parameter sets, and Common indicates common parameter sets.
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RBC, and age) overlapped with those identified in EnMod1-46, 
maintaining consistent disease-specific associations. For example, 
PCT retained its strong association with Hemocytopenia predictions 

across both model architectures, while WBC continued to demonstrate 
particular importance for CML classification. Based on the data 
analysis of EnMod1-46 and EnMod2-12, it can be concluded that PLT, 

FIGURE 3

Performance and feature importance analysis of EnMod1-46. (A) Classification performance. (B) ROC and AUC. (C) Confusion matrix. SHAP analysis for 
EnMod1-46. (D) RF. (E) XGBoost. (F) LightGBM.

FIGURE 4

Performance and feature importance analysis of EnMod2-12. (A) Classification performance. (B) ROC and AUC. (C) Confusion matrix. SHAP analysis for 
EnMod2-12. (D) RF. (E) XGBoost. (F) LightGBM. (G) CatBoost.
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WBC, MCV, HGB, RBC and age were the most important 
characteristic parameters of the prediction models.

3.4 Model performance of the test set

On the test set_1, the accuracy of EnMod1-46 was 0.804 and the 
AUC was 0.964, both of which were better than the 56-parameter 
models. EnMod2-12 had an accuracy of 0.784 and an AUC of 0.961 
(Table  2). This performance advantage persisted in test set_2, the 
EnMod1-46 attained 0.738 accuracy and 0.973 AUC versus 0.705 
accuracy and 0.962 AUC for EnMod2-12. Model diagnostic 
visualizations are provided in Supplementary Figures: ROC curves with 
corresponding AUC values for EnMod1-46 (Supplementary Figure S1A, 
test set_1; Supplementary Figure S2A, test set_2) and EnMod2-12 
(Supplementary Figure S1C, test set_1; Supplementary Figure S2C, 
test set_2), alongside confusion matrices for EnMod1-46 
(Supplementary Figure S1B, test set_1; Supplementary Figure S2B, test 
set_2) and EnMod2-12 (Supplementary Figure S1D, test set_1; 
Supplementary Figure S2D, test set_2).

3.5 Diagnostic agreement analysis

Figure 5 presents a comparison of diagnostic accuracy among 
different groups using different parameter sets. When evaluating 
diagnoses based on the 12-parameter subset, the EnMod2-12 model 
demonstrated a diagnostic accuracy of 0.840. In contrast, the mean 
diagnostic accuracy among five junior hematologists was 0.530, 
while that of senior hematologists was 0.550. For EnMod1-46, 
which utilized an expanded 46-parameter dataset, the model 
achieved a diagnostic accuracy of 0.800. Senior hematologists 
demonstrated improved performance with this extended parameter 
set, achieving an accuracy of 0.750, which was slightly lower than 
the model’s performance. However, junior hematologists showed 
only a marginal improvement, with their accuracy increasing by 
just 0.050.

3.6 Predictive tool

Considering the challenges that less experienced clinicians may 
face during the diagnostic process, we  have developed an online 
prediction tool using the EnMod2-12. This practical tool is designed 
to provide auxiliary diagnostic support for clinical settings, especially 
for institutions with limited resources. The platform is user-friendly, 
requiring only the input of 12 key CBC parameters. Among these 
parameter, “Age” must be entered as an integer and “Gender” requires 
the user to select the appropriate option. The remaining parameters 
can accept numeric values. Notably, WBC, HGB, PLT, MCV, and RBC 
must not be 0, otherwise, the system will issue a warning that the 
inputs are invalid and request the user to enter the correct value. After 
inputting the valid values, the user can click the “Predict” button, then 
the system will rapidly generate precise diagnostic predictions by 
classifying disease as benign or malignant and providing the 
corresponding probability for the most possible disease. Therefore, 
facilitating accurate and timely diagnosis in clinical settings. The 
system is open to the public and users can use the tool by visiting 
https://xqidch.shinyapps.io/ham_classification/.

Figure 6 displays a detailed overview of the online prediction 
platform using an IDA case as an example. The patient is female, and 
her age is 66 years old. After entering corresponding data into the 
platform, the diagnosis revealed a 90.1% likelihood of the patient 
having a benign hematological disease, and IDA was identified as the 
most likely disease, with the highest possibility at 85.2%. The 
diagnostic prediction aligned with the actual clinical diagnosis for 
this patient.

4 Discussion

The heterogeneity of hematological diseases leads to complex 
correlations between clinical presentation and laboratory 
parameters. While routine indicators such as CBC and biochemical 
markers provide valuable diagnostic clues, integrating multi-
parameter analyses remains challenging. ML techniques, leveraging 

TABLE 2  The accuracy and AUC for different models and parameter sets on the test set_1.

Performance 
Metrics

Model Light GBM (23 
parameters)

IG (24 
parameters)

RF-RFECV (46 
parameters)

ALL* (54 
parameters)

Common* (12 
parameters)

Accuracy KNN 0.690 0.678 0.711 0.693 0.655

RF 0.784 0.760 0.784 0.781 0.760

CatBoost 0.763 0.751 0.740 0.787 0.763

XGBoost 0.769 0.743 0.801 0.778 0.766

LightGBM 0.781 0.754 0.781 0.775 0.772

Ensemble* 0.7842 0.7542 0.8041 0.7782 0.7842

AUC KNN 0.871 0.856 0.770 0.864 0.888

RF 0.947 0.939 0.962 0.944 0.947

CatBoost 0.958 0.948 0.952 0.963 0.954

XGBoost 0.954 0.945 0.962 0.967 0.936

LightGBM 0.961 0.942 0.963 0.962 0.956

Ensemble* 0.9602 0.9462 0.9641 0.9622 0.9612

*Ensemble model (1, EnMod1, an ensemble model comprising RF, XGBoost, and LightGBM; 2, EnMod2, an ensemble model comprising RF, XGBoost, LightGBM, and CatBoost). ALL 
indicates all parameter sets, and Common indicates common parameter sets.
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FIGURE 5

The diagnostic accuracy of clinicians and models using two different parameter sets. Junior, junior hematologist; Senior, senior hematologists; All, 
both junior and senior hematologists.

FIGURE 6

Schematic diagram of the online prediction website.
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their powerful data processing and analysis capabilities, have been 
widely applied in the diagnosis, prognosis, and prediction of 
complications in hematologic diseases (23–26). Meanwhile, clinical 
parameter-based risk prediction models have also demonstrated 
strong predictive performance in clinical practice (11, 13, 27). ML 
models based on clinical and laboratory parameters can be cost-
effective and efficient for screening hematological diseases, 
especially malignant ones (28). This study established diagnosis 
models for common hematological diseases using routine clinical 
laboratory parameters, achieving high accuracy, stability, and 
efficiency at low cost, thereby facilitating early diagnosis and 
screening in clinical settings.

This study developed a predictive model for hematological 
diseases using peripheral blood parameters. Feature selection is 
pivotal in ML model construction, as it identifies key features, 
reduces complexity, and improves generalization. This study 
employed three feature selection algorithms, with the RF-RFECV 
algorithm yielding 46 parameters that formed an integrated model, 
EnMod1-46, showing strong diagnostic performance in all validation 
and test sets (Tables 1, 2). The advantage of RF-RFECV is that it 
combines the integration capabilities of random forests with cross-
verified feature elimination. This approach better captures complex 
patterns and feature interactions, which are essential for classifying 
multiple blood disorders in unbalanced datasets. The integrated 
model, combining RF, XGBoost, and LightGBM, outperformed 
single-model approaches by leveraging the strengths of multiple 
algorithms (29). Additionally, to optimize hyperparameters, 
we  introduced Optuna, an automated optimization framework, 
simplifying the search process and reducing the time and 
computational cost of manual tuning (30).

EnMod1-46 achieved accuracies of 0.804 and 0.738 on the test 
set_1 and the test set_2, respectively, surpassing existing RF-based 
studies reporting accuracies of 0.57–0.59 (11). While some studies 
have reported accuracies exceeding 0.90 (13, 14), these models 
predominantly target single diseases (e.g., specific leukemia 
subtypes). Additionally, the simplified 12-parameter model, 
EnMod2-12, achieved test set accuracies of 0.784 (test set_1) and 
0.705 (test set_2), offering a practical solution for primary 
healthcare settings. Despite the reduction in parameters, 
EnMod2-12 maintained strong predictive capabilities and 
generalizability, highlighting its potential for applications requiring 
simpler models. In the validation set, the EnMod1-46 demonstrated 
high accuracies and recalls for CLL, CML, MM, MPN, 
hemocytopenia, and IDA (all>0.800). However, performance was 
lower for CMML (precision: 0.333, recall: 0.333), likely due to 
insufficient sample size. The confusion matrix analysis demonstrated 
strong performance in identifying Healthy, CLL, CML, and 
MM. However, it still faced challenges in distinguishing ALL, APL, 
and AML-nonAPL.

There were certain differences in the key feature parameters 
identified by different models, but the overall trend remained 
consistent in EnMod1-46 and EnMod2-12. SHAP analysis 
highlighted key parameters contributing to disease prediction, 
including PLT, WBC, HGB, MCV, RBC, and age. These parameters 
directly reflect the development of megakaryocytes, myeloid cells, 
lymphocytes, and red blood cells. Notably, PLT was the most 
important parameter across all models, consistent with its role in 
acute leukemia (31). In addition, studies have confirmed that WBC 

and RBC are key features for identifying leukemia (14). The 
occurrence of leukemia is due to the abnormal proliferation of 
leukemic cells in the bone marrow, which often leads to an increase 
in WBC. This abnormal proliferation of leukemic cells can inhibit 
normal hematopoiesis, thereby affecting RBC level. HGB is a critical 
indicator for detecting the presence of anemia, while MCV, MCH, 
and MCHC are the main parameters for differentiating types of 
anemia (32). Additionally, different types of hematological diseases 
have distinct age distributions at onset (33, 34). These key parameters 
are closely related to the characteristics of disease development. 
Notably, even without specific parameters such as IgM, the simplified 
model effectively identified MM (precision: 0.643) on the validation 
set, demonstrating its validity and reliability. Other studies have 
demonstrated that clinical parameters such as cytokines, lymphocyte 
subsets, and cell population data have proven to be highly valuable in 
the classification and differential diagnosis of hematological diseases 
(35, 36). In future research, we will incorporate a broader range of 
clinically valuable parameters to further enhance the predictive scope 
and accuracy of our models.

Comparative analysis of clinical diagnosis showed that the 
performance of EnMod2-12 was better than that of hematologists 
with different experience, indicating that even in the case of fewer 
parameters, the model can accurately identify complex 
relationship patterns between different parameters and achieve 
efficient and accurate predictions. Senior hematologists performed 
better on 46 parameters, achieving results comparable to 
EnMod1-46 because hematologists were able to interpret 
relationships between complex parameters. However, junior 
hematologists did not improve accuracy when adding parameters. 
Among them, we also saw that the accuracy rate of EnMod2-12 
was better than that of EnMod1-46, which was somewhat different 
from our research results, which might be caused by differences 
in data distribution. To facilitate clinical application, we developed 
a user-friendly web prediction platform based on the simplified 
EnMod2-12, which can be accessed via the following link: https://
xqidch.shinyapps.io/ham_classification/.

Despite the high accuracy achieved in this study, there are still 
some limitations. First, this single-center retrospective study had 
incomplete data and insufficient sample sizes for rare diseases, which 
affected diagnostic accuracy. Second, although this study covered 
about 80% of hematological disease types, which basically meets 
clinical needs, further expanding the prediction range will be more 
clinically valuable. Future studies should increase sample sizes for rare 
diseases to ensure balanced data and conduct multi-center prospective 
studies to improve generalizability and clinical application.

5 Conclusion

In this study, we  developed two high-performance diagnostic 
models for hematological diseases by employing Optuna for automatic 
hyperparameter tuning and optimizing the combination of feature 
algorithms with various ML models. The clinical diagnostic 
comparison test further validated the significant clinical practical 
value and diagnostic performance of both models. Additionally, we 
developed a practical online tool to provide an efficient screening 
solution and facilitate early diagnosis opportunities for 
hematological diseases.
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Glossary

AA - Aplastic Anemia

ALL - Acute Lymphoblastic Leukemia

APL - Acute Promyelocytic Leukemia

AML-nonAPL - Acute Myeloid Leukemia-nonAPL

CLL - Chronic Lymphocytic Leukemia

CML - Chronic Myeloid Leukemia

CMML - Chronic Myelomonocytic Leukemia

MDS - Myelodysplastic Syndrome

MM - Multiple Myeloma

MPN - Myeloproliferative Neoplasm

Hemocytopenia - Immune-related or unclear hemocytopenia

MgA - Megaloblastic Anemia

HA - Hemolytic Anemia

IDA - Iron Deficiency Anemia

WBC - White blood cell count

HCT - Hematocrit

PT - Prothrombin time

HGB - Hemoglobin

MCH - Mean corpuscular hemoglobin

APTT - Activated partial thromboplastin time

PLT - Platelet count

MCHC - Mean corpuscular hemoglobin concentration

Fg - Fibrinogen

MCV - Mean corpuscular volume

MPV - Mean platelet volume

TT - Thrombin time

LYM% - Lymphocyte ratio

PDW - Platelet distribution width

IgA - Immunoglobulin A

LYM# - Lymphocyte count

PCT - Thrombocytocrit

IgE - Immunoglobulin E

BASO% - Basophil ratio

ALB - Albumin

IgG - Immunoglobulin G

BASO# - Basophil count

GLB - Globulin

IgM - Immunoglobulin M

EO% - Eosinophil ratio

ALB/GLB - Albumin/globulin ratio

Igκ - Kappa light chain

EO# - Eosinophil count

ALP - Alkaline phosphatase

Igλ - Lambda light chain

MXD% - Monocyte ratio

ALT - Alanine aminotransferase

EPO - Erythropoietin

MXD# - Monocyte count

AST - Aspartate aminotransferase

FOL - Folic acid

NEUT% - Neutrophil ratio

CREA - Creatinine

VB12 - Vitamin B12

NEUT# - Neutrophil count

DBIL - Direct bilirubin

SF - Ferritin

RET% - Reticulocyte ratio
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TBIL - Total bilirubin

FE - Serum iron

RBC - Red blood cell count

GGT - Gamma-glutamyl transpeptidase

IAT - Indirect antiglobulin

RDW-CV - Coefficient of variation of red blood cell width

LDH - Lactate dehydrogenase

DAT - Direct antiglobulin

RDW-SD - Standard deviation of red blood cell width.
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