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The emergence of both task-specific single-modality models and general-

purpose multimodal large models presents new opportunities, but also

introduces challenges, particularly regarding adversarial attacks. In high-stakes

domains like healthcare, these attacks can severely undermine model reliability

and their applicability in real-world scenarios, highlighting the critical need for

research focused on adversarial robustness. This study investigates the behavior

of multimodal models under various adversarial attack scenarios. We conducted

experiments involving two modalities: images and texts. Our findings indicate

that multimodal models exhibit enhanced resilience against adversarial attacks

compared to their single-modality counterparts. This supports our hypothesis

that the integration ofmultiplemodalities contributes positively to the robustness

of deep learning systems. The results of this research advance understanding in

the fields of multimodality and adversarial robustness and suggest new avenues

for future studies focused on optimizing data flow within multimodal systems.
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machine learning (ML), adversarial attack, multimodal data fusion, classification, X-ray

1 Introduction

Deep learning systems have demonstrated rapid development and are currently

being extensively applied in a wide range of fields, including healthcare. The medical

domain is especially promising for AI integration due to the variety of existing tasks

that involve diverse data types, such as texts, images, and numerical recordings (1).

Common examples of medical data include X-ray images, CT scans, and MRIs images

representations, Electronic Health Record (EHR), text prescriptions, and more (2, 3).

Task-specific models are commonly used to analyze these data types for applications

such as disease prediction, anomaly detection, vaccine design, drug discovery, and more

(4). Along with single-modality models, general-purpose multimodal large models have

recently emerged, offering the potential to process these different data simultaneously and

address even more complex tasks (1).

Frontiers inMedicine 01 frontiersin.org

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1606238
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1606238&domain=pdf&date_stamp=2025-07-24
mailto:Asad.Khattak@zu.ac.ae
https://doi.org/10.3389/fmed.2025.1606238
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2025.1606238/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Mozhegova et al. 10.3389/fmed.2025.1606238

Although the healthcare domain presents significant

opportunities for AI innovation, it also imposes high standards

on these systems, requiring exceptional performance, reliability,

robustness, and interpretability. This raises critical questions about

the vulnerabilities of these systems. Specifically, deep learning

models frequently remain vulnerable to adversarial attacks—small,

often imperceptible, perturbations to the input data, capable of

misleading model predictions (5). Studies have shown that medical

AI models can be highly vulnerable to adversarial attacks (6–9).

Due to the healthcare realm being an area with high demands to

systems accuracy and robustness, it is important to thoroughly

understand the vulnerabilities of these models to ensure their

reliability and safety in medical applications.

In this research, we take a step forward in the exploration

of a new and relatively unexamined topic: adversarial attacks

across modalities, with the aim of uncovering new patterns in

the robustness of multimodal models. We successfully deceived

AI models specialized in medical tasks by employing adversarial

attacks on two modalities: images and texts. We observed that the

models are indeed vulnerable to these attacks, with varying levels of

damage depending on the severity of the attack.

Through our further experiments, we demonstrate that

multimodality can improve the overall performance of the model.

Additionally, combining modalities can also result in enhanced

robustness of the model. In our experiments, we applied adversarial

attacks on different data types; however, the multimodality models

appeared to be more robust to these attacks compared to

single-modality models.

We suggest that further research into how data flows in

multimodal AI models might be a key to studying the robustness

of multimodal AI systems.

This paper is structured as follows. Section 2 examines the

vulnerabilities of both general and medical AI systems toward

adversarial attacks and reviews similar approaches to enhancing

their robustness. Section 3 outlines the methodology established

for conducting our experiments, with the detailed description and

obtained results discussed in Section 4. Section 5 discusses the

findings, shares key insights, and Section 6 concludes the paper with

a brief research summary and potential future directions.

2 Literature review

We conducted a literature review to examine the current

state of AI systems in the healthcare domain and their practical

implementations in this field. Currently, some task-specific models

are already being employed for applications such as disease

prediction, anomaly detection, vaccine design, drug discovery,

and more. For instance, Electronic Health Records (EHR) are

frequently used for anomaly detection and risk assessment, medical

imaging modalities, such as X-rays, CT scans, and MRIs are

used for disease prediction (2–4). Other prominent examples of

successful implementations of AI models in healthcare include

CheXNet, a convolutional neural network (CNN) for pneumonia

prediction based on chest X-ray images; diagnosis prediction

systems using EHR; MURA for bones abnormality detection,

and ToxDL, a CNN-based model for assessing protein toxicity

(2, 10, 11).

Our review also explored adversarial vulnerabilities in ML

models. Research demonstrated that adversarial attacks have

already been extensively studied, and it has been proven that

both models with known and unknown internal parameters can

be attacked. These attacks can deceive the model, forcing it to

generate incorrect results—either randomly (untargeted attacks)

or specifically (targeted attacks). Goodfellow demonstrated that

adversarial attacks can compromise a wide range of models: not

only deep learning models but also linear models, such as softmax

regression (5). Furthermore, these attacks can target various

data modalities.

Regarding the text modality, attacks applied on texts are

designed to alter different textual units: characters, words, or

phrases. The most common text attacks include word flipping,

word swaps, word deletions or additions (12), and synonym

replacements (13). These techniques can rely on methods such as

word embeddings or contextual language models such as BERT to

choose replacements that preserve meaning (14).

In the context of images, attacks on visuals primarily involve

gradient-based methods, with the most popular being FGSM (Fast

Gradient Sign Method) (5) and PGD (Projected Gradient Descent)

(15). These attacks perturb the input data in the direction of the

gradient of the model’s loss function with respect to the input,

aiming to mislead the model.

Studies have shown that medical AI models can be highly

vulnerable to adversarial attacks due to several reasons,

including complexity of medical images, overparameterization

of medical AI models (6, 7). Another factor is that they are

frequently based on pre-trained architectures, and information

about the model can provide attackers with a significant

advantage, enabling them to manipulate the input to exploit the

model’s vulnerabilities. Additionally, if the data types remain

consistent, attackers can target specific input patterns that the

model expects, making it easier for them to craft adversarial

examples (6, 7).

The study of robustness of multimodal models is a relatively

new and developing field, with a few research experimenting

with attacks on these models. Some studies propose ideas that

multimodaliity can improve robustness (16). However, other

research has experimentally shown that random fusion techniques

do not provide advantages for model robustness (16, 17), while

others suggest that improvements are possible only with specifically

crafted fusion techniques (16). Huang et al. (18) try to close

this gap by developing the adversarial attack called 2M-attack

on medical multimodal models. Thota et al. (19) use the

modification of PGD attack to compromise the Language-Image

model and show that such model is vulnerable against even

small adversarial perturbations. In our study, we would like to

investigate the impact of various fusion techniques on the total

model robustness.

3 Method

3.1 Framework concept

In this section, we introduce the general concept of our

methodology and present an overview of our experimental setup.
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This study focuses mainly on two modalities—images and

text—since they are the most commonly encountered in healthcare

applications (20).

We initially constructed two separate models: an image-based

model MI and a text-based model MT . We then combined MI

and MT to create a multimodal model, MIT , resulting in three

distinct models.

We apply different attack scenarios on these models and

evaluate the models’ robustness against these attacks. First, we

implement Fast Gradient Sign Method (FGSM) and Projected

Gradient Decent (PGD) attacks on the visual model. PGD

attack can be considered as We apply attacks on the language

model, which include synonym substitution, denoted as “Synonym

replacing,” and words deletion, denoted as “Half-sentence deleting.”

For the multimodal model MIT , we test each of the mentioned

attacks individually. For example, if we attackMI part of the model,

text description remain unchanged. Finally, we combine text and

image attacks to challenge both modalities.

The goal is to investigate how the attack of one modality

influences the overall performance of the multimodal model.

Afterward, we apply attacks on the second modality to observe

how the model’s performance degrades. This approach should help

to test the hypothesis regarding the dominance of modalities in

enhancing multimodal models’ adversarial robustness. Another

hypothesis we aim to test is whether multimodal models are

inherently more robust to adversarial attacks due to their

multimodal nature.

In the following section, we elaborate on the technical details

related to the implementation of the proposed experiment.

3.2 Models

3.2.1 CNN
For handling image data, we used a pre-trained SE-ResNet-

154 model. Pre-trained architectures, such as ResNet50 (10) and

SE-ResNet-154 (21), have demonstrated effectiveness in solving

medical imaging tasks, such as chest X-ray classification. For

instance, Rajpurkar et al. in their study (10) used ResNet-50,

while we utilized a more advanced model, SE-ResNet-154, which

incorporates a squeeze-and-excitation block and is expected to

provide improved performance over ResNet-50 for this task. Thus,

for this research, we used SE-ResNet-154 as the base model and

fine-tuned it by adding a custom classification layer. We utilized

this model for the binary classification task for predicting whether

a person’s X-ray image is normal or has any anomalies.

3.2.2 Language model
For handling the text modality, we utilized the pre-trained

Bio_ClinicalBERT model. This model is based on BioBERT (22), a

state-of-the-art architecture, and is trained on the large MIMIC-III

dataset containing electronic health records (23).

BioBERT is considered as one of the best medical models and

MIMIC_III is one of the top datasets.

For this study, we fine-tuned Bio_ClinicalBERT specifically for

clinical text accompanying medical images, making it well-suited

for our task. This model solved the same binary classification task

asMI but with the text labels as inputs.

3.2.3 Modality fusion
To build an effective multimodal model, it is crucial to

understand the methods for combining different modalities. The

main approaches include early fusion (also known as feature-

level fusion), late fusion (decision-level fusion), and attention-

based techniques. Among these, early and late fusion are two

fundamental paradigms in multimodal integration, and thus, they

are the primary focus of this study.

Early fusion is generally considered the best option whenmodel

parameters are known and the dataset is large since it allows for a

unified representation of modalities at the feature level, leveraging

the full richness of the combined data (22).

However, in practical scenarios where dataset sizes are

moderate, late fusion often proves to be more effective. By

treating each modality independently and combining their

decision-level outputs, late fusion can better utilize the available

samples to make accurate predictions, especially when the

separability of individual modalities is comparable (22). Thus,

we used both fusion techniques. Accordingly, we implemented

two models for classification: VisionBERT_EarlyFusion and

VisionBERT_LateFusion. The multimodal model aimed to predict

whether a person has a disease or is healthy based on chest X-ray

images accompanied by text labels.

3.2.3.1 VisionBERT_EarlyFusion

This model combines lateral and frontal images using the SE-

ResNet-154 architecture for feature extraction, excluding the final

fully connected layer to obtain spatial features. These image features

are concatenated and fused with the textual features from BERT’s

[CLS] token representation. The fused features are passed through

a linear layer for binary classification (normal/abnormal). We take

the pre-trained weights and train all three extracion models and

classification head simultaneously on our dataset. This approach is

illustrated on Figure 1.

3.2.3.2 VisionBERT_LateFusion

Similar to the VisionBERT_EarlyFusion model, this

architecture extracts features from both the image (via SE-

ResNet-154) and text (via Bio_ClinicalBERT). However, late

fusion is applied: separate classifiers for each modality produce

independent predictions, which are concatenated and passed to a

final classifier for decision-making. This enables the model to learn

the contributions of each modality before fusion. Thus, the training

contains of two stages. On the first stage, we train image and text

classifiers separately. On the second stage, we freeze their weights

and train the final classification layer, with four input and two

output neurons. Our late fusion model is presented on Figure 2.

Additionally, on Figure 3 we present a special case of late fusion

called ensemble fusion, where we do not train the final classifier

layer and just consider the sum on predictions from image and text

models. In comparison to late fusion, the ensemble fusion is simpler

and threat two modalities equally.
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FIGURE 1

Early fusion approach. Two X-rays, frontal and lateral, are inputted into SE-ResNet models, producing image features of 2048 dimensions each. Text

diagnosis is processed by BioBERT, producing a 768-dimension representation. These are concatenated to form a 4864-dimension vector, which a

linear layer classifies as normal or abnormal.

FIGURE 2

Late fusion of Se-ResNet-s and BioBERT. We train separately image and text models on classification task. To fuse the final prediction, we freeze the

models weights and train the linear layer on concatenated prediction.

3.3 Dataset

We used a multimodal dataset collected by Indiana University

that incorporates chest X-ray images accompanied by text captions.

This dataset consists of two parts:

• indiana_reports.csv

This file includes the following columns:

– uid

– MeSH

– Problems

– image

– indication

– comparison

– findings

– impression

– Label

• indiana_projections.csv

This file includes the following columns:

– uid

– filename
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FIGURE 3

Ensemble fusion of Se-ResNet-s and BioBERT. Outputs from both models sum up, resulting in classification based on the sum of logits, with no

additional training of fusion head.

– projection (either “frontal” or “lateral”)

The data consists of 3,999 entries, corresponding to the number

of image pairs (lateral and frontal images) and associated textual

notes. Approximately 36% of the entries are labeled as normal, with

other entries having signs of disease.

We combined information from indiana_reports.csv

and indiana_projections.csv to create the following

multimodal dataset:

• uid

• frontal_image

• lateral_image

• text_caption

• diagnosis

Example of Chest X-ray images from the dataset is presented

on Figure 4.

To retrieve the text description, we combined the

Impression, Findings, and Indication columns.

We used both the frontal and lateral chest X-ray images from this

dataset as the input for the vision modelMI .

3.4 Attack configurations

We aimed to implement attacks on twomodalities in this study:

text and images. In our research, we implemented word deletion

and synonym substitution attacks with varying levels of intensity,

tuning them by adjusting the percentage of textual units we perturb.

We chose these attacks because they are among the most common

approaches, straightforward, and effective (12–14). Specifically, we

tested half-word deletion, where 50% of the words are removed.

Another text attack, synonym substitution, involved replacing a

fraction of the words in the text caption with their synonyms. We

tested substitution fractions of 20% and 40%.

On the images, we implemented the FGSM and PGD attacks,

as they are the most common approaches, and tuned the

hyperparameter ǫ to define the intensity of the attack. Specifically,

we used ǫ =
8
255 , as the most common choice in the literature

(5, 15), and ǫ = 0.2, as the extreme aggressive perturbation.

3.5 Training and validation setup

During the data preprocessing phase, we initially divided

the permuted dataset into training and testing subsets in

an 80% to 20% ratio, respectively. Subsequently, all models

were trained using the same portion of the dataset to ensure

consistency. To facilitate a fair comparison among the models,

we minimized unnecessary transformations during both the

training and evaluation phases. For the lateral and frontal

images, we applied normalization using a mean of 0.61 and a

standard deviation of 0.24, calculated from the training dataset.

Additionally, the text descriptions were converted to lowercase and

stripped of extraneous whitespace. We evaluated the models using

accuracy and F1-score as the main metrics since the dataset is

not balanced.

4 Experiments

4.1 Framework implementation

4.1.1 CNN
The vision model MI is built using transfer learning

with a pre-trained SE-ResNet-154 architecture. We

added a custom classification layer to the model for

task-specific fine-tuning. The classifier layer is designed
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FIGURE 4

Frontal and lateral view of Chest X-ray images. The example from “Chest X-rays” dataset of Indiana University.

to handle the concatenated feature maps from the

SE-ResNet-154 output.

For training, we used the following hyperparameters:

• Batch size: 128

• Epochs: 13

• Optimizer: Adam

• Learning Rate: 1e-4

• Scheduler: ReduceLROnPlateau

4.1.2 Language model
We post-trained the Bio_ClinicalBERT model for 5

epochs using Adam with a learning rate of 2 × 10−5, which

is commonly used for fine-tuning transformer models.

The Binary CrossEntropyLoss function is applied for the

loss calculation.

4.1.3 VisionBERT_EarlyFusion
Training Parameters:

• Optimizer: Adam

• Learning Rate: 1× 10−4

• Epochs: 5

4.1.4 VisionBERT_LateFusion
Training Parameters:

• Optimizer: Adam

• Learning Rate: 1× 10−5

• Epochs: 5

5 Results

5.1 Key findings

We present some examples of the adversarially generated

images from the multimodal dataset under FGSM attack on

Figures 5, 6. As seen in the images, adversarial attacks with quite

moderate parameters result in images, which look imperceptibly

different from the original images, and the model MIT maintains

high accuracy. However, the accuracy ofMIT degrades significantly

under the attacks with high perturbation budget for ensemble and

early fusion models.

In the following boxes we show the successful examples

of “Synonym replacing” attack, which is heavily based on

WordSwapWordNet1 attack from textattack package (24).

Example 1:

Impression: No acute pulmonary disease.

Findings: The lungs are brighten. There is no pleural

effusion or pneumothorax. The heart andmediastinum are

normal. The skeletal structures are normal.

Indication: Chest pain

Label: Abnormal

Example 2:

Impression: cold-shoulder megacardia. Clear lungs. No

effusion

Findings: nan

Indication: chest pain dyspnea

Label: Normal

1 Documentation of the attack.
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FIGURE 5

FGSM attack with ǫ = 0.03. Predicted labels (named “Pred.”) are gathered from VisionBERT_EarlyFusion model.

FIGURE 6

FGSM attack with ǫ = 0.2.Predicted labels (named “Pred.”) are gathered from VisionBERT_EarlyFusion model.

Example 3:

Impression: No acute cardiopulmonary disease

Findings: The lungs are authorize. The heart and

pulmonary XXXX appear normal. Pleural infinite are

unmortgaged. The mediastinal contours are convention.

Cadaverous overlap in the lung apices could unsung a

small pulmonary nodule.

Indication: V70.0 ROUTINE XXXX MEDICAL

EXAMINATION AT A XXXX XXXX FACILITY 305.1

NONDEPENDENT TOBACCO APPLY XXXX

Label: Normal

In Table 1, we present f1-scores for early, late and ensemble

fusions of our VisionBERT model. To test them, we apply various

adversarial attacks both separately on image and text modalities

and the their combination. In general, the late fusion approach

employed by our VisionBERTmodel exhibits superior performance

compared to other models, despite the individual modalities being

susceptible to corresponding adversarial attacks (refer to the

figures in brackets in Table 1). Conversely, the ensemble fusion

method, which represents the simplest integration of image and

text models, demonstrates the lowest resilience against such attacks.

This discrepancy in performance may be attributed to the nature of

late fusion, which generates a weighted combination of predictions

from both image and text modalities.

We also analyze the transferability of adversarial examples

between our models. The transferability is the important feature

of adversarial examples which allows to attack one model and

successfully use the resulting perturbed data on another model.

Such scenario is called “black-box”, because the adversary may not

seen the target model and attack the substitute model. We report

the results of PGD attacks transferring with ǫ =
8
255 and ǫ = 0.2

in Tables 2, 3, respectively. The experiment demonstrates that the

adversarial images for the late and early fusion models do not

transfer well, as we don’t see the same drop of accuracy as in Table 1.

Note that in all cases the text model is not attacked.

5.2 Discussion

As shown in the experiments, both single-modality models

and multimodal models are vulnerable to adversarial attacks,

though with different intensities. While even gentle attacks

with small parameters significantly degraded the performance of
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TABLE 1 F1-score of models under di�erent attack types.

Attack type VisionBERT_EarlyFusion VisionBERT_LateFusion VisionBERT_EnsembleFusion

No attack 94.94 93.73 91.88

FGSM, ǫ = 0.03 93.65 93.32 (49.28) 84.45

FGSM, ǫ = 0.2 83.48 79.05 (0.0) 48

PGD, ǫ = 0.03, steps= 10 90.54 92.25 (0.0) 14.65

PGD, ǫ = 0.2, steps= 10 18.67 83.51 (0.0) 3.97

Synonym replacing 49.6 33.04 (37.32) 57.22

Half-sentence deleting 79.94 79.68 (81.08) 80.66

FGSM(ǫ = 0.03) + Synonym replacing 31.10 42.78 29.81

PGD(ǫ = 0.03) + Synonym replacing 12.54 31.34 0.7

FGSM(ǫ = 0.03) + Half-sentence deleting 58.16 55.16 53.88

PGD(ǫ = 0.03) + Half-sentence deleting 46.56 48.05 9.86

First four attack are related to image attacks, next two attacks targets the text modality, and the rest are combination of the previous attacks. F1-score in the brackets for VisionBERT_LateFusion

model stands for the performance of the single modality.

TABLE 2 Transferability of PGD-attacked (ǫ =
8

255
) images between the models.

Black-box

Generator VisionBERT_EarlyFusion VisionBERT_LateFusion VisionBERT_EnsembleFusion

VisionBERT_EarlyFusion - 94.35 93.93

VisionBERT_LateFusion 93.96 - 92.25

VisionBERT_EnsembleFusion 93.86 94.86 -

“Generator” models are used to create the adversarial images which are fed to the corresponding “Black-box” models.

TABLE 3 Transferability of PGD-attacked (ǫ = 0.2) images between the models.

Black-box

Generator VisionBERT_EarlyFusion VisionBERT_LateFusion VisionBERT_EnsembleFusion

VisionBERT_EarlyFusion - 94.37 94.55

VisionBERT_LateFusion 93.57 - 82.78

VisionBERT_EnsembleFusion 93.86 0 -

single-modality models, the multimodal model only experienced

significant accuracy drop under exceptionally strong attacks.

Another point we want to mention concerns the multimodality

domain. Although our vision model alone exhibited poor

performance, VisionBERT benefited from the strong performance

of the effective language model, which contributed to its

overall success.

The multimodal model VisionBERT demonstrated

exceptional performance and relative robustness against

various types of attacks on different modalities. Although

attacks reduced the model’s accuracy, it still outperformed

single-modality models under similar conditions. So,

multimodality can not only enhance the overall performance

by combining the strengths of the individual models it

integrates, but it can also increase the overall robustness to

adversarial scenarios.

6 Conclusion

Studying the robustness of AI models in the healthcare domain

is essential. Special focus should be given to multimodal models,

which are widely used in various tasks due to their versatility

and potential to enhance adversarial robustness. In our study, we

observed interesting behavior in multimodal models and examined

their resilience under different adversarial scenarios. For this

research, we implemented two single-modality models: SE-ResNet-

154 model for prediction whether a person has some medical issues

or not based on chest X-ray images, and a BioBERT-based language

model for the same binary classification task with the text labels for

the same patients as inputs. Subsequently, we created a multimodal

model by integrating these two single-modality models.

Our experiments demonstrate that all models can be attacked

by adversarial examples, but the multimodal model appears
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to be more resilient to such perturbations. We attribute

this behavior to the multimodal nature of the model. We

propose that further research is needed in both the domain

of multimodality AI models and adversarial attacks on such

models. Understanding how information flows across modalities

is particularly intriguing. This insight could enhance our

understanding of how deep learning models work, which makes

this study particularly significant.

In our future work, we would like to put more attention should

be given to the fusion techniques for combining modalities since it

can also significantly influence the results.
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