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Objective: Health inequities may be driven by demographics such as sex,

language proficiency, and race-ethnicity. These disparities maymanifest through

likelihood of testing, which in turn can bias artificial intelligence models. We

aimed to evaluate variation in serum lactate measurements in the intensive care

unit (ICU) in sepsis.

Methods: Utilizing MIMIC-IV (2008–2019), we identified adults fulfilling sepsis-3

criteria. Exclusion criteria were ICU stay <1-day, unknown race-ethnicity, <18

years of age, and recurrent ICU-stays. Employing targeted maximum likelihood

estimation analysis, we assessed the likelihood of a lactate measurement on day

1. For patients with a measurement on day 1, we evaluated the predictors of

subsequent readings.

Results: We studied 15,601 patients (19.5% racial-ethnic minority, 42.4% female,

and 10.0% limited English proficiency). After adjusting for confounders, Black

patients had a slightly higher likelihood of receiving a lactate measurement on

day 1 [odds ratio 1.19, 95% confidence interval (CI) 1.06–1.34], but not the other

minority groups. Subsequent frequency was similar across race-ethnicities, but

women had a lower incidence rate ratio (IRR) 0.94 (95% CI 0.90–0.98). Patients

with elective admission and private insurance also had a higher frequency of

repeated serum lactatemeasurements (IRR 1.70, 95% CI 1.61–1.81 and 1.07, 95%

CI, 1.02–1.12, respectively).
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Conclusion: We found no disparities in the likelihood of a lactate measurement

among patients with sepsis across demographics, except for a small increase for

Black patients, and a reduced frequency for women. Subsequent analyses should

account for the variation in biomarker monitoring being present in MIMIC-IV.

KEYWORDS

sepsis, lactate, MIMIC-IV, critical care, health equity

Introduction

Disparities in healthcare are widely recognized, especially

regarding discrimination based on race and ethnicity (1, 2). Such

disparities can unveil themselves as differences in quality of care,

unequal medical device performance, or access to services reflecting

structural inequities (3). These biases are not only harmful for

patient care, but can also impact the development of machine

learning-based clinical algorithms that train on electronic health

records (EHR) (4).

Ensuring the development of fair AI models is crucial, and

addressing missing information is a key initial step in achieving

this objective, especially when such information is not missing

at random (5, 6). Unfortunately, this variation in the level

of monitoring is often not taken into consideration in the

development of machine learning-based clinical algorithms. In a

2017 study that evaluated 107 electronic health record (EHR)-

based risk prediction tools, 49 did not account for missing data

(7). A common approach to imputation is the use of normal values

based on the assumption that laboratory tests that are not ordered

are presumed to be within normal range, a practice that likely

introduces bias (8).

The probability of detecting an abnormal finding is contingent

on the frequency of testing. Consequently, non-randomly

missing data can lead to spurious correlations—non-causal

relationships between features and outcome—that are learned

and then incorporated into clinical algorithms (9). When the

etiology of missing data stems from social determinants of care,

these biases can become ingrained in subsequent AI models,

perpetuating, and even scaling existing disparities (10, 11).

This is even more important in a high-stake environment

such as in patients with sepsis admitted to the intensive care

unit (ICU).

Sepsis is a severe life-threatening systemic infection and

effective management of this condition requires prompt diagnosis,

aggressive treatment, and continuous monitoring. Despite current

advances, one key challenge remains the timely delivery of care.

Herein, serum lactate level is one of the two key diagnostic

tools of septic shock according to the guidelines (12, 13).

Disparities in sepsis outcomes are known to exist (14). However,

the drivers of sepsis disparities are unknown and the question

of whether disparities extend to serum lactate monitoring

remains underexplored.

This paper seeks associations between race and ethnicity, sex,

and language and the frequency of serum lactate determination

during the management of sepsis in the ICU. By shedding light

on this dimension of care, we aim to contribute to a more

comprehensive understanding of the social patterning of the data

generation process in healthcare.

Methods

This observational retrospective study is reported in

accordance with the Strengthening the Reporting of Observational

Studies in Epidemiology (STROBE) statement (15). The health

equity language, narrative, and concepts of this paper follows the

American Medical Association’s recommendations (16).

Data extraction

Data was extracted from the publicly available MIMIC-

IV database (17). The MIMIC database is maintained by the

Laboratory for Computational Physiology at the Massachusetts

Institute of Technology and shared via the PhysioNet platform

(18). The dataset has been de-identified, and the institutional

review boards of the Massachusetts Institute of Technology

(No. 0403000206) and Beth Israel DeaconessMedical Center (2001-

P-001699/14) both approved the use of the database for research.

The MIMIC-IV database includes physiologic data collected from

bedside monitors, laboratory test results, medications, medical

images, and clinical progress notes captured in the electronic

health record from patients admitted to the ICU between 2008

and 2019.

Hypothesis

We hypothesized that both the likelihood for a patient to have

a serum lactate measurement and the frequency of subsequent

measurements are not the same across race-ethnicity, sex, and

English proficiency (as recorded by providers).

Cohort selection

The following exclusion criteria were applied to create a study

cohort: those without sepsis as defined by the sepsis-3 criteria (12),

patients under 18 years of age, and those with length of ICU stay

[length of stay (LOS)] <1 day. Patients with recurrent ICU-stays

in the database, and those with a racial description other than

White, Asian, Black, or Hispanic, especially excluding those of the

heterogenous group “other.” For the negative binomial regression,
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we further excluded patients with absent serum lactate values on

day 1.

Covariates

We drew directed acyclic graphs (DAG) to understand

which variables to extract (Supplementary Figure S1,

Supplementary Table S1). Twelve confounders were extracted,

including non-time-varying variables such as demographics,

comorbidities, admission information, and source of infection

and time-varying variables including Sequential Organ Failure

Assessment (SOFA) score (19), and fluids normalized by LOS.

Time-varying variables were modeled as follows: SOFA score

was calculated for the day of ICU admission; serum lactate

measurements were used as a binary variable for whether or not it

was measured on day 1, in addition to taking the overall number of

measurements for the whole ICU stay normalized by LOS.

Outcomes

We had two primary outcomes: the first was a binary variable

predicting whether a patient received serum lactate measurement

on day 1; the second was the number lactate measurements a

patient would receive divided by the number of days in the

ICU (LOS).

Statistical analysis

Statistical analysis was performed using Python 3.10.9 (20)

and R 4.2.1 (21). For the outcome of whether or not a patient

had a serum lactate measurement on day 1, we fitted a Targeted

Maximum Likelihood Estimation (TMLE) model (22). From the

TMLE model, we extracted and utilized the odds ratio (OR) to

estimate the odds of receiving a serum lactate measurement. For the

outcome of the number of serum lactate measurements during an

ICU stay, we fitted a non-penalized, negative binomial regression

[statsmodel package (23)] adjusted for confounders to estimate the

number of serum lactate measurements for each patient each day

in the ICU. We report our findings as incident rate ratios (IRR). All

findings are reported with 95% CI and with White patients as the

reference group.

Results

Baseline study cohort

The MIMIC-IV database has 73,140 ICU stays, of which

15,601 were included in our final cohort following application of

the inclusion and exclusion criteria (Figure 1). The race-ethnicity

distribution was 10.8% Black, 3.8% Hispanic, 2.9% Asian, 68.8%

White and 14.6% others (without specified race). The demographic

distribution did not change after applying exclusion criteria.

SOFA score had a median of 6.00 (interquartile range (IQR)

4.00, 8.00; Table 1), regardless of the race-ethnicity reported at

baseline, with the Charlson comorbidity index at 6.00 (IQR 4.00,

8.00). Serum lactate on day 1 was slightly higher in the Non-

White group at 2.50mmol/L (IQR 1.60, 4.00), compared to the

White group at 2.20 (1.50, 3.50). In addition, Non-White patients

received more fluids on the first day in the ICU thanWhite patients

[2,060ml (IQR 640, 5,000) vs. 1,690 (461, 4,540)], respectively. Of

note, the volume of fluids received prior to admission to the ICU

is not available in the dataset. Upon a reviewer’s request, we added

a supplementary breakdown of baseline characteristics and illness

severity by race-ethnicity (White, Black, and non-White/non-

Black) to enhance transparency regarding racial representation in

the dataset (Supplementary Table S2).

Model results

We adjusted our models for confounders according to a

DAG (Supplementary Figure S1, Supplementary Table S1). Using

the TMLE model with being White, male and English proficient

as a reference, Black patients were more likely to have a serum

lactate measurement on day 1 with OR 1.19 (95% CI 1.06, 1.34).

Asian and Hispanic patients had a similar likelihood compared to

White patients, with an OR of 1.08 (95% CI 0.93, 1.24), and an of

OR 0.98 (95% CI 0.89, 1.08), respectively (Table 2, Figure 2a). We

validated these findings with a cross-validated logistic regression

model (Supplementary Table S3).

The negative binomial model was fitted to predict the total

frequency of serum lactate measurements during a patient’s ICU

stay (Table 3, Figure 2b). We found no significant difference in

the frequency of measurements across race-ethnicities compared

to white patients as reference. Hispanic (IRR 1.12, 95% CI 0.99,

1.26), Black (IRR 1.01, 95% CI 0.94, 1.09), and Asian (IRR 1.08,

95% CI 0.95, 1.23) patients had a non-significant difference in their

frequency of serum lactate measurements. In addition, English

proficiency had no significant impact on measurement frequency

(IRR 1.06, 95% CI 0.97, 1.16). On the other hand, female sex (IRR

0.94, 95% CI 0.90, 0.98) and having a urinary tract infection (IRR

0.68, 95% CI 0.50, 0.93) were associated with a decreased serum

lactate measurement frequency, while having private insurance

(IRR 1.07, 95% CI 1.02, 1.12) and being admitted electively

(IRR 1.7, 95% CI 1.61, 1.81) significantly increased the frequency

of receiving a measurement. Further, we conducted additional

stratified analyses by admission SOFA score [cutoff at median of

6 supported by Ke et al. (24)] to explore differences in lactate

measurement frequency by race and gender within illness severity

strata (Supplementary Tables S4, S5).

Discussion

In this retrospective cohort study in patients with sepsis,

we observed no discernible disparities between sexes and non-

native English speakers in receiving a serum lactate measurement

on day 1, although Black patients had a slightly increased

likelihood. Furthermore, no apparent racial or language disparities

were evident when examining the frequency of subsequent

measurements, although a lower frequency was observed for

women, those with private insurance, and those admitted electively.
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FIGURE 1

Study cohort selection flow chart, MIMIC-IV. Right panels depict the change of key demographic factors through application of the exclusion criteria.

ICU, intensive care unit; LOS, length of stay; Proficient, English proficient; Limited Prof., limited English proficiency.

As Non-white patients were more likely to have Medicaid, there

might still be disparities in care not captured in our data.

Although our study does not directly involve AI model

development, its findings are highly relevant to the growing use

of clinical data in artificial intelligence applications. Variability in

measurement frequency, such as with lactate, can introduce biases

into model training and deployment, particularly if the data reflects

healthcare process differences rather than true physiological states.

This is especially important given recent concerns about fairness

and generalizability in AI models, which often underperform in

underrepresented patient populations due to uneven data quality

and representation (25, 26). Understanding and quantifying these

real-world data characteristics is therefore, essential for building

equitable and reliable AI systems in critical care. Health equity has

become a priority in clinical research and among policymakers not

only in the US but globally (27–29). In recent years, significant

legislative changes around AI and health equity outcomes have

been proposed and implemented. The European Parliamentary

Research Service conducted a study on AI in healthcare in 2022

and recommended the implementation of specific coordination

and support programs to address issues pertaining to AI and bias

(30). In December 2023, the European Union approved the world’s

first legislation to regulate AI (31).

Beyond the obvious risks associated with feeding non-

representative data to a model, variation in the clinical monitoring

of patients presents a problem in the development of prediction,

classification and optimization models using real-world data. The

non-random sparsity of data from minoritized groups, even when

represented in the dataset, has implications in the application of

any statistical model. Machine learning-based decision support

tools are an especially delicate area due to the sensitive nature

of clinical decisions. Providers often intentionally refrain from

measuring a variable especially in the ICU because of increasing

recognition of the harm from over-testing (32). But the rationale

behind such decisions is typically more complex, and confounded

by both clinical and non-clinical (i.e., social determinants of care)

features. In result, AI models learn wrong associations between

clinical features and outcomes of interest. The problem becomes

more pronounced in the advent of multi-modal modeling that

requires black box deep learning representations (9). Models built

on real-world data are thus subject to the human biases of the

people who collected the primary data. For instance, a recent study

found that large language models recommended low paying jobs

more frequently to Mexicans, or implied that administrative work

is solely a female job (33).

While our study did not assess mortality outcomes directly,

partly due to the publication of similar work (34), the relationship

between measurement frequency and patient outcomes remains

an important area for future research. Causal inference methods,

such as target trial emulation (35), could help determine whether
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TABLE 1 Baseline information on the study cohort, derived from MIMIC-IV.

Race and ethnicity

Variables Missing Overall Non-White White

N (%) 15,601 (100) 2,801 (17.9) 12,800 (82.1)

Age, median [Q1, Q3] 0 68.0 (57.0, 78.0) 64.0 (52.0, 76.0) 68.0 (59.0, 79.0)

Female sex, n (%) 0 6,520 (41.8%) 1,341 (47.9%) 5,179 (40.5%)

English proficient, n (%) 0 14,113 (90.5%) 1,894 (67.6%) 12,219 (95.5%)

Insurance Medicaid, n (%) 0 1,042 (6.7%) 398 (14.2%) 644 (5.0%)

Insurance Medicare, n (%) 0 7,476 (47.9%) 1,064 (38.0%) 6,412 (50.1%)

Insurance Other, n (%) 0 7,083 (45.4%) 1,339 (47.8%) 5,744 (44.9%)

Charlson comorbidity index, median [Q1, Q3] 0 6.00 (4.00, 8.00) 6.00 (4.00, 8.00) 6.00 (4.00, 8.00)

SOFA, median [Q1, Q3] 0 6.00 (4.00, 8.00) 6.00 (4.00, 9.00) 6.00 (4.00, 8.00)

Elective admission, n (%) 2,876 (18.4%) 312 (11.1%) 2,564 (20.0%)

Length of stay, days, median [Q1, Q3] 0 3.13 (1.83, 6.25) 3.21 (1.88, 6.83) 3.13 (1.83, 6.17)

Lactate day 1 (mmol/L), median [Q1, Q3] 0 2.20 (1.50, 3.50) 2.50 (1.60, 4.00) 2.20 (1.50, 3.40)

Number of lactate measurements day 1, median [Q1, Q3] 3.00 (2.00, 5.00) 3.00 (2.00, 5.00) 3.00 (2.00, 5.00)

Lactate day 2 (mmol/L), median [Q1, Q3] 9,397 (60.2%) 1.70 (1.20, 2.60) 1.80 (1.30, 2.90) 1.70 (1.20, 2.60)

Number of lactate measurements day 2, median [Q1, Q3] 9,397 (60.2%) 2.00 (1.00, 3.00) 2.00 (1.00, 3.00) 2.00 (1.00, 3.00)

Mechanical ventilation, n (%) 0 8,841 (56.7%) 1,566 (55.9%) 7,275 (56.8%)

Renal replacement therapy, n (%) 0 1,550 (9.9%) 397 (14.2%) 1,153 (9.0%)

Vasopressor(s), n (%) 0 9,243 (59.2%) 1,455 (51.9%) 7,788 (60.8%)

Fluids received day 1 (ml), median [Q1, Q3] 446 (2.9%) 1,750 (498, 4,620) 2,060 (640, 5,000) 1,690 (461, 4,540)

Q1, lower quartile range; Q3, upper quartile range; SOFA, sequential organ failure assessment.

TABLE 2 Likelihood of receiving a lactate measurement on day 1 fitted by

a targeted maximum likelihood estimation (TMLE) model.

Demographic OR 2.50% CI 97.5% CI

White Reference

Black 1.19 1.06 1.34

Asian 1.08 0.93 1.24

Hispanic 0.98 0.89 1.08

Male Reference

Female 1.02 0.96 1.09

English proficient Reference

English non-proficient 0.96 0.86 1.07

OR, odds ratio; CI, confidence interval.

more frequent monitoring leads to improved outcomes. In an

effort to mitigate biases, some studies have suggested the use

of causal inference frameworks for machine learning (33, 36,

37), which should help understand and avoid embedding biases

into AI algorithms. Evaluating data inputs used in AI models

for biases and disparities as done in our work is a prerequisite

even before employing causal inference frameworks and should

become standard practice as the understanding gained aids in

building better, more equitable, and trustworthy AI models. This

study provides a framework and approach for future work, as

health care professionals, engineers, and developers have the moral

accountability to ensure safe deployment of AI models (38, 39).

Lactate is frequently measured as part of bundled panels, such

as point-of-care arterial blood gas analyses leading to synchronous

measurement with other parameters. However, it can also be

assessed independently in the central laboratory. In a previous

study on blood glucose monitoring in the ICU, we compared

point-of-care and central lab measurements and found no clinically

relevant differences between the two methods (40), suggesting

that the impact of measurement context may be limited in this

setting. While our analysis was conducted using data from the

MIMIC database, similar findings have been reported in other

critical care datasets, including eICU and Duke. For instance,

Matos et al. (41) observed patterns of variability in arterial blood gas

measurements across these cohorts. This cross-dataset consistency

suggests that our conclusions may be generalizable to other ICU

populations and settings. The optimal frequency of monitoring

of serum lactate measurement is unknown. Several recent studies

and reviews have shown that serial lactate measurements and

trends—such as peak levels, area under the curve, and clearance are

associated with mortality in sepsis. For example, a 2023 nationwide

Korean cohort study found that combining serial lactate values

with SOFA improvedmortality prediction compared to SOFA alone

(42). A meta-analysis with roughly 4,400 patients suggests that a

protocol focusing on lactate clearance leads to lower in-hospital

mortality compared to ScvO2 normalization or usual care (43).
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FIGURE 2

Summary of main results from TMLE (left panel) and negative binomial regression (right panel). OR, odds ratio; IRR, incidence rate ratio; CI,

confidence interval.

TABLE 3 Results of the negative binomial regression for outcome of

lactate measurement frequency on day 1.

Variable IRR 2.5% CI 97.5% CI

Intercept 0.72 0.62 0.85

Age 1.00 1.00 1.00

Charlson comorbidity

index

1.01 1.00 1.02

SOFA 1.10 1.09 1.10

Volume of fluids

normalized by LOS

1.00 1.00 1.00

Race

White Reference

Asian 1.08 0.95 1.23

Black 1.01 0.94 1.09

Hispanic 1.12 0.99 1.26

Binary variables

Female sex 0.94 0.90 0.98

English proficient 1.06 0.97 1.16

Private insurance 1.07 1.02 1.12

Elective admission 1.70 1.61 1.81

Pneumonia 1.01 0.90 1.13

Urinary tract infection 0.68 0.50 0.93

Biliary infection 1.22 0.81 1.84

Skin infection 1.03 0.61 1.72

IRR, incidence rate ratio; CI, confidence interval; SOFA, sequential organ failure assessment;

LOS, length of stay.

A 2024 study in septic shock patients also linked initial, peak,

and final 24-h lactate levels to 28-day mortality, although 24-h

clearance was not predictive and optimal measurement frequency

remained unclear (44). Similarly, a 2022 study using MIMIC-

IV reported that lactate peak and AUC were associated with

mortality, but lactate clearance was not more predictive than single

values and performed worse than SOFA or NEWS scores (34).

The current Surviving Sepsis Campaign guidelines support serial

lactate monitoring but acknowledge that evidence for improving

patient-centered outcomes remains limited and inconsistent (13).

Many EHRs have already incorporated automated sepsis alerts to

clinicians which rely on data such as the lactate to be present;

disparities in collecting the data leads to disparities in usage of such

alerts (45, 46). As such, the inputted data must be evaluated for

bias. Other studies have shown that racially diverse Non-White ICU

patients have nearly double the incidence of sepsis and higher rates

of sepsis-related mortality compared to White patients (45, 47, 48).

Furthermore, some studies in pediatric patients have reported

higher mortality rates for those of lower socioeconomic status in

the ICU (49). As such, all possible efforts need to be undertaken to

close this disparity in patient care.

Limitations

While our research provides valuable insights into the discourse

on disparities and biases within critical care, it is essential to

acknowledge the limitations of our study. Firstly, selection bias

could be a potential concern, as our data only encompassed patients

admitted to the ICU in an academic tertiary care center in the

USA whose patients are predominantly White. However, data from

MIMIC is generally very similar to data from eICU-CRD another

publicly available database encompassing 208 ICUs in the US (50).

In general, race-ethnicity is self-reported inMIMIC-IV or provided

by relatives, however in instances where this was not possible, data

is recorded by the providers themselves. Additionally, our study

design precludes us from testing for unmeasured confounding

variables, especially leading to confounding by indication. Future

research endeavors should make concerted efforts to address these

limitations, such as including Social Determinants of Health and

fostering a more comprehensive understanding of the topic by

employing causal inference frameworks as the next prerequisite

step before validating AI models. Although our observed variability

in lactate measurements was statistically significant, the absolute

magnitude was small, mostly due to the large sample size,

and may not be clinically meaningful. However, even small

differences can carry relevance in the critical care setting, where

clinical decisions often hinge on marginal changes. Recent studies
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have highlighted the challenges of bias and data completeness

in electronic health records, particularly in underrepresented

populations, which can impact both model performance and

clinical interpretation (25, 26, 51). Our analysis focused on lactate

due to its clinical relevance in sepsis and its frequent measurement

in routine care, which allowed for robust assessment of intra-

patient variability, but we agree that we cannot exclude incidental

findings due to random variations. Also, similar disparities may

affect other laboratory parameters (41), and our findings may

not be generalizable to those. Future studies should explore a

broader range of biomarkers to assess the extent of this issue across

different clinical contexts. Moreover, future studies should extend

their scope to cover other facets of care, including emergency

departments, regular wards, or ambulatory care, to provide a more

holistic perspective.

Conclusion

The implications of our study extend beyond the realm of

lactate monitoring during sepsis management. In addition to the

ongoing challenge of achieving healthcare equity within a system

marked by systemic biases, clinicians and researchers must remain

cognizant of these disparities before endeavoring to enhance

patient care at their local institution or constructing any AI model.

These biases not only have the potential to distort predictions,

but may also endanger patient’s safety when the predictions are

employed for treatment or management decisions.
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