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Background: Breast cancer remains the most prevalent malignancy in women

globally, representing 11.7% of all new cancer cases (2.3 million annually)

and causing approximately 685,000 deaths in 2020 (GLOBOCAN 2020). This

multifactorial disease, influenced by genetic, hormonal and lifestyle factors,

often presents with nonspecific early symptoms that delay detection. While

mammography, ultrasound and MRI serve as primary screening modalities,

histopathological examination remains the diagnostic gold standard—though

subject to interpretation variability. Recent advances in deep learning

demonstrate promising potential to improve diagnostic accuracy, reduce false

positives/negatives, and alleviate radiologists’ workload, thereby enhancing

clinical decision-making in breast cancer management.

Methods: This study trains and evaluates 14 deep learning models, including

AlexNet, VGG16, InceptionV3, ResNet50, Densenet121, MobileNetV2, ResNeXt,

RegNet, EfficientNet_B0, ConvNeXT, ViT, DINOV2, UNI, and GigaPath on

the BreakHis v1 dataset. These models encompass both CNN-based and

Transformer-based architectures. The study focuses on assessing their

performance in breast cancer diagnosis using key evaluation metrics, including

accuracy, specificity, recall (sensitivity), F1-score, Cohen’s Kappa coefficient,

receiver operating characteristic (ROC) curve, and the area under the

ROC curve (AUC).

Results: In the binary classification task, due to its relatively low complexity, most

models achieved excellent performance. Among them, CNN-based models

such as ResNet50, RegNet, and ConvNeXT, as well as the Transformer-

based foundation model UNI, all reached an AUC of 0.999. The best overall

performance was achieved by ConvNeXT, which attained an accuracy of 99.2%

(95% CI: 98.3%–1), a specificity of 99.6% (95% CI: 99.1%–1), an F1-score of 99.1%

(95% CI: 98.0–1%), a Cohen’s Kappa coefficient of 0.983 (95% CI: 0.960–1),

and an AUC of 0.999 (95% CI: 0.999–1). In the eight-class classification task,

the increased complexity led to more pronounced performance differences

among models, with CNN- and Transformer-based architectures performing

comparably overall. The best-performing model was the fine-tuned foundation
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model UNI, which attained an accuracy of 95.5% (95% CI: 94.4–96.6%), a

specificity of 95.6% (95% CI: 94.2–96.9%), an F1-score of 95.0% (95% CI: 93.9–

96.1%), a Cohen’s Kappa coefficient of 0.939 (95% CI: 0.926–0.952), and an AUC

of 0.998 (95% CI: 0.997–0.999). Additionally, using foundation model encoders

directly without fine-tuning resulted in generally poor performance on the

classification task.

Conclusion: Our findings suggest that deep learning models are highly effective

in classifying breast cancer pathology images, particularly in binary tasks where

multiple models reach near-perfect performance. Although recent Transformer-

based foundation models such as UNI possess strong feature extraction

capabilities, their zero-shot performance on this specific task was limited.

However, with simple fine-tuning, they quickly achieved excellent results. This

indicates that with minimal adaptation, foundation models can be valuable tools

in digital pathology, especially in complex multi-class scenarios.

KEYWORDS

breast cancer, deep learning, pathological tissue section, artificial intelligence,
foundation model

1 Introduction

Breast cancer in women has surpassed lung cancer to become
the most common cancer worldwide, with both its incidence and
mortality rates continuously rising in recent years. It has become a
major public health issue that severely threatens women’s health.
According to the Global Cancer Statistics (GLOBOCAN 2020),
breast cancer has overtaken lung cancer as the most common
cancer globally, accounting for 11.7% of all new cancer cases,
with an estimated 2.3 million new cases annually. Additionally,
breast cancer is one of the leading causes of cancer-related
deaths among women worldwide, with approximately 685,000
female deaths attributed to the disease in 2020 (1). In China,
breast cancer is the most common malignancy among women,
with an estimated 306,000 new cases in 2016 (2). Since the
widespread use of mammography, the incidence of breast cancer
has steadily increased and continues to rise, exacerbated by the
aging population (3).

The etiology of breast cancer involves multiple factors,
including genetic, hormonal, lifestyle, and environmental
exposures. Among these, mutations in the BRCA1 and BRCA2
genes are considered significant genetic factors in the development
of breast cancer (3–5). Furthermore, lifestyle factors such as high-
fat diet, obesity, long-term use of estrogen-based medications,
smoking, and alcohol consumption are closely associated with
an increased risk of breast cancer (6, 7). The early symptoms of
breast cancer are often subtle, and many patients are diagnosed
only after the disease progresses to advanced stages. Therefore,
the establishment of efficient and accurate breast cancer screening
methods to improve early diagnosis rates is of crucial significance
in reducing mortality and improving patient prognosis.

Currently, the detection methods for breast cancer include
X-ray imaging, ultrasound, breast MRI (Magnetic Resonance
Imaging), and mammography. However, these imaging techniques

provide only preliminary results and cannot definitively determine
whether the lesion is malignant. The only reliable method for
confirming the presence of cancer is through biopsy, where tissue
samples are analyzed pathologically (8). Only after pathological
confirmation can the physician establish a clear treatment plan
(9). However, when performing biopsy tissue sectioning for
pathological examination, it is often challenging to make accurate
diagnoses due to factors such as cellular overlap or uneven staining.
This process is both time-consuming and labor-intensive, and
because of variability in the skill levels of pathologists, different
pathologists may arrive at different diagnostic conclusions for the
same pathological image.

In recent years, with the explosive growth of medical imaging
data, artificial intelligence (AI), particularly deep learning, has
shown remarkable potential in the early diagnosis and prognosis
prediction of cancer. It first achieved outstanding results in lung
cancer screening and diagnosis (10, 11), followed by increasing
attention to the application of AI in breast cancer screening
and diagnosis (12). Traditional breast imaging diagnosis relies
on the subjective judgment of radiologists, and the results are
prone to be influenced by factors such as the doctor’s level of
experience, fatigue, and image quality, leading to certain rates
of misdiagnosis (false positives) and missed diagnoses (false
negatives). For example, studies have shown that the false-
negative rate of mammography can be as high as 10–30%,
meaning that some breast cancer cases may not be detected
in the initial screening (13). Moreover, the shortage of imaging
specialists, combined with the rapid increase in imaging data,
has exacerbated the burden of manual interpretation. As a result,
deep learning-based breast cancer imaging analysis technologies
hold the potential to significantly improve diagnostic consistency,
accuracy, and efficiency.

Deep learning is an important branch of machine learning,
particularly proficient in automatically extracting key features
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from large-scale medical imaging data and performing tasks such
as classification, detection, and segmentation. In recent years,
multiple studies have demonstrated that deep learning models
based on Convolutional Neural Networks (CNN) perform at or
even exceed the diagnostic level of radiologists in breast cancer
screening (14–16). For example, the AI breast cancer screening
system developed by Google Health, when tested on datasets from
the UK and the US, reduced the false positive rate by 5.7 and
1.2%, respectively, and decreased the false negative rate by 9.4 and
2.7%, showing its potential in clinical applications (17). In the
field of medical image analysis, CNN is one of the most widely
applied deep learning architectures. Through multiple layers of
convolution, pooling, and fully connected operations, CNNs can
automatically learn features from large-scale breast imaging data,
extract lesion regions, and perform classification and detection
tasks. For instance, CNN variants such as ResNet (18), VGG (19),
DenseNet (20), and EfficientNet (21) have been extensively used
for breast cancer screening tasks. An AI model based on ResNet50
has been proven to achieve diagnostic performance comparable to
senior radiologists on mammography X-ray images. In recent years,
Transformer architectures, particularly the Vision Transformer
(ViT), have achieved significant breakthroughs in computer vision
tasks. Unlike CNN, which primarily relies on local convolution
operations, ViT (22) models global information through self-
attention mechanisms, enabling it to better capture long-range
dependencies in breast images, especially in identifying subtle
lesions such as microcalcifications and masses, thus enhancing
the ability to detect early-stage breast cancer. Following ViT
(22), DINOv2 (23) further enhanced its capabilities by adding
registries and training on larger-scale datasets, improving its
performance significantly.

In recent years, foundation models have garnered significant
attention in the field of artificial intelligence. These models are
typically large-scale deep learning architectures pretrained on
massive and diverse datasets, exhibiting strong generalization
and transfer capabilities across a wide range of downstream
tasks. Leveraging self-supervised learning, foundation models are
capable of learning rich feature representations from unlabeled
data by capturing its underlying structure. Prominent examples
include BERT (24) and the GPT (25) series in natural language
processing, as well as CLIP (26), DINO (23), and SAM (27) in
computer vision. These models have demonstrated outstanding
performance in zero-shot, few-shot, and fine-tuning scenarios,
becoming a driving force behind the advancement of modern AI.
Building on the success of foundation models in natural image
and language domains, researchers have recently extended this
paradigm to the field of medical imaging driving force behind the
advancement of modern AI. Building on the success-resolution
images, complex morphological features, and costly annotation
processes. This has led to the emergence of pathology foundation
models, which are pretrained on large-scale histopathology
datasets using self-supervised learning to capture intricate tissue
characteristics. Representative models in this field include UNI
(28) and Prov-GigaPath (29). UNI (28) is the first general-
purpose pathology model trained via self-supervised learning on
more than 100,000 diagnostic-grade H&E-stained whole slide
images (WSIs), encompassing over 100 million image tiles across
20 major tissue types. UNI outperforms existing state-of-the-
art models across 34 representative computational pathology

(CPath) tasks and demonstrates strong capabilities in resolution-
agnostic classification, few-shot learning, and tumor subtype
generalization. On the other hand, Prov-GigaPath (29) is the first
foundation model designed for full-slide pathology analysis. It
was trained on 1.3 billion 256 × 256 image patches extracted
from 171,189 WSIs collected from over 30,000 patients within
the Providence healthcare network. Leveraging the novel GigaPath
architecture and incorporating LongNet to handle giga-pixel scale
context, Prov-GigaPath achieved top performance on 25 out of 26
benchmark tasks, with significant improvements over the second-
best method in 18 of them. These models highlight the powerful
potential of large-scale, real-world pretraining and long-range
context modeling. The advent of such models marks the beginning
of the foundation model era in pathology, offering transformative
capabilities for intelligent diagnostic support systems and paving
the way for enhanced performance and generalization across
complex clinical tasks.

Building on this foundation, we compared the performance of
various deep learning models on this task. The overall pipeline is
shown in Figure 1.

2 Materials and methods

2.1 Data

This study employs the BreaKHis (30) dataset, which was
publicly released by Spanhol et al. in 2016 and comprises 7,909
breast histopathological images from 82 patients. All samples
were obtained from hematoxylin and eosin (HE)-stained breast
tissue biopsy sections and annotated by professional pathologists
at the P&D laboratory. The images were acquired using an
Olympus BX-50 microscope system in three-channel red-green-
blue (RGB) true-color space (24-bit depth, 8 bits per channel) at
magnification factors of 40×, 100×, 200×, and 400×. Automatic
exposure settings were applied during capture, with manual
focusing performed via digitally displayed images on a computer
screen. Tumor regions in tissue sections were identified through
microscopic visual analysis by anatomical pathologists, with
final diagnoses established by senior pathologists incorporating
supplementary examinations such as immunohistochemical (IHC)
analysis. The BreaKHis dataset provides fine-grained clinical
subtype annotations for breast lesions: benign categories include (a)
adenosis, (b) fibroadenoma, (c) phyllodes tumor, and (d) tubular
adenoma; malignant categories comprise (e) ductal carcinoma,
(f) lobular carcinoma, (g) mucinous carcinoma, and (h) papillary
carcinoma. The dataset contains 2,480 benign and 5,429 malignant
tumor images (700× 460 pixels, 3-channel RGB format, 8-bit depth
per channel, PNG format), with detailed distribution presented
in Table 1. The dataset comprises eight classification labels, with
representative images shown in Figure 2.

2.2 Image preprocessing

To begin with, this study implemented data augmentation
strategies on the original dataset to enhance training data diversity
and improve model generalizability. Conventional augmentation
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FIGURE 1

Research framework flowchart.

TABLE 1 Detailed of the distribution of the dataset.

Magnification factor Benign Malignant Total

40 625 1,370 1,995

100 644 1,437 2,081

200 623 1,390 2,013

400 588 1,232 1,820

Total 2,480 5,429 7,909

FIGURE 2

Diagram of the eight types of breast cancer tumor classification.
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FIGURE 3

Confusion matrices for 16 models in a binary classification task. Confusion matrices of models (a–p), corresponding to AlexNet, VGG16,
InceptionV3, ResNet50, DenseNet121, MobileNetV2, ResNeXt, RegNet, EfficientNet_B0, ConvNeXT, ViT, DINOv2, UNI (zero-shot), UNI (fine-tuned),
GigaPath (zero-shot), and GigaPath (fine-tuned).

methods typically apply identical transformation operations to all
batch data while maintaining the total data volume, dynamically
generating differentiated inputs to enrich data variability. In
our experiment, we adopted an expansion-based augmentation
approach: through randomized operations including random
cropping, color space transformation, illumination correction,
random rotation, and horizontal flipping, the original dataset
was augmented to six times its initial size before being fed into
the model for training. During preprocessing, all input images
were uniformly resized from the original 700 × 460 pixels to
224 × 224 resolution, except for InceptionV3 (31). Due to
its specific architectural requirements, InceptionV3 inputs were
adjusted to 299 × 299 pixels (Note: The original mention of
399 × 399 appears to be a typographical error). To ensure
training stability and convergence efficiency, we employed Z-score
normalization to standardize the image data, transforming pixel
value distributions into a normal distribution with zero mean and
unit standard deviation, as defined by the following equation:

X′ =
X − µ

σ
(1)

2.3 Development of the deep learning
system

This study adopted a stratified five-fold cross-validation
strategy for model training and validation. Stratified sampling
based on class proportions was used to ensure that the class
distribution in each validation set remained consistent with
that of the entire dataset, thereby effectively preserving data
balance and enhancing the reliability of model evaluation.
The entire BreaKHis dataset, comprising 7,909 images,
was utilized to construct the deep learning system. The
experiment systematically evaluated nine classical CNN
architectures including AlexNet (32), VGG16 (19), InceptionV3
(31), ResNet50 (18), DenseNet121 (20), MobileNetV2 (33),
ResNeXt (34), RegNet (35), and EfficientNet_B0 (21),
along with the ConvNeXT (36) architecture combining
CNN and Transformer advantages, and pure Transformer-
based ViT (22) and DINOv2 (23) models—the latter
pretrained through large-scale self-supervised learning
on 142 million unlabeled images. All CNN models were
initialized with ImageNet (37) pretrained weights, while ViT
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FIGURE 4

Confusion matrices for 16 models in an eight-class classification task. Confusion matrices of models (a–p), corresponding to AlexNet, VGG16,
InceptionV3, ResNet50, DenseNet121, MobileNetV2, ResNeXt, RegNet, EfficientNet_B0, ConvNeXT, ViT, DINOv2, UNI (zero-shot), UNI (fine-tuned),
GigaPath (zero-shot), and GigaPath (fine-tuned).

(22) and DINOv2 (23) utilized parameters pretrained on
even larger datasets, as well as the pathology foundation
models UNI (28) and GigaPath (29) developed based
on the DINO model.

Implemented using the PyTorch framework on NVIDIA 3090
GPUs (24GB VRAM), the experiments set batch size to 128
within VRAM constraints while configuring 20 data loading
threads to optimize I/O efficiency. The Adam optimizer was
adopted for training, combining adaptive learning rate advantages
by updating parameters based on first and second moment
estimates of gradients, with initial learning rate set to 0.0001.
Cross-entropy loss function with balanced class weighting was
applied for optimization (38). At each epoch end, comprehensive
model evaluation was conducted by computing validation metrics
including loss, accuracy, sensitivity, specificity, Kappa coefficient
and AUC, with the highest-AUC model ultimately saved as
the optimal result.

2.4 Evaluation of the AI system

To comprehensively evaluate the classification performance
of our models, we employed multiple metrics including
accuracy, sensitivity, specificity, Cohen’s Kappa, F1-score,
and AUC (with 95% confidence intervals). All metrics were
derived from five-fold cross-validation results, with final
values representing the average across all validation folds.
Sensitivity and specificity were calculated using a one-vs.-rest
strategy, while the 95% confidence intervals for AUC were
determined through empirical bootstrap method with 1,000
random samples to ensure robustness. Beyond quantitative
metrics, we visually assessed model performance through several
techniques. Receiver operating characteristic (ROC) curves
(39) demonstrated model performance across different thresholds,
where AUC values approaching 1.0 indicated superior classification
capability. Comparative analysis of AUC values across multiple
models helped identify the optimal architecture. Confusion
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FIGURE 5

ROC curves for the 16 models in a binary classification task. The model names and their corresponding colors are shown in the bottom right corner
of the figure.

matrices (40) provided detailed comparisons between true and
predicted labels, clearly displaying both correct classifications
and misclassifications for each category. This analysis proved
particularly valuable for identifying: (1) the actual classes of
misclassified samples, and (2) the specific categories these
samples were most frequently mistaken for, thereby revealing
which lesion types were most prone to confusion during
classification. Furthermore, as illustrated in Figures 6, 7, we
employed t-distributed stochastic neighbor embedding (t-
SNE) (41) to visualize the enhanced separability of features
learned by different models in a two-dimensional space.
This dimensionality reduction technique provided intuitive
insights into how effectively each model distinguished between
various pathological subtypes at the feature representation level.
To evaluate the zero-shot capability of foundation models,
we compared the performance of the UNI and GigaPath

encoders when directly applied to the target task versus after
fine-tuning.

2.5 Interpretability of AI system

To facilitate more intuitive analysis of different models’
focus areas during feature extraction, identify root causes of
misclassification, and enhance clinical understanding of deep
learning system operations, we employed Gradient-weighted
Class Activation Mapping (Grad-CAM) to visually analyze the
convolutional neural network models used in our experiments.
Grad-CAM generates heatmaps by combining feature maps
with gradient information, highlighting the regions in input
images that most strongly influence the model’s predictions for
specific classes. This visualization approach provides critical
insights into the model’s decision-making process by explicitly
showing which image regions drive classification decisions.
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FIGURE 6

ROC curves for the 16 models in an eight-class classification task. The model names and their corresponding colors are shown in the bottom right
corner of the figure.

Through this technique, we were able to: (1) verify whether
models focused on clinically relevant image regions, (2) identify
potential biases in feature attention, and (3) pinpoint anatomical
areas that frequently led to misclassifications. The Grad-
CAM analysis proved particularly valuable for interpreting
model behavior in histopathological contexts, where the
spatial distribution of diagnostic features is often crucial for
accurate classification.

3 Results

3.1 Evaluation of deep learning models

The dataset comprising 7,909 images was partitioned into
training and validation sets at a 4:1 ratio. The training set
contained 6,327 images (1,984 benign and 4,343 malignant),
while the validation set consisted of 1,582 images (496 benign
and 1,086 malignant). Our study evaluated model performance

on two distinct classification tasks: (1) binary classification
(benign vs. malignant) and (2) eight-class classification
(adenosis, fibroadenoma, phyllodes tumor, tubular adenoma,
ductal carcinoma, lobular carcinoma, mucinous carcinoma,
and papillary carcinoma). We implemented 12 deep learning
architectures for breast tumor classification: nine CNN-based
models [AlexNet (32), VGG16 (19), InceptionV3 (31), ResNet50
(18), DenseNet12 (20), MobileNetV2 (33), ResNeXt (34), RegNet
(35), and EfficientNet_B0 (21)], one hybrid CNN-Transformer
model [ConvNeXT (36)], and two pure Transformer models
[ViT (22) and DINOv2 (23)],as well as the pathology foundation
models UNI and GigaPath developed based on the DINO model.
All models were trained and validated using five-fold cross-
validation. Performance metrics included accuracy, sensitivity,
specificity, F1-score, weighted Cohen’s Kappa, and AUC with 95%
confidence intervals (CI).

As summarized in Tables 2, 3, ConvNeXT (36) achieved
superior performance in binary classification, attaining 99.2%
accuracy, 99.6% specificity, 99.1% F1-score, 0.983 Kappa, and
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FIGURE 7

t-SNE Visualization of Embedding Features for 16 Models in a binary classification task. (a–p) Represent the t-SNE plots of the AlexNet, VGG16,
InceptionV3, ResNet50, Densenet121, MobileNetV2, ResNeXt, RegNet, EfficientNet_B0, ConvNeXT, ViT, DINOV2,UNI (zero-shot), UNI (fine-tuned),
GigaPath (zero-shot), and GigaPath (fine-tuned) models, respectively.

0.999 AUC. For the eight-class task, ResNeXt (34), ViT (22),
and ConvNeXT (36) demonstrated optimal performance with
0.996 AUC. Table 4 compares computational characteristics:
EfficientNet_B0 (21) showed the fastest training speed, AlexNet
(32) had the shortest inference time, and MobileNetV2 (33)
contained the fewest parameters, highlighting their respective
advantages for different application scenarios. Figures 3, 4 present
the confusion matrices for both classification tasks, demonstrating
strong overall performance while revealing that fibroadenoma and
tubular adenoma were the most frequently confused tumor types in
the eight-class classification.

The ROC curves in Figures 5, 6 confirm ConvNeXT (36)
outstanding performance in binary classification (AUC = 0.999)
and the effectiveness of Transformer-based models in eight-
class classification (AUC = 0.998). Feature visualization via
t-SNE (Figures 7, 8) indicates that architectures following
ConvNeXT achieved superior class separation compared to
earlier CNN models [AlexNet (32), VGG16 (19), InceptionV3
(31)], with the eight-class clustering showing slightly reduced—
though still consistent—performance trends relative to binary
classification.

3.2 Visual interpretation of models

In this study, we employed the Grad-CAM++ algorithm
to generate visual heatmaps for 12 deep learning models,
highlighting the most critical regions for classification decisions
through weighted summation of feature mappings. As shown
in Figures 9, 10, for both binary classification (benign vs.
malignant) and eight-category subtype classification tasks, the
top-performing models—including ResNet50 (18), RegNet (34),
ConvNeXT (36) and UNI—demonstrated heatmap activations
(indicated by red regions) that were precisely concentrated
around pathological tissue areas. These visualization results
confirm that high-performance models effectively capture
diagnostically significant pathological features, with attention
mechanisms showing strong alignment with clinicians’ diagnostic
focus areas. Notably, ViT and its derivative models, including
DINO as well as the foundation models UNI (28) and GigaPath
(29) developed based on DINO, demonstrated strong feature
extraction capabilities. These models effectively focused
on key lesion regions while integrating broader contextual
information, which may account for their superior performance
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TABLE 2 The performance of models for binary classification.

Model Accuracy (95%
CI)

Specificity (95%
CI)

F1-score (95%
CI)

Kappa (95% CI) AUC (95% CI)

AlexNet 95.9% 98.4% 95.2% 0.905 0.991

(93.9%, 97.8%) (97.6%, 99.1%) (92.9%, 97.3%) (0.858, 0.947) (0.982, 0.997)

Vgg16 98.5% 99.4% 98.3% 0.966 0.997

(97.1%, 99.5%) (98.8%, 99.8%) (96.7%, 99.4%) (0.933, 0.988) (0.993, 0.999)

InceptionV3 96.1% 98.0% 95.4% 0.908 0.982

(94.2%, 97.8%) (97.0%, 98.9%) (93.1%, 97.4%) (0.863, 0.947) (0.965, 0.995)

ResNet50 98.3% 99.3% 98.0% 0.961 0.999

(97.1%, 99.2%) (98.7%, 99.7%) (96.4%, 99.2%) (0.929, 0.984) (0.996, 0.999)

Densenet121 97.1% 98.6% 96.6% 0.932 0.996

(95.4%, 98.5%) (97.8%, 99.4%) (94.5%, 98.2%) (0.889, 0.965) (0.992, 0.999)

MobileNetV2 95.9% 97.4% 95.0% 0.900 0.996

(93.9%, 97.5%) (96.2%, 98.5%) (92.6%, 97.1%) (0.853, 0.942) (0.992, 0.999)

ResNeXt 97.8% 99.1% 97.4% 0.949 0.997

(96.3%, 99.0%) (98.4%, 99.7%) (95.8%, 98.9%) (0.915, 0.978) (0.994, 0.999)

RegNet 98.5% 99.4% 98.3% 0.966 0.999

(97.3%, 99.5%) (99.0%, 99.9%) (96.9%, 99.5%) (0.938, 0.989) (0.997, 0.999)

EfficientNet_B0 98.7% 99.5% 98.5% 0.971 0.996

(97.5%, 99.7%) (98.9%, 99.9%) (97.1%, 99.7%) (0.943, 0.994) (0.992, 0.999)

ConvNeXT 99.2% 99.6% 99.1% 0.983 0.999

(98.3%, 1) (99.1%, 1) (98.0%, 1) (0.960, 1) (0.999, 1)

ViT 98.5% 99.3% 98.3% 0.966 0.996

(97.3%, 99.5%) (98.7%, 99.8%) (96.8%, 99.4%) (0.937, 0.989) (0.991, 0.999)

DINOv2 97.8 98.9% 97.4% 0.949 0.998

(96.1%, 99.0%) (98.1%, 99.6%) (95.4%, 98.9%) (0.909, 0.978) (0.996, 0.999)

UNI_zero_shot 60.4% 54.4% 54.3% 0.087 0.557

(57.8%, 62.6%) (80.6%, 82.7%) (51.6%, 56.7%) (0.033, 0.134) (0.524, 0.585)

UNI_fine-tuning 98.7% 98.3% 98.6% 0.971 0.999

(98.2%, 99.2%) (99.0%, 99.6%) (97.9%, 99.1%) (0.958, 0.982) (0.998, 1)

GigaPath_Zero-shot 54.4% 52.4% 51.4% 0.043 0.529

(52.0%, 56.8) (79.9%, 82.0%) (48.9%, 53.9%) (0.041, 0.092) (0.499, 0.562)

GigaPath_fine-tuning 97.9% 97.2% 97.6% 0.952 0.998

(97.2%, 98.7%) (98.4%, 99.2%) (96.8%, 98.4%) (0.935, 0.968) (0.998, 0.999)

Boldface indicates the maximum value in each column.

in complex classification tasks. In contrast, earlier CNN models
like AlexNet (32) exhibited scattered attention patterns, with
some focus areas deviating from actual pathological changes—
consistent with their relatively lower classification accuracy.
These visual analyses provide intuitive insights into different
architectures’ decision-making mechanisms while validating
the clinical plausibility of high-performing models in lesion
localization.

In Figures 9, 10, the models from a to p are arranged
chronologically. We observe a general trend of increasing attention
to prominent pathological structures over time, indicating a

continuous improvement in the models’ feature extraction
capabilities.

4 Discussion

According to the National Breast Cancer Foundation, the
United States reported over 276,000 invasive and 48,000 non-
invasive breast cancer cases in 2020, with projections of 287,850
new invasive cases and 51,400 DCIS cases in 2022 resulting
in 43,250 deaths (42). Breast cancer is clinically categorized
into four types: normal, benign (non-threatening structural
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TABLE 3 The performance of models for eight classification.

Model Accuracy (95%
CI)

Specificity (95%
CI)

F1-Score (95%
CI)

Kappa (95% CI) AUC (95% CI)

AlexNet 91.8% 97.3% 85.9% 0.844 0.988

(90.3%, 93.2%) (96.7%, 97.8%) (83.8%, 87.8%) (0.824, 0.863) (0.985, 0.990)

VGG16 91.4 97.2% 84.7% 0.838 0.987

(89.9%, 93.0%) (96.7%, 97.8%) (82.6%, 86.8%) (0.817, 0.858) (0.985, 0.990)

InceptionV3 85.0% 94.0% 69.2% 0.669 0.958

(82.9%, 87.1%) (93.2%, 94.7%) (66.5%, 71.8%) (0.640, 0.696) (0.950, 0.964)

ResNet50 92.2% 97.6% 89.5% 0.876 0.991

(90.8%, 93.6%) (97.1%, 98.1%) (87.8%, 91.2%) (0.858, 0.895) (0.989, 0.993)

Densenet121 91.9% 97.3% 86.2% 0.848 0.987

(90.3%, 93.4%) (96.7%, 97.8%) (84.1%, 88.1%) (0.826, 0.869) (0.984, 0.990)

MobileNetV2 92.5% 97.5% 88.3% 0.869 0.989

(91.0%, 93.8%) (97.0%, 98.0%) (86.5%, 90.0%) (0.849, 0.886) (0.986, 0.991)

ResNeXt 95.9% 97.4% 95.0% 0.900 0.996

(93.9%, 97.5%) (96.2%, 98.5%) (92.6%, 97.1%) (0.853, 0.942) (0.992, 0.999)

RegNet 94.2% 98.1% 91.3% 0.898 0.994

(92.9%, 95.4%) (97.7%, 98.5%) (89.8%, 92.8%) (0.882, 0.916) (0.993, 0.996)

EfficientNet_B0 92.7% 97.7% 89.9% 0.881 0.990

(91.1%, 94.1%) (97.2%, 98.2%) (88.2%, 91.6%) (0.862, 0.899) (0.986, 0.992)

ConvNeXT 94.2% 98.3% 93.6% 0.921 0.996

(93.3%, 95.8%) (97.8%, 98.7%) (92.3%, 94.8%) (0.904, 0.936) (0.994, 0.997)

ViT 94.3% 98.1% 93.2% 0.917 0.996

(93.0%, 95.6%) (97.7%, 98.5%) (91.8%, 94.4%) (0.901, 0.932) (0.995, 0.997)

DINOv2 90.5% 97.4% 82.2% 0.813 0.987

(88.7%, 92.0%) (96.9%, 97.8%) (80.0%, 84.3%) (0.792, 0.834) (0.984, 0.989)

UNI_zero-shot 12.8% 78.3% 8.13% –0.03 0.438

(10.7%, 14.9%) (77.7%, 78.8%) (6.85%, 9.56%) (–0.05, –0.02) (0.421, 0.456)

UNI_fine-tuning 95.5% 95.6% 95.0% 0.939 0.998

(94.4%, 96.6%) (94.2%, 96.9%) (93.9%, 96.1%) (0.926, 0.952) (0.997, 0.999)

GigaPath_Zero-shot 27.3% 81.4% 12.2% 0.041 0.542

(24.4%, 29.9%) (80.6%, 82.2%) (10.7%, 13.9) (0.021, 0.060) (0.523, 0.559)

GigaPath_fine-tuning 92.2% 97.6% 85.6% 0.838 0.988

(90.7%, 93.7%) (97.1%, 98.1%) (83.5%, 87.4%) (0.816, 0.858) (0.984, 0.990)

Boldface indicates the maximum value in each column.

changes), carcinoma in situ (localized and treatable when
detected early), and invasive carcinoma (the most dangerous
metastatic form) (43, 44). Current diagnostic methods include
X-ray mammography, ultrasonography, CT, PET, MRI, and
thermography, with pathological diagnosis through H&E-stained
histopathological image analysis remaining the gold standard.
Early detection is critical as 64% of cases diagnosed in initial
stages demonstrate 99% survival rates, highlighting the urgent
need for improved screening technologies. Two primary diagnostic
approaches exist: histopathological image analysis of breast
tissue morphology and genomic analysis, with the former being
particularly valuable for early-stage detection.

The development of deep learning in computer vision has
undergone transformative evolution from traditional CNN
architectures to lightweight networks, and subsequently to
Transformer-based paradigms. AlexNet (32) (2012) pioneered
deep learning applications in image classification, while VGG16
(19) (2014) enhanced feature extraction capabilities through
increased network depth, albeit with substantial computational
demands. InceptionV3 (31) (2015) introduced multi-scale
convolution to reduce computational redundancy and improve
feature representation efficiency. ResNet50 (18) (2015) addressed
the vanishing gradient problem in deep networks through residual
connections, enabling successful training of deeper architectures.
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TABLE 4 Comparison of different models in terms of training speed, inference speed, number of parameters, and year of release.

Model Training time
(epoch/s)

Infernece time
(one/ms)

Number of
parameters (M)

Year

AlexNet 36 0.08 61 2012

Vgg16 53 0.12 138 2014

InceptionV3 55 1.02 23.8 2015

ResNet50 30 0.39 25.6 2015

Densenet121 35 1.47 7.98 2017

MobileNetV2 39 0.41 3.4 2018

RegNet 141 0.93 5.1 2020

EfficientNet_B0 21 0.98 5.3 2021

ResNeXt 38 0.76 25 2017

ViT 91 0.43 85.8 2020

ConvNeXT 40 0.77 79 2022

DinoV2 95 0.52 86 2023

UNI 501 0.46 681 2024

GigaPath 810 1.08 1135 2024

Bold font indicates the smallest number of parameters in the “number of parameters” column, while in the other columns, bold font indicates the largest values.

Subsequent innovations included DenseNet121 (20) (2017),
which employed dense connections to enhance information
flow while reducing parameter redundancy, and ResNeXt (34)
(2017) that improved computational efficiency through group
convolutions. The growing demand for mobile computing spurred
the development of MobileNetV2 (33) (2018), utilizing depth-wise
separable convolutions and linear bottleneck structures for efficient
lightweight design. EfficientNet_B0 (21) (2019) implemented
compound scaling strategies to optimize computational costs while
maintaining accuracy, whereas RegNet (35) (2020) automated
efficient CNN design through neural architecture search (NAS).
The field witnessed a paradigm shift with ViT (22) (2020), which
introduced Transformer architectures to visual tasks through self-
attention mechanisms for global feature modeling, albeit requiring
extensive training data. ConvNeXT (36) (2022) subsequently
modernized CNN architectures by incorporating ViT design
principles, employing large kernels and optimized activation
functions to maintain competitiveness in the Transformer era.
This evolutionary trajectory demonstrates continuous innovation
in computer vision, progressing from depth expansion (VGG16)
to computational optimization (Inception, ResNet, MobileNet),
architectural innovation (DenseNet, ResNeXt), lightweight
automation (EfficientNet, RegNet), Transformer disruption (ViT),
and ultimately CNN modernization (ConvNeXT). The DINOv2
(23) model further advanced ViT architectures by incorporating
register tokens and pretraining on 142 million images, generating
powerful visual features that achieve strong performance across
diverse computer vision tasks without fine-tuning.

In recent years, Transformer-based models have made
remarkable progress in the medical field, expanding from
natural language processing to various modalities such as
medical images and time-series data, demonstrating powerful
modeling capabilities and strong generalization. In medical image
segmentation, MedSAM (45), a large-scale pre-trained foundation
model built on over 1.5 million image-mask pairs, achieves high

accuracy and robustness across diverse internal and external
tasks, overcoming the limitations of task-specific designs and
promoting the development of general-purpose segmentation
models. In visual Transformer architectures, Swin Transformer
(46) introduces a hierarchical structure with shifted windows,
balancing computational efficiency and representation power, and
has become a widely adopted backbone for downstream tasks such
as classification, detection, and segmentation in medical imaging.
For medical time-series analysis, Medformer (47) leverages multi-
granularity patching and self-attention mechanisms tailored for
EEG and ECG signals, significantly improving the classification
of diseases such as Alzheimer’s, Parkinson’s, and myocardial
infarction. In computational pathology, UNI (28) is a general-
purpose pathology model pretrained on over 100,000 H&E-
stained whole slide images (WSIs), enabling resolution-agnostic
classification, robust subtype generalization, and few-shot learning
across multiple tissue types and cancer subtypes. Meanwhile, Prov-
GigaPath (29), the first foundation model for full-slide pathology,
incorporates LongNet to model gigapixel-scale data from over
1.3 billion patches, achieving state-of-the-art performance on 25
out of 26 benchmarks. These advances highlight the versatility
of Transformer-based models in handling high-resolution, highly
structured medical data and modeling complex time-series and
gigapixel pathology slides, offering strong support for precision
diagnosis and personalized healthcare.

In breast cancer applications, deep learning has demonstrated
significant clinical value. Wang et al. (48) developed DeepGrade,
a histologic grading model using whole slide imaging (WSI) for
risk stratification of NHG2 breast cancer patients, proving its
independent prognostic value for clinical decision-making. Yu
et al. (49) proposed a 5G+ telemedicine solution incorporating
edge computing and Inception-v3 (31) transfer learning,
achieving 98.19% diagnostic accuracy in remote areas. Arya
et al. (50) implemented a gated attention deep learning
model with random forest classifier for multimodal breast
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FIGURE 8

t-SNE Visualization of Embedding Features for 16 Models in an eight-class classification task. (a–p) Represent the t-SNE plots of the AlexNet, VGG16,
InceptionV3, ResNet50, Densenet121, MobileNetV2, ResNeXt, RegNet, EfficientNet_B0, ConvNeXT, ViT, DINOV2, UNI (zero-shot), UNI (fine-tuned),
GigaPath (zero-shot), and GigaPath (fine-tuned) models, respectively.

cancer prognosis prediction, demonstrating 5.1% sensitivity
improvement on METABRIC and TCGA-BRCA datasets.
Jaroensri et al. (51) created a deep learning system for scoring
three critical histologic grading features, showing improved
pathologist concordance and prognostic performance. While
these applications employ various base models as encoders
with architectural modifications, we contend that medical
imaging applications may benefit more from advanced image
preprocessing techniques to enhance input quality, which
can sometimes surpass the benefits of model architecture
modifications alone.

In this study, we systematically evaluated the performance of
both CNN-based deep learning models and vision transformers
on the BreakHisv1 dataset for breast cancer histopathological
diagnosis. In the binary classification task, where the complexity
of discrimination is relatively low, most models demonstrated
excellent performance. Notably, CNN-based architectures such as
ResNet50, RegNet, and ConvNeXT achieved particularly strong

results, with ConvNeXT attaining the best overall performance—
benefiting from its incorporation of design elements inspired by
the Vision Transformer (ViT), which enhances global feature
modeling. ConvNeXT reached an accuracy of 99.2% (95% CI:
98.3%–1), a specificity of 99.6% (95% CI: 99.1%–1), an F1-score
of 99.1% (95% CI: 98.0%–1), a Cohen’s Kappa of 0.983 (95%
CI: 0.960–1), and an AUC of 0.999 (95% CI: 0.999–1). These
results suggest that, in relatively simple binary classification
tasks, CNN-based models tend to outperform pure Transformer
architectures, possibly due to their stronger inductive biases
and efficiency in local feature extraction. In contrast, the eight-
class classification task posed greater complexity, leading to
more evident performance differentiation among models.
While both CNN and Transformer-based models performed
competitively, the fine-tuned Transformer-based foundation
model UNI achieved the highest overall performance, with
an accuracy of 95.5% (95% CI: 94.4%–96.6%), specificity
of 95.6% (95% CI: 94.2%–96.9%), F1-score of 95.0% (95%
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FIGURE 9

Displays Grad-CAM visualizations for 14 Models in a binary classification task. The leftmost image is the original image, with “m” representing
malignant and “b” representing benign. The leftmost letter(s) represent the tumor type. (a–n) The heatmaps generated by the AlexNet, VGG16,
InceptionV3, ResNet50, Densenet121, MobileNetV2, ResNeXt, RegNet, EfficientNet_B0, ConvNeXT, ViT, DINOV2, UNI, and GigaPath models,
respectively.

FIGURE 10

Displays Grad-CAM visualizations for 14 Models in an eight-class classification task. The leftmost image is the original image, with “m” representing
malignant and “b” representing benign. The leftmost letter(s) represent the tumor type. (a–n) The heatmaps generated by the AlexNet, VGG16,
InceptionV3, ResNet50, Densenet121, MobileNetV2, ResNeXt, RegNet, EfficientNet_B0, ConvNeXT, ViT, DINOV2, UNI, and GigaPath models,
respectively.

CI: 93.9%–96.1%), Cohen’s Kappa of 0.939 (95% CI: 0.926–

0.952), and AUC of 0.998 (95% CI: 0.997–0.999). In contrast,

directly applying the encoder of foundation models such as

UNI and GigaPath in a zero-shot manner, without fine-tuning,

led to substantially reduced performance in both binary and

multi-class settings.

In medical image classification tasks, the performance
differences between CNN-based models, Transformer-based
models (including foundation models) primarily stem from the
alignment between task complexity and model characteristics.
For binary classification tasks, the key challenge typically lies
in extracting localized discriminative features (e.g., lesion
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boundaries or textures). The inductive biases of CNNs
(translation invariance, local receptive fields) enable them to
efficiently capture such spatial hierarchical features with lower
computational costs. In contrast, while Transformers excel at
modeling long-range dependencies, binary classification tasks
often require limited global context, making their self-attention
mechanisms computationally inefficient without proportional
performance gains—leading to inferior results compared to
CNNs. However, Transformer-based foundation models (e.g.,
UNI) can partially compensate for this architectural redundancy
through large-scale pretraining, which provides generalized
representations, and fine-tuning adaptability, allowing them
to outperform CNNs in certain scenarios. For eight-class
classification tasks, the decision boundaries become more
complex, requiring fine-grained feature interactions. Here,
Transformers’ global attention mechanisms and high-level
relational modeling capabilities become advantageous: they
can simultaneously integrate local and global information
to resolve inter-class similarities. Foundation models further
enhance generalization through pretrained knowledge transfer
(e.g., cross-modal semantic correlations), whereas the locality
constraints of CNNs may limit their ability to capture intricate
discriminative patterns. In summary, the performance disparity
fundamentally reflects a dynamic trade-off between task
requirements (locality/globality, data scale) and architectural
properties (CNNs’ hierarchical local inductive biases vs.
Transformers’ flexible attention mechanisms). Foundation
models partially unify these advantages through pretraining
paradigms, but their efficacy remains modulated by downstream
task complexity.

This study has several limitations. First, the analysis was
conducted using a single dataset (BreaKHis) without incorporating
multi-center or heterogeneous data sources. Consequently, the
generalizability of our findings to broader clinical contexts is
limited. Although the dataset includes 7,909 histopathological
images, the actual number of patients is relatively small,
which may impact the model’s real-world clinical applicability.
Therefore, the reported results primarily reflect the relative
performance of different model architectures on the BreaKHis
dataset rather than their true diagnostic utility in breast
cancer. Second, due to the vast number of deep learning
models available, we did not exhaustively evaluate all existing
architectures. Instead, we selected a subset of representative
models from various stages of development, focusing on both
CNN-based and Transformer-based approaches. As such, this
study should be regarded as an initial exploration of the
performance differences between model families, rather than
a comprehensive assessment. Future studies could expand in
several directions: (1) incorporating multi-center and multimodal
pathological datasets to improve model robustness and clinical
generalizability; (2) integrating additional data sources such as
clinical notes and genomic profiles to explore the potential
of multi-modal fusion models in breast cancer diagnosis;
(3) developing more efficient, lightweight, and interpretable
architectures to meet the practical demands of clinical deployment;
and (4) conducting thorough evaluations of model fairness
and performance consistency across different populations and

pathological subtypes to ensure reliable and equitable real-world
applications of AI in pathology.

5 Conclusion

In summary, this study systematically evaluated the
performance of mainstream deep learning architectures, including
both CNN-based and Transformer-based models, for breast
cancer histopathological image classification. For the binary
classification task (benign vs. malignant), we observed progressive
performance improvement from early models like AlexNet
to ConvNext, where the introduction of residual connections
enabled effective training of deeper networks without gradient
vanishing/explosion issues, significantly enhancing feature
extraction capability through increased parameters. Post-ResNet
architectures all demonstrated comparable performance, with
their unique characteristics making them suitable for different
application scenarios—for instance, MobileNet and EfficientNet’s
compact design facilitates deployment on mobile devices with
limited computational resources. The Transformer-based models
(ViT and DINOv2) showed slightly inferior performance
compared to CNN-based model in this task, potentially due
to: (1) the task’s inherent complexity not requiring extremely
large parameter counts, and (2) limited sample size hindering
effective fine-tuning of these large-scale models pretrained on
massive image datasets.

For the more challenging eight-class classification task,
foundation model UNI achieved optimal performance with an
AUC of 0.998. The increased task complexity likely contributed
to the Transformer-based models matching CNN performance
in this scenario, as both architecture types demonstrated equally
strong classification capability. These findings suggest that while
CNN architectures remain highly effective for fundamental
histopathological classification tasks, Transformer-based models
become competitive when handling more complex, fine-grained
classification challenges. The comparable performance among
modern architectures indicates that practical considerations
like computational efficiency and deployment constraints may
outweigh marginal accuracy differences in clinical implementation.
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