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Background: Chemokines and neutrophil extracellular trap formation (NETosis)

are critical drivers of inflammatory responses. However, the molecular

characteristics and interaction mechanisms of these processes in sarcopenia

remain incompletely understood.

Methods: Utilizing the mRNA expression profile dataset GSE226151 (including

19 sarcopenia, 19 pre-sarcopenia, and 20 healthy control samples), enrichment

analysis was performed to identify differentially expressed NETosis-related genes

(DENRGs) and chemokine-related genes (DECRGs). Two machine learning

algorithms and univariate analysis were integrated to screen signature genes,

which were subsequently used to construct diagnostic nomogram models

for sarcopenia. Single-gene Gene Set Enrichment Analysis (GSEA) and Gene

Set Variation Analysis (GSVA) were used to investigate pathway associations,

followed by the construction of a gene interaction network.

Results: A total of 7 DECRGs and DENRGs were identified, primarily enriched

in chemokine signaling pathways, cytokine-cytokine receptor interactions, and

sarcopenia-related diseases. Machine learning and univariate analysis revealed

three signature genes (CXCR1, CXCR2, and LPL). The nomogram models

demonstrated high predictive accuracy in distinguishing sarcopenia from both

healthy and pre-sarcopenic states, as evidenced by AUC values of 0.837 (95% CI

0.703–0.947) and 0.903 (95% CI 0.789–0.989), respectively. Single-gene GSEA

highlighted significant associations between these genes and the JAK-STAT and

PPAR signaling pathways. GSVA indicated that sarcopenia was closely linked to

upregulated chemokine signaling, cytokine-receptor interaction activities, and

leukocyte transendothelial migration.
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Conclusion: The research pinpointed three genes associated with chemokines

and NETosis (CXCR1, CXCR2, LPL) and developed highly accurate diagnostic

models, offering a new and preliminary approach to differentiate sarcopenia and

its early stages.
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Introduction

Sarcopenia is a prevalent age-associated condition
characterized by a decline in skeletal muscle mass, muscle
strength, and muscle functionality (1). This condition typically
exacerbates with obesity and advancing age, emerging as a
primary contributor to physical frailty and disability among
the elderly population (2, 3). Sarcopenia is caused by chronic
inflammation, hormonal changes, malnutrition, abnormal lipid
metabolism, and reduced physical activity (4–6). Research
shows that sarcopenia negatively affects the quality of life
in older adults and is linked to increased falls, fractures,
and hospitalizations (7). Those with sarcopenia face more
complications than those without (8). With an aging population,
the public health impact of sarcopenia is growing. Effective
prevention and treatment are needed to improve elderly quality
of life and reduce healthcare costs (5, 9). Future research should
explore the causes of sarcopenia and develop targeted therapies
to maintain muscle health and physical function in older
adults (10).

Chronic inflammation plays a key role in the development of
sarcopenia. Research shows that ongoing low-grade inflammation
is a major factor in this condition (11). In older adults, it is
closely linked to declining muscle function and may accelerate
muscle loss by affecting protein metabolism and hindering
muscle cell regeneration (12). Chronic inflammation is a key
factor in sarcopenia, often worsening due to chronic diseases
like kidney disease or pancreatitis, which lead to metabolic
issues and muscle loss (13, 14). Diet-related inflammation
and markers like C-reactive protein (CRP) and systemic
immune-inflammatory index (SII) are also linked to sarcopenia,
highlighting inflammation’s central role in its development (15,
16). In summary, chronic inflammation is not only a significant
characteristic of sarcopenia but also a crucial factor in its
pathogenesis (17).

Chemokines and neutrophils are key to inflammation, with
chemokines playing a crucial role in recruiting neutrophils during
inflammation. They regulate neutrophil release from the bone
marrow into the bloodstream and their return for cell death and
clearance. Additionally, chemokines influence neutrophil functions
like oxidative bursts, degranulation, neutrophil extracellular
traps (NETs) formation, and inflammatory mediator production
(18). NETs are a defense mechanism used by neutrophils
during inflammation to trap and kill pathogens, but they
can also cause tissue damage and chronic inflammation (19,
20). Recent studies identify NETs as an effector function of

neutrophils, consisting of chromatin networks with histones,
myeloperoxidase, and elastase (21, 22). Neutrophils perform
their roles through phagocytosis, degranulation, and NET release
(23). NETosis is a unique cell death mechanism involving
the release of DNA, enzymes, and histones. Activated by
chemokines, neutrophils migrate to inflammation sites, produce
antimicrobial agents, undergo NETosis, and eliminate bacteria
(24, 25).

Chemokines play a crucial role in neutrophil migration
and function, with dysfunction potentially linked to sarcopenia.
Studies show that CXCL9 is strongly associated with changes in
muscle function and higher mortality in older men, indicating
chemokines might influence sarcopenia development (26).
Furthermore, the increased expression of the chemokine receptor
CXCR2 is closely linked to the movement of neutrophils and
monocytes, which can affect muscle health if disrupted (27).
Neutrophils, macrophages, and T cells are the main cells
infiltrating dystrophic muscle (28). Leukocyte infiltration in
dystrophic muscle is diverse, including neutrophils, eosinophils,
macrophages, and CD8 + and CD4 + T cells (29). Early in
muscle repair, immune cells like mast cells and neutrophils clear
damaged fibers and release cytokines to recruit macrophages,
influencing inflammation (30). Additionally, sarcopenia is linked
to chronic inflammation, with neutrophils playing a key role (31).
Chemokines and neutrophils likely play key roles in sarcopenia’s
onset and progression. Understanding their interactions could
lead to new prevention and treatment strategies. However, we
need more knowledge about the molecular details of NETosis
and chemokines in sarcopenia. Thus, developing a predictive
diagnostic model based on these molecular mechanisms is
urgently needed.

In modern life sciences research, bioinformatics technology,
driven by advancements in high-throughput sequencing and
microarray technology, is essential for analyzing gene expression
and identifying targets for disease treatment (24). It can
extract disease-specific biomarkers from genomic data and reveal
molecular mechanisms of diseases, aiding translational medical
research. Our study innovatively applied an integrated omics
approach. Using sarcopenia-related transcriptomic data from
GEO (32), it combined bioinformatics and machine learning to
pinpoint NETosis-related genes and chemokine network genes in
sarcopenia. Subsequently, a clinically relevant prediction model was
created and its diagnostic performance assessed.
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FIGURE 1

Flowchart of this study. (DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DO, Disease
Ontology; DECRGs, differentially expressed chemokine-related genes; DENRGs, differentially expressed NETosis-related genes; RF, random forest;
SVM-RFE, Support Vector Machines- Recursive Feature Elimination; LASSO, Least Absolute Shrinkage and Selection Operator; GSEA, Gene Set
Enrichment Analysis; GSVA, Gene Set Variation Analysis).

Materials and methods

Microarray data source information

The methodology for data analysis employed in this study is
illustrated in Figure 1. Inclusion criteria were established to ensure
the acquisition of test samples from human subjects, emphasizing
independent expression profiles with an adequate sample size.
The GSE226151 dataset from the GEO database was selected for
inclusion in this investigation. This dataset comprises 19 samples
from individuals with sarcopenia, 19 samples from individuals
with pre-sarcopenia, and 20 samples from healthy controls, all
subjected to mRNA expression profiling. The dataset GSE226151
encompasses healthy controls, individuals with presarcopenia,
and those diagnosed with sarcopenia. This extensive inclusion of
various stages in the progression of sarcopenia facilitates a more
profound understanding of the fundamental mechanisms driving
the development of this condition. Due to the larger sample sizes
of the sarcopenia and healthy control cohorts, participants were
categorized into two groups: a training group, which included
samples from sarcopenia and healthy control subjects, and an
internal validation group, which consisted of samples from pre-
sarcopenia and sarcopenia subjects. Further details are provided in
Table 1.

TABLE 1 Details of the GEO data.

Dataset Platform Number of samples
(health/pre-sarccopenia/

sarccopenia)

GSE226151 GPL16791
Illumina HiSeq
2500 (Homo
sapiens)

58 (20/19/19)

GEO, Gene Expression Omnibus.

Discovering genes related to chemokines
and NETosis with differential expression

Using the R limma package, we normalized and preprocessed
data from sarcopenia patients and healthy controls to identify
differentially expressed genes (DEGs). The screening criteria were
| log2 fold change| > 0.585 and corrected p < 0.05. From the
GeneCards database,1 we obtained 396 genes associated with
chemokines and 73 genes linked to NETosis. The overlap between
DEGs and chemokine-associated genes was termed differentially
expressed chemokine-related genes (DECRGs). Similarly, In the

1 https://www.genecards.org/
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FIGURE 2

(A) The heatmap of DEGs with the two-way clustering; (B) The volcano plot of DEGs.

same manner, we defined genes linked to NETosis that were
differentially expressed as DENRGs.

GO, DO, and KEGG enrichment analyses

Using the R clusterProfiler package, we performed Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway, Disease
Ontology (DO), and Gene ontology (GO) enrichment analyses,
covering biological process (BP), cellular component (CC), and
molecular function (MF). To manage the false discovery rate
(FDR), the Benjamini-Hochberg adjustment was applied, with a
q-value cutoff of 0.05. The R packages circlize and ggplot2 were
used to visualize significant enrichment results.

Analysis using univariate methods and
machine learning techniques like LASSO
and SVM-RFE

We performed a univariate analysis on all DECRGs and
DENRGs, displaying the results as forest plots using online tools.
We then used LASSO regression and SVM-RFE to identify feature
genes within these groups. The optimal λ for LASSO was found
through 10-fold cross-validation with the R glmnet package, while
SVM-RFE was conducted using the R e1071 package. Notably, the
penalty parameter (lambda.min) was determined by the minimum
criterion for LASSO. We also used the SVM-RFE method to
identify key features from input data. A 15-fold cross-validation
is applied to test model performance across different feature

counts, with error rate and accuracy plots illustrating results.
The most significant features are then extracted and saved for
further analysis.

The intersection of feature DECRGs, DENRGs, and genes
from the univariate analysis was defined as signature genes for
further analysis.

Development of a network of
interactions for signature genes

Following this, a network illustrating the interactions among
the signature genes was developed using GeneMANIA, an
online resource adept at uncovering internal relationships
within gene groups.

Construction of nomogram model and
assessment of diagnostic efficacy

Diagnostic models with nomograms were created using
signature genes via the R rms package. Calibration was assessed
with calibration curves, using mean absolute error and 1,000
bootstrap samples through the R CalibrationCurves package.
Decision curve analysis (DCA) evaluated the nomograms’ net
benefits at various risk thresholds, and the clinical impact
curve (CIC) assessed predictive efficacy. Model performance was
analyzed using ROC curves and AUC. A similar nomogram model
was developed and validated in an internal validation group.
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FIGURE 3

(A) The GO BP enrichment analysis of DEGs; (B) the GO CC and MF enrichment analysis of DEGs; (C) the KEGG pathway enrichment analysis of
DEGs.

Gene set variation analysis and gene set
enrichment analysis

This study focuses on exploring the roles of signature genes
in sarcopenia by performing single-gene Gene Set Enrichment
Analysis (GSEA) using the R clusterProfiler package. Samples were

divided into low- and high-expression groups for each gene, and
GSEA identified significant KEGG pathways between these groups.
Additionally, Gene Set Variation Analysis (GSVA) was conducted
using the R GSVA package and KEGG gene sets to compare
pathway enrichment. A p-value of less than 0.05 was used to
determine statistical significance.
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FIGURE 4

(A) Identification of DECRGs and DENRGs between sarcopenia and healthy control groups; (B) the DO enrichment analysis of DECRGs and DENRGs.
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FIGURE 5

The chordal graph illustrates the significance of KEGG pathway enrichment for DECRGs and DENRGs when comparing sarcopenia to healthy
controls, with each string indicating the connection of DECRGs and DENRGs to specific KEGG pathways.

Results

Recognition of DEGs

The mRNA expression dataset GSE226151 was normalized,
revealing 103 DEGs between sarcopenia and healthy controls, with
54 up-regulated and 49 down-regulated. Figures 2A,B display a
heatmap and volcano plot, respectively.

Function enrichment analyses of the
DEGs

GO analyses categorized DEGs into BP, CC, and MF,
highlighting granulocyte chemotaxis, leukocyte chemotaxis,
neutrophil migration, regulation of muscle system processes, and
regulation of muscle adaptation as the key processes (Figure 3A).
The results indicate that inflammation and neutrophils could be
crucial in the development of sarcopenia. Additionally, most DEGs
were predominantly localized to muscle-associated tissues and
immune complexes, which were significantly involved in processes
such as immune receptor activity, immunoglobulin receptor
binding, complement receptor activity, CXCR chemokine receptor
binding, and C-C chemokine receptor activity (Figure 3B).

KEGG enrichment analysis indicated that DEGs are mainly
linked to muscle function, inflammation and chemotaxis,
and metabolic regulation. This includes roles in cytoskeletal

organization within muscle cells, oxidative phosphorylation,
cholesterol metabolism, cytokine-cytokine receptor interactions,
non-alcoholic fatty liver disease, diabetic cardiomyopathy,
propanoate metabolism, and butanoate metabolism (Figure 3C). In
summary, these findings suggest that the functions of neutrophils
and chemokines undergo significant alterations in sarcopenia,
potentially playing a critical role in its regulation.

Recognition of DECRGs and DENRGs

Supplementary materials 1, 2 list 396 chemokine-related and
73 NETosis-related genes. From the GSE226151 dataset, six
DECRGs and three DENRGs were identified by intersecting
DEGs with chemokine and NETosis-related genes, respectively
(Figure 4A). The results of the DO enrichment analyses are
depicted in Figure 4B, demonstrating that these seven DECRGs
and DENRGs are enriched in several diseases closely associated
with sarcopenia, such as abdominal obesity-metabolic syndrome,
lipid metabolism disorder, non-alcoholic fatty liver disease,
lipodystrophy, tuberculosis, hyperglycemia, leukocyte disease,
kidney failure, pancreas disease, vitamin D-dependent rickets, and
inflammatory bowel disease. KEGG pathway analysis shows these
genes are mainly linked to cytokine-cytokine receptor interaction,
chemokine signaling, NOD-like receptor signaling, and viral
protein interaction with cytokines, indicating their potential role in
immune response regulation and neutrophil chemotaxis (Figure 5).
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FIGURE 6

Machine learning for selecting feature genes from DECRGs and DENRGs. (A) Optimal log (λ) value is chosen via 10-fold cross-validation and shown
by partial likelihood deviance; (B) LASSO regression identifies variables and maps them to curves; (C) maximum accuracy (5 × CV) of 0.667 is
achieved with five feature genes; (D) minimum error (5 × CV) of 0.333 occurs with five feature genes.

Univariate analysis and machine learning
algorithm of LASSO and SVM-RFE

To identify feature genes within DECRGs and DENRGs,
researchers used LASSO and SVM-RFE machine learning
algorithms. LASSO regression, which applies L1 regularization
for variable selection, employed 10-fold cross-validation to find
the most stable model, identifying three feature genes: CXCR1,
CXCR2, and LPL (Figures 6A,B). The SVM-RFE method, known
for its efficacy in selecting pivotal genes through recursive feature
elimination, was subsequently employed. Upon selecting five
genes, the model attained optimal performance, evidenced by an
accuracy of 66.7% and an error rate of 33.3%. Consequently, the
top five genes—CXCR1, CXCR2, CXCL8, IL18, and LPL—were
identified from the DECRGs and DENRGs for further analysis
(Figures 6C,D).

Univariate logistic regression showed that higher CXCR2 and
CXCR1 expression increased sarcopenia risk, while lower LPL and

IL18 expression was protective. Figure 7 presents forest plots that
illustrate the risk factors identified through univariate analysis.

Subsequently, an intersection of these three primary gene sets,
as determined by univariate logistic regression, LASSO, and SVM-
RFE models, led to the identification of three optimal signature
genes—CXCR2, CXCR1, and LPL—for sarcopenia (Figure 8A).
Finally, the expression levels of these three signature genes between
the sarcopenia and healthy control groups are depicted in the violin
plots shown in Figures 8B–D.

Creation and validation of a predictive
model for sarcopenia

A nomogram model was developed using logistic regression
on three key genes to distinguish sarcopenia patients from healthy
individuals, employing the R rms package (Figure 9). A calibration
curve showed minimal difference between actual and predicted
sarcopenia probabilities, with a mean absolute error of 0.065,
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FIGURE 7

Forest plot of univariate analysis for DECRGs and DENRGs.

indicating high accuracy (Figure 10A). Decision curve analysis
(DCA) revealed that this nomogram offered the greatest net benefit
for patients (Figure 10B). A clinical impact curve (CIC) based
on the DCA curve further demonstrated the model’s clinical
effectiveness, with the “Number high risk” curve closely matching
the “Number high risk with event” curve at high-risk thresholds of
0.5–1 (Figure 10C).

ROC curves and AUC were used to evaluate the nomogram
model’s ability to distinguish sarcopenia patients from healthy
controls. The model, incorporating three signature genes, achieved
an AUC of 0.837 (95% CI, 0.703–0.947) (Figure 10D), suggesting
these genes are crucial in sarcopenia’s pathogenesis.

To validate these genes and the model’s diagnostic accuracy,
we examined their expression in pre-sarcopenia and sarcopenia
patients within an internal validation group. CXCR1 and CXCR2
levels were significantly higher, and LPL levels were lower in the
sarcopenia group (Figures 11A–C), consistent with the training
group. The validation cohort’s nomogram, based on these genes,
is shown in Figure 11D.

Furthermore, the nomogram model demonstrates high
accuracy, evidenced by a mean absolute error of 0.039 (Figure 12A),
as well as substantial net clinical benefit (Figure 12B) and clinical
applicability (Figure 12C) in distinguishing sarcopenia from pre-
sarcopenia. The AUC for sarcopenia prediction is 0.903 (95% CI
0.789–0.989) (Figure 12D). Collectively, these findings indicate that
the three signature genes serve as effective diagnostic indicators for
forecasting sarcopenia and differentiating it from pre-sarcopenia.

Interaction network of signature genes

The analysis of signature genes revealed a complex network
involving physical interactions, co-expression, and shared protein
domains. Key functions include regulating lipoprotein lipase
activity, neutrophil and granulocyte migration, protein-lipid
complex remodeling, and chemokine receptor binding (Figure 13
and Supplementary material 3). These findings suggest that
chemokine, leukocyte chemotaxis, and lipid metabolism pathways

may play a role in sarcopenia’s pathogenesis, highlighting the need
for further study.

Single-gene GSEA and GSVA of signature
genes

To explore the roles of CXCR2, CXCR1, and LPL in sarcopenia-
related pathways, we analyzed these genes individually using
single-gene GSEA and GSVA. Our findings aligned with existing
research. By examining mRNA levels, we categorized sarcopenia
and healthy samples into high and low expression groups. Single-
gene GSEA with KEGG pathways revealed that high CXCR2
expression (Figure 14A) was linked to increased activity in
pathways like neutrophil extracellular trap formation, phagosome,
chemokine signaling, NOD-like receptor signaling, JAK-STAT
signaling, cell adhesion, and apoptosis. Similarly, high CXCR1
expression (Figure 14B) was associated with enhanced activity
in neutrophil extracellular trap formation, chemokine signaling,
NOD-like receptor signaling, JAK-STAT signaling, and apoptosis.

Moreover, the elevated expression of LPL (Figure 14C) is
correlated with enhanced activity in several metabolic and signaling
pathways, including oxidative phosphorylation, PPAR signaling,
fatty acid degradation, butanoate metabolism, and lipoic acid
metabolism. These pathways are identified as potential candidates
for further validation.

To identify pathways differently regulated in sarcopenia versus
healthy individuals, GSVA analysis was conducted. It showed
decreased activity in the PPAR signaling pathway and glycerolipid
metabolism, and increased activity in the Jak-STAT signaling
pathway, leukocyte migration, chemokine signaling, and cytokine
interactions in sarcopenia samples (Figure 14D). Single-gene GSEA
confirmed these findings, linking changes in CXCR2, CXCR1, and
LPL to the upregulation of Jak-STAT and downregulation of PPAR
pathways.

Discussion

Sarcopenia, an age-related syndrome marked by decreased
muscle mass and function, is closely tied to chronic inflammation.
Research indicates that this persistent inflammation significantly
contributes to sarcopenia by disrupting muscle protein balance,
altering metabolism, and causing oxidative stress (33, 34). In
the elderly, chronic inflammation, known as “inflammaging,” is
a low-grade systemic condition that deteriorates muscle quality
and function and is linked to age-related diseases like obesity and
cardiovascular issues (35). For instance, studies have demonstrated
that chronic inflammation can exacerbate the progression of
sarcopenia by influencing muscle metabolism and endocrine
functions (36). Chronic inflammation is associated with muscle
liposis, especially in liver cirrhosis patients (37). The combination
of muscle liposis and sarcopenia significantly increases mortality
and hospitalization risks (38). In individuals with chronic kidney
disease, chronic inflammation is also a pivotal factor contributing
to reduced muscle mass, a condition further aggravated by
malnutrition and metabolic acidosis (39, 40). Addressing chronic
inflammation may be crucial for preventing and managing
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sarcopenia. Evidence indicates that anti-inflammatory treatments,
nutritional strategies, and proper exercise can improve muscle
quality and slow sarcopenia’s progression (34, 40). Future studies
should explore how chronic inflammation affects sarcopenia to
develop better treatments.

Chronic inflammation, a hallmark of sarcopenia, plays a
pivotal role in the condition by contributing to the development
of muscle dysfunction (33). Neutrophils are vital to chronic
inflammation, serving key roles in the innate immune system and
various chronic inflammatory conditions. Recent research shows
their diverse functions, extending beyond acute inflammation.
They influence immune responses by releasing cytokines and
chemokines, persisting in chronic inflammation, and contributing
to tissue damage and disease progression (41). Furthermore,
the mechanisms of neutrophil death, such as apoptosis and the
formation of NETs, are closely associated with the maintenance
of chronic inflammation and cancer progression (42). Studies
have demonstrated a significant positive correlation between

the directional migration of neutrophils and chemokine
concentration gradients (43). Chemotactic factors precisely
orchestrate neutrophil chemotaxis toward inflammatory foci by
establishing molecular concentration gradients (44). In the context
of neutrophilic inflammation, activated neutrophils migrate to
inflamed regions and participate in inflammatory responses
through various mechanisms, including degranulation, oxidative
burst, and the formation of NETs (45). The release of NETs is a
standard component of the neutrophil response to infection and
inflammation (46), and this process is referred to as NETosis (47).
Neutrophil-induced NETosis represents a distinct form of cell
death, differing from apoptosis and necrosis, and significantly
contributes to tissue damage (48, 49). Elevated neutrophil-to-
lymphocyte ratio levels may suggest that inflammation plays a
substantial role in the development of sarcopenia in the elderly
population (33). In response to chemokines, activated neutrophils
migrate to the inflammation region, produce antimicrobial agents,
and undergo NETosis (25). Consequently, chemokines serve as

FIGURE 8

(A) The Venn diagram for recognizing signature genes; The violin plot of mRNA expression CXCR2 (B), CXCR1 (C), and LPL (D) in GSE226151
between sarcopenia and healthy control groups.
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FIGURE 9

The Nomogram model for predicting sarcopenia from healthy controls based on three signature genes.

crucial regulators in the NETosis process. However, The function of
chemokine-induced NETosis in the pathways leading to sarcopenia
is still uncertain.

Chemokine-regulated NETosis might be crucial in sarcopenia’s
development, marked by chronic inflammation. We identified 103
DEGs between sarcopenia patients and healthy controls. GO and
KEGG analyses pointed to processes like neutrophil migration and
chemokine receptor interactions, supporting our hypothesis and
indicating the need for further research.

Additionally, we identified seven DECRGs and DENRGs
enriched in the chemokine signaling pathway and chronic
inflammatory diseases related to sarcopenia. These diseases include
abdominal obesity-metabolic syndrome, lipid metabolism disorder,
chronic obstructive pulmonary disease (COPD), kidney failure,
inflammatory bowel disease (IBD), and pancreatic disease (50–54).
COPD, a prevalent chronic inflammatory lung condition, not only
impairs respiratory function but is also associated with systemic
inflammation and muscle dysfunction. A decline in muscle strength
and mass is commonly observed in COPD patients, and this is
closely associated with their persistent inflammatory state (55, 56).
Similarly, individuals with kidney failure are susceptible to muscle
mass loss and symptoms of sarcopenia due to the accumulation of
metabolic waste and persistent inflammation (39, 57). Conditions
like Crohn’s disease and ulcerative colitis, which are forms of
IBD, are connected to persistent inflammation and sarcopenia.
A bidirectional causal relationship may exist between sarcopenia
and IBD; IBD can lead to muscle wasting, while sarcopenia may
exacerbate the progression of IBD (58). Furthermore, pancreatic
disorders, particularly chronic pancreatitis, can contribute to
sarcopenia by impairing nutrient absorption and inducing systemic
inflammation (13, 59). Sarcopenia is closely associated with chronic
inflammatory diseases, worsening muscle quality and function.
Variations in genes related to NETosis and chemokines may

influence these diseases, leading to sarcopenia. Understanding
these connections is crucial for creating effective treatments.

Advancements in big data analytics and AI have enhanced
machine learning algorithms for accurate disease classification and
prediction (60). A combined LASSO and SVM-RFE algorithm
identified three key genes—CXCR2, CXCR1, and LPL—with
optimal predictive accuracy. Two validated nomogram models,
assessed using calibration curves, DCA, CIC, and ROC curves,
showed high efficacy in distinguishing sarcopenia from healthy
controls (AUC = 0.837) and pre-sarcopenia (AUC = 0.903).
These genes are critically involved in NETosis and chemokine
regulation in sarcopenia.

CXCR2 and CXCR1 are key chemokine receptors on
neutrophils, crucial for their movement and activation. They
are significantly linked to NET formation in inflammation and
modulate neutrophil activity in acute respiratory distress syndrome
(ARDS) by interacting with chemokines like interleukin-8 (IL-8),
promoting lung inflammation and injury (61). In infectious
diseases, CXCR2 and CXCR1 are also recognized as key regulators
of NET formation. Specifically, in staphylococcus aureus infections,
the LukED toxin enhances neutrophil destruction and NET
formation by targeting CXCR1 and CXCR2, thus intensifying
the infection’s severity (62). Furthermore, evidence shows that
CXCR2 is crucial for neutrophil migration and NET formation
after peripheral nerve injury, essential for neural regeneration
(63). Exploring CXCR1 and CXCR2 expression on muscle cells
and their role in muscle inflammation could clarify mechanisms
behind sarcopenia. Existing research indicates that CXCR1 and
CXCR2 are integral to various cellular processes that could
significantly impact muscle health. Notably, these receptors have
been implicated in endothelial cell migration and proliferation
(64), processes that are vital for muscle repair and regeneration
(65). Moreover, research has shown that CXCR1 and CXCR2 play a
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FIGURE 10

(A) Calibration curves for the nomogram with a mean absolute error of 0.065; (B) decision curve analysis (DCA) for the nomogram model and each
signature gene, comparing “Treat All” and “Treat None” strategies; (C) the clinical impact curve (CIC) for the nomogram model; (D) ROC and AUC
analysis of the nomogram model distinguishing between sarcopenia and healthy control groups.

role in controlling angiogenesis and tissue remodeling (66), both of
which are essential for maintaining muscle integrity and function
(67). Dysregulation of these processes may contribute to the
muscle wasting characteristic of sarcopenia (68, 69). Additionally,
the role of CXCR2 and CXCR1 in neutrophil recruitment and
activation suggests that they might influence muscle inflammation
and subsequent muscle degradation (70, 71). Modulating these
receptors could potentially alter the inflammatory environment
within muscle tissue, thereby affecting muscle cell survival and
function. However, we need to acknowledge that the above analysis
is an inference and hypothesis based on the results of previous
literature, and there is still a lack of evidence that CXCR1/CXCR2
is directly related to sarcopenia.

Our findings compellingly show that the likelihood of
sarcopenia is significantly connected to the heightened expression
of CXCR1 and CXCR2, and the KEGG pathway related to
“Neutrophil extracellular trap formation.” This observation is
consistent with existing literature and supports our hypothesis.
In conclusion, the interplay between NETosis, along with
its associated chemokine receptors CXCR1 and CXCR2,
and sarcopenia encompasses intricate interactions among
inflammatory pathways, cellular migration, and tissue remodeling.

Gaining more insight into these interactions could lead to new
treatment methods focused on minimizing muscle loss and
improving muscle function in people with sarcopenia.

Lipoprotein Lipase (LPL) is a crucial enzyme mainly tasked
with breaking down triglycerides in the bloodstream, thereby
playing a crucial role in lipid metabolism and energy homeostasis
(72, 73). The activity of LPL is modulated by a variety of factors,
including genetic mutations, protein interactions, and metabolic
conditions (74, 75). LPL is not only involved in lipid metabolism
but also plays a part in the onset and progression of multiple
diseases. For instance, in chronic lymphocytic leukemia, LPL
expression correlates with adverse clinical outcomes, although
its precise functional roles and regulatory mechanisms remain
under investigation (76). Regarding breast cancer, LPL contributes
to the energy supply of tumor cells by hydrolyzing lipids
from lipoproteins, potentially facilitating tumor growth and
progression (77). Furthermore, LPL activity is affected by various
pharmacological agents and biomolecules. For instance, metformin
is used in diabetes treatment to activate AMP-activated protein
kinase (AMPK), which boosts the expression and function of LPL
in skeletal muscle, thus enhancing lipid metabolism (78). Actually,
tissue remodeling is a significant finding in the study of sarcopenia,
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FIGURE 11

(A) The violin plot of mRNA expression CXCR2 between sarcopenia and pre-sarcopenia; (B) the violin plot of mRNA expression CXCR1 between
sarcopenia and pre-sarcopenia; (C) the violin plot of mRNA expression LPL between sarcopenia and pre-sarcopenia; (D) the nomogram model for
predicting sarcopenia from pre-sarcopenia based on three signature genes (PS, pre-sarcopenia).

characterized by the replacement of healthy muscle with fat and
fibrotic tissue (79). The accumulation of excess lipids in skeletal
muscles contributes to reduced muscle mass, thereby leading to
sarcopenia (80). Myosteatosis, the buildup of fat within muscles,
is increasingly noted as a key factor in sarcopenia, especially
with the aging population, as it reduces muscle strength and
quality (81–84). Decreased LPL activity is closely associated with
metabolic syndrome, a cluster of complex metabolic disorders
that includes abdominal fat accumulation, elevated triglycerides,
high cholesterol, hypertension, hyperglycemia, and non-alcoholic
fatty liver disease (85). These elements have been recognized
as key contributors to sarcopenia (86). Consequently, the low
expression of LPL may be associated with sarcopenia due to
disorders of lipid metabolism and myosteatosis. In our study,
we observed a significant down-regulation of LPL expression in
the sarcopenia group. The elevation in LPL levels was correlated
with increased activity in the KEGG pathway terms “Fatty acid
degradation” and “Fatty acid metabolism,” as determined through
single-gene GSEA. These results are consistent with previous
research and may illustrate the significant regulatory role of LPL
in the context of sarcopenia.

LPL plays a key role in metabolism and physiological processes
like chemokine activity modulation and immune cell chemotaxis.
Research shows that miR-467b and miR-590 target LPL in

macrophages, reducing lipid accumulation and proinflammatory
cytokine secretion (87, 88). Furthermore, angiopoietin-like
proteins (ANGPTLs) play a crucial role in regulating LPL activity,
which significantly impacts lipid metabolism and the function
of immune cells. For instance, ANGPTL4 can inactivate LPL,
thereby affecting the hydrolysis of triglycerides and the subsequent
release of free fatty acids (89, 90), which are known to modulate
inflammatory processes and immune cell behavior (91, 92). LPL
is integral to the pathogenesis of atherosclerosis and thrombosis,
as evidenced by recent studies (93). Concurrently, chemokines
and NETs substantially influence these pathological processes (94,
95). Chemokines, which are tiny signaling proteins, aid in drawing
immune cells to inflamed sites, thus significantly influencing the
formation and advancement of atherosclerotic plaques. Research
indicates that chemokines can augment NET formation by
promoting the recruitment and activation of neutrophils, a process
intricately linked to the stability of atherosclerotic plaques and
the development of thrombosis (96, 97). Therefore, LPL is not
only essential for lipid metabolism but also significantly affects
immune cell function and chemotaxis through its interactions
with chemokines and regulatory proteins. Understanding LPL’s
dual role in metabolism and immunity could inform sarcopenia
treatments by targeting metabolic and inflammatory pathways.
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FIGURE 12

(A) Calibration curves for the nomogram with a mean absolute error of 0.039 for predicting sarcopenia from pre-sarcopenia; (B) DCA of the
nomogram and each signature gene, including “Treat All” and “Treat None” strategies; (C) CIC of the nomogram; (D) ROC and AUC of the
nomogram between sarcopenia and pre-sarcopenia groups.

However, research on LPL’s link to sarcopenia via inflammation is
scarce, necessitating further studies.

Our research found that CXCR1 and CXCR2 were notably
higher in the sarcopenia group, with single-gene GSEA and
GSVA confirming their strong association with increased JAK-
STAT pathway activity. This pathway is vital for cell proliferation,
differentiation, and immune regulation, including the regulation of
neutrophil functions. In gastric cancer research, P2RX1 expression
in neutrophils is linked to the JAK/STAT signaling pathway.
Overexpression of P2RX1 boosts neutrophil survival via this
pathway, reducing gastric cancer cell migration, invasion, and
proliferation while increasing apoptosis (98). JAK inhibitors can
reduce neutrophil activity (99), while cytokines like G-CSF and
GM-CSF enhance their survival via the JAK-STAT pathway (100).
Additionally, this pathway is crucial in skeletal muscle, where it
mediates myokine signaling during contraction and contributes
to muscle atrophy in cachexia and chronic kidney disease models
(101). Blocking the JAK/STAT pathway pharmacologically in

cachectic mice somewhat reduced the loss of muscle mass, as IL-6
activation of this pathway induces muscle atrophy (102, 103).

In the sarcopenia group, LPL perturbation led to down-
regulation of the PPAR signaling pathway, which is crucial for
lipid and glucose metabolism and inflammatory responses (104).
PPARγ and PPARα, key members of this pathway, are essential for
adipocyte differentiation and fatty acid oxidation. Overactivation
of PPARγ can cause abnormal adipocyte differentiation and
lipid accumulation, while PPARα dysfunction may impair fatty
acid oxidation, affecting muscle energy metabolism and function
(105, 106). Research indicates that regulating the PPAR signaling
pathway can enhance mitochondrial biosynthesis and function,
impacting muscle energy metabolism and oxidative stress (107,
108). This regulation offers a potential strategy for treating
sarcopenia by improving muscle energy metabolism and function
(109, 110).

The genes identified in this study, namely CXCR1, CXCR2,
and LPL, exhibit substantial potential as clinical diagnostic and
therapeutic targets for sarcopenia. Diagnostically, they could
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FIGURE 13

Interaction network of signature genes via GeneMANIA, with line colors indicating gene associations and circle colors representing gene functions.

FIGURE 14

(A) Top 20 KEGG pathways from single-gene GSEA of CXCR2; (B) top 16 KEGG pathways from single-gene GSEA of CXCR1; (C) top 20 KEGG
pathways from single-gene GSEA of LPL; (D) GSVA-based volcano plot of pathways between sarcopenia and healthy controls.
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form biomarker panels, with their mRNA levels measurable
via PCR or RNA sequencing from blood or muscle samples.
High CXCR1 and CXCR2 and low LPL levels may indicate
sarcopenia progression, aiding early detection. Therapeutically,
targeting CXCR1 and CXCR2 with inhibitors or antibodies
could reduce inflammation and muscle damage, while enhancing
LPL activity with drugs like metformin could improve lipid
metabolism and muscle health, potentially preventing muscle lipid
accumulation and dysfunction. Future research should prioritize
the validation of these targets through clinical trials and the
investigation of combination therapies to optimize therapeutic
outcomes. Collectively, these genes represent promising avenues
for the development of diagnostic tools and interventions aimed
at effectively managing sarcopenia.

This study presents several limitations that merit careful
consideration. Firstly, the research design was confined to
retrospective data analysis and did not include prospective
intervention experiments. Furthermore, the GSE226151 dataset
employed in this study is characterized by a relatively limited
sample size and an absence of baseline data and clinical
characteristics of the patients. Additionally, it is lack of external
validation data sets. These limitations enhance the potential
for selection bias within the study. Secondly, the inflammatory
regulatory network is characterized by complex multifactorial
interactions, where environmental exposures, genetic backgrounds,
and other factors may collectively influence the expression
profiles of relevant biomarkers. More critically, the aberrant
expression of sarcopenia-related genes was inferred solely from
transcriptomic data. Consequently, key scientific questions remain
unresolved regarding the dynamic changes at the protein level, their
correlations with disease staging and classification, and the specific
mechanisms affecting skeletal muscle metabolism. Future research
should incorporate proteomic technologies, establish cell models
and genetically modified animal models, and validate the biological
functions and clinical applications of the target molecules through
multicenter, large-sample cohort studies.

However, this study is the first to identify and validate signature
genes associated with NETosis and chemokines that can effectively
construct a predictive model for sarcopenia. This discovery offers
novel insights into the interplay between NETosis, chemokines,
and the pathogenesis of sarcopenia, potentially unveiling new
therapeutic targets. Importantly, the diagnostic model developed
using three signature genes exhibited robust performance in
validation group, effectively distinguishing sarcopenia from pre-
sarcopenic stages, thereby boosting trust in the dependability of
our results. Incorporating these signature genes into current clinical
diagnostic systems may be a promising direction for future studies.

Conclusion

By employing integrative bioinformatics strategies and multiple
machine learning algorithms, we have successfully identified three
signature chemokine- and NETosis-associated genes (CXCR1,
CXCR2, and LPL) and constructed robust diagnostic models for
sarcopenia detection. This innovative methodology may represent
a preliminary advancement in clinical diagnostics and therapeutic
development for sarcopenia management.
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