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The use of artificial intelligence in
the prevention and management
of bleeding disorders: a
systematic review

Fathima Raahima Riyas Mohamed, Ziyad Aldabbagh,
Wael Kalou, Khaled Hamsho, Anwar Aldabbagh, Adel Kalou
and Muhammad Raihan Sajid*

College of Medicine, Alfaisal University, Riyadh, Saudi Arabia

Background: Bleeding disorders, including hemophilia, von Willebrand disease
(VWD), and immune thrombocytopenia (ITP), pose significant diagnostic
and therapeutic challenges due to their heterogeneous presentations and
complex underlying mechanisms. Traditional diagnostic methods rely on clinical
assessments and laboratory tests, which can be time-consuming and prone to
misdiagnosis, particularly in resource-limited settings. Artificial intelligence (Al)
has emerged as a transformative tool in healthcare, leveraging machine learning
(ML) algorithms and predictive analytics to enhance diagnostic accuracy, risk
stratification, and personalized treatment approaches.

Objective: This systematic review explores the role of Al in the prevention,
diagnosis, and management of bleeding disorders. Specifically, it assesses Al-
driven models in identifying key predictors, optimizing risk assessment, and
improving treatment outcomes.

Methods: A comprehensive literature search was conducted across major
databases following PRISMA guidelines. Studies were selected based on their
focus on Al applications in bleeding disorders, particularly those utilizing
ML models such as Random Forest, XGBoost, LightGBM, and deep learning
techniques. The risk of bias was evaluated using the ROBINS-E and RoB 2 tools.

Results: Twelve studies met the inclusion criteria, demonstrating the efficacy
of Al models in bleeding disorder management. Genetic markers, such as
Factor VIII gene mutations and von Willebrand factor variants, enable early
disease classification and severity prediction. Laboratory biomarkers, including
baseline factor VIII activity, platelet count, and coagulation profiles, enhance risk
assessment for bleeding complications. Clinical history variables, such as prior
bleeding events, anticoagulant use, infection status, and comorbidities, support
personalized treatment strategies. Additionally, demographic and environmental
factors, including age, sex, healthcare utilization patterns, and socioeconomic
status, refine predictive models for undiagnosed cases.

Conclusion: The integration of these variables into Al-driven models has
demonstrated superior diagnostic accuracy compared to traditional methods,
facilitating early detection, individualized treatment planning, and improved
patient outcomes. However, challenges such as dataset fragmentation, model
interpretability, and limited external validation hinder widespread clinical
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adoption. Al-driven approaches have the potential to revolutionize bleeding
disorder management by advancing precision medicine, optimizing healthcare
resources, and promoting equitable access to high-quality care.
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Introduction

Bleeding disorders are a heterogeneous group of hereditary
and acquired conditions characterized by impaired hemostasis,
resulting in excessive or prolonged bleeding (1). Hemostasis is a
tightly regulated process that prevents blood loss after vascular
injury, involving three primary phases: vascular constriction,
platelet aggregation to form a temporary plug, and activation of
the coagulation cascade, which culminates in fibrin mesh formation
to stabilize the clot (1-3). Disruptions in any of these processes—
caused by platelet dysfunction (4, 5), clotting factor deficiencies
(6, 7), fibrinolytic abnormalities (8, 9), or vascular defects (10)—
can lead to uncontrolled bleeding, spontaneous hemorrhage, and
life-threatening complications.

Bleeding disorders are broadly classified into platelet disorders,
coagulation factor deficiencies, and vascular abnormalities (11).
Platelet disorders, such as Glanzmann Thrombasthenia, Bernard-
Soulier syndrome, and immune thrombocytopenic purpura (ITP),
impair platelet adhesion, aggregation, or survival (12). Coagulation
factor deficiencies include hemophilia A (factor VIII deficiency)
(6), hemophilia B (factor IX deficiency) (13), and von Willebrand
disease (VWD), which affects von Willebrand factor (VWF) and
impairs clot formation (14). Rare factor deficiencies-including
fibrinogen, prothrombin, and factors V, VII, XI, and XIII-also
contribute to abnormal bleeding (15). Vascular abnormalities,
such as Ehlers-Danlos syndrome and hereditary hemorrhagic
telangiectasia, increase vessel fragility and bleeding risk (16, 17).

Clinically, bleeding disorders present along a spectrum
depending on severity and affected pathway (18). Mild cases may
show easy bruising, frequent epistaxis, or prolonged bleeding after
minor injuries, whereas severe cases can cause spontaneous joint
(hemarthrosis) or muscle bleeds, gastrointestinal hemorrhage, and
intracranial bleeding (1, 18, 19). Recurrent bleeding, particularly
hemarthrosis, can lead to joint damage, disability, and reduced
quality of life (20).

Despite advances in understanding, diagnosing and managing
bleeding disorders remain challenging, especially in resource-
limited settings (21, 22). Diagnosis relies on clinical history,
bleeding assessment tools (BATs), and specialized laboratory tests,
including platelet function assays, clotting factor measurements,
and genetic testing (22). Access to these tools varies widely; globally,
only 6.3% of individuals with inherited bleeding disorders receive
a diagnosis, with rates below 10% in low- and middle-income
countries (LMICs) compared to 55% in high-income countries
(HICs) (23). Limited laboratory infrastructure, high assay costs, and
variable symptom presentation contribute to underdiagnosis and
misdiagnosis (24, 25).
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Artificial intelligence (AI) offers promising solutions to these
challenges. AI encompasses machine learning (ML) and deep
learning techniques that analyze complex datasets to identify
patterns, make predictions, and support decision-making (26). In
clinical medicine, AI has improved diagnostic accuracy, predicted
outcomes, and personalized treatment (26, 27). ML algorithms,
such as Random Forest and Extreme Gradient Boosting (XGBoost),
excel at detecting non-linear relationships in high-dimensional
data, making them suitable for predictive modeling (28). In fields
such as radiology, pathology, and endoscopy, Al has enhanced
diagnostic efficiency, reduced errors, and optimized care delivery
(29-31).

In bleeding disorders, AI can similarly improve diagnosis
by integrating clinical and laboratory data, predict bleeding
risks through advanced modeling, and individualize treatment to
optimize outcomes (32). It may also identify novel therapeutic
targets via genomic and proteomic analyses (33). However, Al
adoption in bleeding disorders lags behind other domains, likely
due to disease rarity, fragmented datasets, and limited systematic
evaluation (34).

This systematic review aims to comprehensively synthesize the
existing evidence on the application of artificial intelligence (AI)
in the diagnosis, treatment, and prevention of bleeding disorders,
an area that has received less attention compared to oncology or
cardiology. The primary objectives are to evaluate the potential of
Al to enhance diagnostic accuracy and facilitate early intervention,
assess Al-driven methodologies for predicting bleeding risks and
optimizing treatment protocols, and explore AT’s role in identifying
novel therapeutic targets for bleeding disorders. Additionally, this
review seeks to identify the current limitations and challenges in
integrating Al into the management of bleeding disorders, while
also proposing future directions for its application in this field. By
systematically appraising the available evidence using established
risk-of-bias tools, it clarifies both the potential and the limitations
of current models. In particular, it draws attention to persistent gaps
such as the lack of prospective validation, minimal use of external
datasets, and the underrepresentation of low-resource settings—
issues that are essential to address for future clinical adoption.

Methodology

This systematic review followed PRISMA-2020 guidelines
(Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) to maintain a thorough and consistent approach across
all stages, from literature search to data synthesis (35). The
study framework was guided by the PICOS model (Population,
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Intervention, Comparison, Outcomes, and Study Designs), with
inclusion and exclusion criteria explicitly defined to align with the
research objectives, as outlined in Table 1.

Literature search

A detailed search strategy was implemented to locate relevant
studies exploring the use of Artificial Intelligence (AI) in preventing
and managing bleeding disorders. The search covered prominent
databases, including PubMed, Science Direct, Google Scholar,
and Wiley. Keywords and Medical Subject Headings (MeSH)
terms were combined using Boolean operators (AND/OR) to
enhance the search precision. The query included terms such as:
(Bleeding Disorders OR Hemophilia OR Von Willebrand Disease
OR Coagulopathy OR Clotting Disorders OR Thrombocytopenia
OR Hemostasis disorders) AND (Artificial Intelligence OR AI
OR ML OR Machine Learning OR Deep Learning OR Predictive
Algorithms OR Predictive Modeling OR Computer-Assisted
Diagnosis). Searches were finalized on 02/12/2024, with citations
managed through Rayyan software to eliminate duplicates and
facilitate initial screening (36).

Inclusion and exclusion criteria

The inclusion criteria for this systematic review were
established using the PICO framework to ensure methodological
rigor. Eligible studies focused on populations diagnosed with
bleeding disorders, including hemophilia, von Willebrand disease,
and other coagulopathies. The intervention of interest was
the application of Artificial Intelligence (AI) techniques, such
as machine learning, deep learning, and predictive algorithms,
in the diagnosis, prevention, and management of bleeding
disorders. Studies were required to include a comparison with
traditional approaches, usual care, or no Al-based intervention.
The review prioritized studies reporting outcomes related to
improved patient care, including reductions in bleeding episodes,
enhanced management of bleeding events, optimized dosing of
treatments, early prediction and prevention of bleeding risks, and
overall improvements in quality of life and healthcare efficiency.
Only human studies employing randomized controlled trials,
observational designs, cross-sectional studies, or cohort studies
were considered for inclusion.

Exclusion criteria were defined to maintain the focus on high-
quality, peer-reviewed evidence. Non-peer-reviewed literature,

TABLE 1 PICOS framework.

10.3389/fmed.2025.1606788

such as editorials, opinion pieces, conference reports, or abstracts,
was excluded, along with case reviews, case series, review articles,
and case reports. Studies written in languages other than English
and those involving animal models were also excluded. These
criteria were applied to ensure that the review synthesized robust
and relevant evidence regarding the role of AI in the prevention
and management of bleeding disorders.

Literature screening

The initial screening process was conducted systematically,
beginning with a review of article titles, followed by an evaluation
of abstracts. Each title and abstract were carefully assessed against
the predefined inclusion and exclusion criteria. In the subsequent
stage, full-text articles were subjected to a detailed review to
ensure they addressed the use of Artificial Intelligence (AI) in
the diagnosis, prevention, or management of bleeding disorders.
Particular attention was given to studies that provided adequate
scientific detail on AI techniques, their applications, and their
impact on patient outcomes. This rigorous three-step screening
process ensured the inclusion of studies that would contribute to
a comprehensive and relevant dataset for understanding the role
of Al in improving the diagnosis, prevention, and management of
bleeding disorders.

Data extraction

Data were systematically extracted from each included study
using a structured Microsoft Excel form to ensure a comprehensive
and accurate capture of key information. The extracted data
included details on study design, country of origin, and total sample
size, as well as participant characteristics such as gender, age,
and ethnicity. Inclusion and exclusion criteria were documented,
encompassing symptoms, medical history, diagnostic methods,
and other relevant factors. Specific information related to model
development was also recorded, including data sources used,
training and testing processes, and model performance metrics
such as accuracy, precision, and sensitivity.

Additional variables extracted included key predictors
identified by the models, the number of undiagnosed cases, and the
main characteristics of these undiagnosed cases. Study limitations,
outcome definitions, data processing methods, exploratory data
analysis findings, and validation strategies were meticulously noted.

Details on treatments administered to patients were also collected.

P (participants)

I (intervention)
prevention, and management of bleeding disorders.

C (comparisons)

O (outcomes)

Patients with bleeding disorders (such as hemophilia, von Willebrand disease, and other coagulopathies).

Use of artificial intelligence (AI) techniques (for instance, machine learning, deep learning, and predictive algorithms) in the diagnosis,

Traditional approaches or no Al intervention in the prevention and management of bleeding disorders, or usual care.

Improved patient outcomes, including reduced bleeding episodes, better management of bleeding events, optimized dosing of treatments, early

prediction and prevention of bleeding risks, and overall enhancement in quality of life and healthcare efficiency.

S (study designs) Human studies.
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This structured and systematic approach to data extraction ensured
the inclusion of all relevant variables necessary for a comprehensive
evaluation of the role of Artificial Intelligence (AI) in the diagnosis,
prevention, and management of bleeding disorders.

Risk of bias assessment

To assess the risk of bias in the included studies, we utilized
a variety of validated tools, each specifically designed for different
study types, to ensure a thorough and consistent evaluation.

For observational studies, the Risk of Bias in Non-randomized
Studies - of Exposures (ROBINS-E) tool was employed. This tool
evaluates bias across multiple domains, including confounding,
participant selection, exposure classification, deviations from
intended exposures, missing data, outcome measurement, and
reporting selection. Each observational study was reviewed using
these criteria, enabling a detailed assessment of potential biases
specific to non-randomized studies. The domains were rated as low
risk (L), moderate risk (M), serious risk (S), critical risk (C), or no
information (NI) (37).

The risk of bias assessment for randomized controlled trials
(RCTs) included in this review was conducted using the Cochrane
Risk of Bias 2 (RoB 2) tool, a rigorous and widely accepted
framework for evaluating the methodological quality of RCTs.
The assessment focused on five key domains: bias arising from
the randomization process, bias due to deviations from intended
interventions, bias due to missing outcome data, bias in the
measurement of outcomes, and bias in the selection of the reported
result. Each domain was systematically evaluated, and studies were
rated as having a low risk of bias, some concerns, or a high risk of
bias based on predefined criteria (38).

Data synthesis

A quantitative meta-analysis was not performed due to
substantial heterogeneity across included studies. Variability
existed in AI model architectures (such as Random Forest,
XGBoost, Graph Neural Networks), predictor variables (genetic,
clinical, laboratory, environmental), outcome definitions (for
instance, short-term bleeding risk, inhibitor development, disease
severity classification), and performance metrics (accuracy,
AUROC, Fl-score, PPV). This heterogeneity precluded valid
statistical pooling, so a narrative synthesis approach was adopted.

Results

Study selection

The initial phase of screening the identified studies involved
reviewing their Titles and Abstracts to assess relevance based
on the defined PICOS criteria for this systematic review. The
search yielded 2,927 records, which were imported into Rayyan
software to streamline and organize the screening process. Rayyan
automatically identified and removed 161 duplicate entries, leaving
2,766 unique records for evaluation.
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The first stage of screening focused on assessing Titles and
Abstracts based on the pre-established inclusion and exclusion
criteria. This resulted in the exclusion of 2,714 studies that did
not align with the review’s core focus on the use of Artificial
Intelligence (AI) in the prevention and management of bleeding
disorders. In the next phase, a more in-depth review was conducted
for the remaining 52 abstracts. This stage involved examining
the relevance of each study to Al applications in risk prediction,
diagnostic advancements, and treatment optimization for bleeding
disorders. Studies that did not directly address these topics were
excluded, leaving 21 articles for full-text evaluation.

The final phase involved a careful full-text assessment to ensure
compliance with the inclusion criteria. Nine studies were excluded
due to inadequate focus or lack of relevant data, leaving a total
of 12 studies for inclusion in the systematic review. This rigorous
selection process ensured a reliable foundation for understanding
AT applications in bleeding disorder management.

To provide a clear overview of the multi-stage review process
and enhance methodological transparency, a PRISMA flowchart
(Figure 1) was created, illustrating the progression from the initial
search to the final selection of studies included in the review (25).

Risk of bias assessment

The risk of bias assessment for the included studies was
conducted in two stages: separately for non-randomized studies
and randomized-control studies.

The risk of bias assessment for the studies, presented in Table 2,
was conducted using the ROBINS-E tool, which evaluates the
quality of non-randomized studies based on seven domains: risk
of bias due to confounding, bias arising from the measurement
of exposure, bias in the selection of participants, bias due to post-
exposure interventions, bias due to missing data, bias arising from
the measurement of outcomes, and bias in the selection of reported
results (37).

In the domain of risk of bias due to confounding, the majority
of the included studies were rated as having moderate risk, likely
due to incomplete adjustment for confounding factors or unclear
reporting of control strategies (39-48). However, studies such as
Ferreira et al,, 202, and Sidonio Jr et al., achieved a low-risk rating,
suggesting more rigorous confounder control (49, 50).

For bias arising from the measurement of exposure, most
studies demonstrated a low risk, indicating reliable assessment
methods (39, 43, 44, 46-48). However, moderate concerns were
noted in some studies possibly due to measurement inaccuracies
or unclear exposure definitions (40-42, 45, 50). The domain of risk
of bias in the selection of participants was generally low risk, except
for Aleksi¢ et al., which was rated as moderate risk, potentially due
to a small sample size from a single center that might introduce
bias (46).

In the domain of bias due to missing outcome data, moderate
risk was observed in several studies (41-49), often due to
incomplete follow-up or inadequate reporting strategies. Notably,
Hu et al,, was rated as high risk (40), whereas studies like An et al.,
and Sidonio Jr et al.,, (39, 50) demonstrated low risk, indicating
strong data management practices.

For bias arising from the measurement of outcomes, most
studies were categorized as low risk, while studies such as Hu
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FIGURE 1

Preferred reporting items for systematic reviews and meta-analyses (PRISMA) diagram demonstrating search strategy.

et al., Lopes et al., Ferreira et al., and Rawal et al., received
a moderate risk rating, suggesting potential inconsistencies in
outcome measurement (40, 41, 45, 49). Lastly, in the bias of
selection of reported results, Rawal et al, Hu et al, Singh
et al, Sidonio Jr et al, and Aleksi¢ et al, were rated as
moderate risk, indicating possible selective reporting that could
exaggerate findings or omit key outcomes (40, 44-47). This analysis
underscores the varying degrees of bias present across studies,
emphasizing the need for careful interpretation, particularly for
those with high overall risk ratings.

The risk of bias assessment for the randomized controlled trial
(RCT) included in this review was conducted using the Cochrane
Risk of Bias 2 (RoB 2) tool, which evaluates the quality of RCTs
across five key domains: bias arising from the randomization
process, bias due to deviations from intended interventions, bias
due to missing outcome data, bias in the measurement of outcomes,
and bias in the selection of the reported result (38). The detailed
results of this assessment are presented in Table 3.

The study demonstrates a moderate overall risk of bias (48).
While baseline characteristics were comparable across groups,
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the randomization process and allocation concealment were
not explicitly detailed, introducing potential bias. The trial’s
open-label design further contributes to performance bias, as
neither participants nor personnel were blinded; however, this
is mitigated by the objective nature of the primary outcome,
annualized bleeding rate (ABR). Missing outcome data were
handled appropriately by scaling bleed counts during the available
follow-up period, reducing the risk of attrition bias. Measurement
of outcomes was objective and unlikely to be influenced by
assessors, given the nature of the data collected. Lastly, the study
appears to have reported all predefined outcomes without evidence
of selective reporting. Despite these strengths, the lack of blinding
and insufficient detail on randomization contribute to a moderate
risk of bias overall.

Study characteristics

This systematic review encompassed 12 studies investigating
the application of Artificial Intelligence (AI) in bleeding
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TABLE 2 Risk of bias analysis using the ROBINS-E tool - for non-randomized studies.
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disorders. The studies employed diverse methodologies,
including retrospective and prospective cohort studies,
randomized controlled trials, and feasibility studies. Conducted
in geographically diverse settings, including the United States,
United Kingdom, Spain, Germany, Brazil, Japan, Serbia, India,
and China, the research provided a global understanding of
AT’ role in bleeding disorder management. Observation periods
varied significantly, with retrospective studies analyzing years
of electronic health record (EHR) data and prospective trials
evaluating Al interventions over months. Refer to Table 4 for a
brief summary of all included studies.

Population and demographics

The studies reviewed included diverse populations with
varying demographic and clinical characteristics, reflecting the
heterogeneous nature of bleeding disorders. The sample sizes
ranged widely, from small cohorts with 96 participants (46) to
extensive cohorts with over 23,000 individuals (40, 47, 50). Age
distribution varied significantly across studies, with some focusing
on pediatric populations (45) and others targeting older adults.
Gender representation was often influenced by the disorder under
investigation. Studies focusing on hemophilia A predominantly
included males, given the X-linked inheritance of the condition.
For example, the Chowdary et al., study consisted entirely of males
(48), while studies on von Willebrand disease (VWD) and ITP
included a more balanced gender distribution, such as Miah et al.,
which reported 53% male and 47% female participants among I'TP
patients (43).

Ethnic diversity was considered in some studies, particularly
those conducted in multiethnic settings like the United States. For
instance, Hu et al,, analyzed data from the ATHN dataset, capturing
Hispanic and non-Hispanic populations (40), while studies like
Rawal et al., included racial categories such as White, Black, and
Asian participants (48).

Machine learning models in bleeding
disorder prediction and management

The studies employed a wide variety of machine learning
algorithms, reflecting the complexity of bleeding disorders and
their diverse datasets. Supervised learning models were the most
commonly used, including Random Forest (39-41, 43-45, 50),
XGBoost (40, 41), Gradient Boosting Machines (45, 50), CatBoost
(40, 45), and Support Vector Machines (SVM) (41, 43, 44). These
algorithms excelled in predictive and classification tasks, such as
forecasting bleeding risks, identifying high-risk mutations, and
optimizing prophylactic treatment regimens (39, 40). Logistic
regression models were employed in several studies, particularly
when the datasets had fewer predictors or were focused on well-
defined clinical outcomes (42, 43, 48). In contrast to the above-
mentioned studies, the study conducted by Sidonio Jr et al. in
utilized a unary predictive model based on positive-unlabeled
learning, which compared the characteristics of the diagnosed
patient population to a potential undiagnosed population using a
set of 12 key predictive variables (47).
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TABLE 3 Risk of bias analysis using the rob 2 tool - for randomized control trials.

Item and score

Bias arising from |Bias due to

the
randomization
process

intended
interventions

Low risk

Chowdary et al. (48) |Moderate risk Moderate risk

Bias due to

outcome data

Overall risk

Bias in Bias in selection
measurement of |of the reported
the outcome result

Low risk Low risk Moderate risk

Model development and optimization

The studies reviewed employed various strategies to develop
and refine machine learning models for bleeding disorder
prediction. A common approach was splitting datasets into training
and testing subsets, often in an 80:20 or 75:25 ratio, as seen in
Rawal et al, (45). Several studies incorporated cross-validation
techniques to enhance model robustness (39-45, 48, 49). For
example, Chowdary et al., applied repeated nested cross-validation
to ensure models were trained on different subsets of data,
preventing overfitting (48). Similarly, An et al, used external
validation with an independent prospective cohort of 1,097 patients
to test generalizability (39). Aleksic et al., adapted their validation
strategy due to a small sample size (96 patients), opting for a
training set method tailored to their dataset (46).

Model optimization played a critical role in improving
predictive  performance.  Various  techniques, including
hyperparameter tuning (48), feature selection (45, 48), and
data balancing (41), were applied. Several studies employed grid
search to fine-tune hyperparameters (48). For instance, Hu et al,,
optimized CatBoost and random forest models using grid search
to maximize accuracy and recall (40). Similarly, Rawal et al,
leveraged hyperparameter tuning for LightGBM, which ultimately
outperformed other models with an Fl-score of ~0.99 (45). The
Fl1-score is a measure of a model’s balance between precision and
recall, making it particularly useful for imbalanced datasets where
false positives and false negatives must be minimized (51).

To address class imbalances and enhance generalizability,
some studies implemented data balancing techniques. Lopes et al.,
used ADASYN (Adaptive Synthetic Sampling) to create a more
evenly distributed dataset, preventing bias toward overrepresented
classes (41). Additionally, Singh et al., explored different encoding
approaches, such as One-Hot Encoding (OHE) and Position-
Specific Mutation (PSM) encoding, finding that PSM improved
classification accuracy for hemophilia A mutations (44).

Feature selection was another key optimization strategy. An
et al, applied Lasso regression to remove redundant features
while preserving the most significant predictors, improving model
performance (39).

Some models incorporated genetic, molecular, and
environmental data alongside clinical variables to improve
prediction. For instance, Graph Neural Networks, Position-
Specific Mutation encoding, and LightGBM were applied to
predict disease severity, mutation effects, or inhibitor development
(40, 44, 45, 49). Environmental and sociodemographic factors
such as toxin exposure, smoking, diet, and comorbidities were
also integrated in several models to enhance risk assessment
(39, 40, 45, 46).

Model evaluation was reinforced through rigorous validation
techniques, such as nested cross-validation (48), stratified k-fold
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validation (48), and external validation datasets (39). Performance
metrics included accuracy, precision, recall, F1-score, and AUROC
(Area Under the Receiver Operating Characteristic Curve). For
example, Chowdary et al., reported an AUROC of 0.785 for their
best-performing random forest model (48). The AUROC measures
a model’s ability to distinguish between positive and negative cases,
with a higher value indicating better discriminatory performance
(52). However, these performance metrics should be interpreted
cautiously. The retrospective design, small sample size, and lack
of external validation increase the risk of overfitting and artificially
inflated AUROC values. Publication bias—favoring positive results—
may also overstate the clinical utility of these models.

Al patterns in bleeding disorders

Artificial intelligence (AI) has emerged as a valuable tool
in the study of bleeding disorders, facilitating risk stratification,
early diagnosis, and treatment optimization. Machine learning
models have been employed across various bleeding disorders,
including hemophilia, von Willebrand disease (VWD), immune
thrombocytopenia (ITP), and cirrhosis-related variceal bleeding, to
identify predictive patterns that enhance clinical decision-making.

Hemophilia: predicting disease severity and
treatment response

Machine Learning applications in hemophilia focused on
predicting disease severity, inhibitor development, and optimizing
prophylaxis. Singh et al., applied Random Forest and SVM models
to mutation data, demonstrating that specific missense mutations
in conserved regions of the Factor VIII gene strongly correlated
with disease severity (44). Rawal et al, integrated genetic and
immunological features using LightGBM to predict inhibitor
development, achieving an Fl-score of ~0.99, indicating highly
balanced performance (45). Ferreira et al., employed Graph Neural
Networks to analyze mutation severity, achieving up to 70%
accuracy based on molecular and structural data (49). Lopes et al.,
examined non-synonymous point mutations in FVIII protein using
Decision Tree, Random Forest, and XGBoost models, validating
predictions against in vitro data and clinical reports (41).

Key predictors included baseline Factor VIII activity, F8
mutation type, cumulative bleed count, and protein structure
interactions (41, 45). Feature selection methods such as SHAP and
Lasso regression improved model performance by removing less
relevant variables (39, 48). Hu et al., analyzed a dataset of over
23,000 individuals with hemophilia, using AI models to detect
undiagnosed cases based on bleeding event frequency and inhibitor
development risk (40). Rawal et al, applied machine learning
to predict inhibitor-negative hemophilia A status, identifying
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TABLE 4 Summary of included studies.

Country

Population

Sample size |Gender Age

Bleeding
disorder
studied

Exclusion
criteria

Data source

Predictors
identified

Model types

Performance
metrics

Key results

alanine mutations in
the A2 and C2
domains of FVIII)

and misidentified
mutations (such as,
incorrect residue
positions)

Anetal. (39) China Retrospective cohort:|37.75% M and |54 Y (median) | ITP Secondary ITP. Electronic medical |Infection, Random Forest (RF), RF achieved highest |Prediction and
2094 62.25% F in the Inconsistent records uncontrolled XGBoost AUC. prevention of critical
Prospective cohort: |retrospective diagnostic criteria. diabetes, Age, ITP Retrospective cohort |bleeding events.
1097 cohort type, cardiovascular 0.89; Prospective Outcomes like
disease, low absolute cohort (inpatients) | intracranial
lymphocyte count, 0.82, (outpatients)  |hemorrhage were
skin and mucosa 0.74. targeted.
bleeding, initial
platelet (PLT) count,
low platelet (PLT)
count (<20 x 10%),
disease duration
Miah et al. (43) UK 150 patients (100 ITP patients: 29-106 Y (ITP |ITP Evidence of other | UK Adult ITP Blood platelet count |Logistic Regression, |Random forest Highlighted ITP
ITP patients from | M =53%, patients) and causes of Registry. Non-acute support vector achieved 100% cases based on
the UK Adult ITP  |F=47% 25-89Y thrombocytopenia | outpatient clinic data machine, k-nearest |accuracy. simple blood tests.
Registry and 50 non-ITP (non-ITP (such as liver disease, from Barts health neighbor, decision Accurate outcomes
non-ITP patients patients: patients) myelodysplasia). NHS trust. tree, random forest with limited
from a general M =58%, Presence of diversity.
outpatient clinic) F=42% abnormal blood test
results not
characteristic of ITP.
Chowdary et al. (48) |UK, Spain, 166 100% M 30.5Y (£12.3 Y) Hemophilia A | Patients who Data from Cumulative bleed  |Penalized logistic Best-performing Adjusted
USA, Germany received on-demand | pathfinder 2 trial count, baseline Von |regression, random |model (random prophylaxis
treatment were (phase III) Willebrand factor forest forest) 0.785. regimens based on
excluded. Data was level, Mean factor bleeding predictions.
excluded for patients VIII at 30 min Outcomes measured
who did not meet the by ABR (annual
90-day prophylaxis bleed rate).
exposure criterion.
Ferreiraetal. (49)  |Brazil, Japan 626 Hemophilia A |N/A N/A Hemophilia A |Conflicting or FVIII mutation Buried and Graph attention Performance: Enhanced
cases with ambiguous databases (EAHAD |conserved residues |networks (GAT), 69%-70% accuracy |understanding of
single-point, non- phenotype and CHAMP), in the FVIII SHADOW-GNN for severity mutation effects on
synonymous classifications (such |structural data from |structure architectures prediction (via F1 hemophilia severity.
mutations (344 as, "Mild/Moderate") | AlphaFold2 score). Outcomes included

functional validation
using assays.

(Continued)

‘le 19 paweyop

88/9091°'G202' PPW/6855°0T


https://doi.org/10.3389/fmed.2025.1606788
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

BUIDIPBN Ul SI213U0I4

60

FIVIIENUIIN

TABLE 4 (Continued)

Population

Exclusion
criteria

Data source

Predictors
identified

Model types

Performance
metrics

Key results

random forest (RF)

ample size |Gender Age
Hu et al. (40) USA 23,000 individuals in |[N/A N/A Hemophilia A |Participants with ATHN datasetand |N/A K-nearest neighbors |CatBoost achieved |Predictions for target
the ATHN dataset; significant missing | ATHN 7 study (KNN), XGBoost,  67% accuracy; joint development
ATHN 7 subset data in key variables. |subset random forest, random forest 79% |and inhibitor
include CatBoost, logistic  |for target joint outcomes. Focused
regression, support | prediction. on bleeding event
vector machine, and patterns.
others
Lopes et al. (41) Brazil Training set: 443 N/A N/A Hemophilia A |Mutations outside | Data was curated Mutation location  |Supervised ML Accuracy: 66%-87%. | Provided insights for
instances of coding regions. from the EAHAD (Buried residues, classifiers (such as, |Predictions aligned |mutation severity
non-synonymous Instances with and CHAMP conserved regions), |decision tree, with in vitro results. |classification.
mutations. Testing ambiguous databases and Network centrality |random forest, SVM, Outcomes focused
and validation: diagnostic or activity |structural protein naive bayes, on mutation impact.
included over 344 data. information from XGBoost)
patients with von the PDB (2R7E
Willebrand disease structure)
were excluded from
specific
therapy-based
criteria. mutations
from alanine
scanning
experiments and
~1000 from
CHAMP
Lyons et al. (42) USA 2,252 patients in the |Screening Screening Hemophilia A |Patients with von | Healthcore Male sex, factor VIII |Lasso logistic AUC: 0.966. Accurate
screening cohort; cohort: cohort: 30.7 Y Willebrand disease |integrated research |therapy, regression with Sensitivity: 94.7%.  |identification of
400 patients M=81.2% abstraction were excluded from |database (HIRD) Hemophilia-related |20-fold probable hemophilia
underwent medical |Abstraction cohort: 34.7 Y specific healthcare utilization | cross-validation, A cases. Focused on
record abstraction. | cohort: (mean) therapy-based Generalized boosted healthcare utilization
M=77.3% criteria. modeling patterns.
Singh et al. (44) India 7784 mutations M = 100% N/A Hemophilia A |N/A EAHAD database. | Mutation type, k-nearest neighbors |RF (PSM) accuracy: |Mutation severity
(EAHAD dataset), effect, position (KNN), adaBoost, 73.96%, SVM (PSM): | classification based
6286 analyzed support vector 73.86% on features
machine (SVM),

(Continued)
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TABLE 4 (Continued)

Population

Bleeding
disorder

Exclusion
criteria

Data source

Predictors
identified

Model types

Performance
metrics

Key results

enrollment in a
health plan.

studied
Sample size |Gender Age _ _
Rawal et al. (45) USA 940 Infants to older |Hemophilia A | Patients with Phenotypic and Baseline factor VIII |Random forest (RF), |Accuracy: ~0.7354 | Accurate predictions
adults incomplete variable |genomic data from |activity, foreign light gradient (F1 score). for inhibitor status
data for ML the MLOF peptide-HLA boosting machine in hemophilia A.
modeling or repository; binding affinities (LGBM), logistic Outcomes measured
unknown drug additional data (mean and regression (LR), inhibitor-negative
treatments. included human minimum), factor | CatBoost, and others probabilities.
leukocyte antigen | VIII mutation type
(HLA) typing and
derived biological
variables
Sidonio Jretal. (47) |USA Diagnosed = 10,420 |M = 14% The majority of |VWD/Muco-  |Diagnosed IMS pharMetrics Number of Unary predictive Best-fit patients: 83% | The model identified
Undiagnosed = (undiagnosed | best-fit patients |cutaneous Hemophilia A plus database procedures to treat | model using PPV 3,318 best-fit and
507,668 set), 28% were <46 years | bleeding Use of (2006-2015) bleeding, Age, total |positive-unlabeled |Good-fit patients: 37,163 good-fit
(diagnosed set) | old. disorders Anti-coagulants number of bleeding |learning 75% PPV undiagnosed cases.
F=86% Patients with events,
(undiagnosed primary qualitative Gastrointestinal (GI)
set), 72% platelet disorders bleeds, emergency
(diagnosed set) Patients without at room (ER) visits, sex
least 24 months of
continuous

(Continued)
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TABLE 4 (Continued)

Sidonio Jr et al. (50)

USA

Sample size |Gender Age

Diagnosed: 5981,
Undiagnosed:
4869518

Population

M =42%

(N =20,439)
F=58%

(N =28,463)

M=21Y
F=33Y (mean)

Exclusion
criteria

1 + bleeding claim in
2 years prior to index
date for hemophilia
Alacquired
hemophilia A, aortic
stenosis,
extracorporeal
membrane
oxygenation, or
ventricular assist
devices.

1 + hemophilia A or
acquired hemophilia
diagnosis claim.

1 + coagulation
disorders claims or
other conditions.

2 + diagnosis claims
of less relevant
general bleeding
disorder (menstrual,
genitourinary, or
digestive bleeds;
anemia, unspecified)

Data source

Komodo health
comprehensive
dataset

Predictors
identified

Heavy menstrual
bleeding (HMB) in
females, frequent
medical procedures,
hospitalizations, and
emergency room
visits in males

Model types

Random forest,
neural network,
conditional forest,
gradient boosting
machine

Performance
metrics

Accuracy: Males
85%, Females 84%
Sensitivity: Males
77%, Females 73%

Key results

Early identification
of VWD cases.
Outcomes targeted
appropriate

treatment initiation.

Aleksic et al. (46)

Serbia

M =79.2%,
F=20.8%

56.99 £11.46Y

Cirrhosis with
variceal bleeding
risk

Baseline and time
series clinical data
from ICU patients.

Clinical Center of
Ni§

Child-pugh score,
platelet count,
Esophageal varices

Naive bayes, J48,
LogitBoost, PART

LogitBoost accuracy:
98%

Effective screening
for bleeding risk in
cirrhotic patients
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undiagnosed mutations with high precision using biologically
relevant variables such as F8 mutation types and peptide-HLA
binding affinities (45).

Von Willebrand disease: enhancing early
detection and risk stratification

Machine Learning models improved early detection and
classification of VWD. Sidonio Jr. et al., developed a model
using Random Forest and Gradient Boosting Machines to detect
von Willebrand Disease (VWD), identifying 48,902 undiagnosed
cases, including 28,463 females and 20,439 males (50). This model
leveraged features such as bleeding patterns, healthcare utilization,
and demographic characteristics to recognize subtle indicators of
VWD, achieving high accuracy (85% for males, 84% for females)
(50). Heavy menstrual bleeding (HMB) in females and epistaxis
in males were identified as key predictors (50). Similarly, Sidonio
Jr. et al,, utilized a positive-unlabeled learning approach to detect
undiagnosed VWD cases, with their model achieving a positive
predictive value (PPV) of 83% in the best-fit group and 75% in the
good-fit group, highlighting key predictors such as the number of
bleeding-related procedures and total bleeding claims (47).

The study conducted by Chowdary et al, used SHAP
(Shapley Additive Explanations) values to identify the most critical
predictors, such as von Willebrand factor levels and cumulative
bleed count, eliminating less relevant variables (48).

Immune thrombocytopenia: differentiating
disease subtypes and predicting clinical
outcomes

Machine Learning approaches distinguished ITP from other
thrombocytopenias and predicted clinical outcomes. Miah
et al, developed models using demographic and hematological
parameters, selecting Random Forest due to superior accuracy
(100%) (43). An et al., integrated variables such as infection
status, cardiovascular disease, platelet trends, diabetes, and disease
duration to assess bleeding risk (39).

Key predictors included platelet count, absolute lymphocyte
count, cardiovascular comorbidities, and disease duration (39, 43).
ML models also enabled the identification of undiagnosed or at-risk

10.3389/fmed.2025.1606788

ITP patients by analyzing electronic medical records and trends in
laboratory and clinical data (39).

Cirrhosis and variceal bleeding: risk prediction
and clinical decision support

Machine Learning classifiers predicted variceal bleeding risk
based on clinical, biochemical, and endoscopic parameters.
Aleksic et al., identified spleen diameter, platelet count, and the
presence of large esophageal varices as the strongest predictors
(46). Environmental factors such as toxin exposure and disease
progression also influenced bleeding risk (46). Predictive models
were applied to longitudinal data, tracking dietary intake,
prophylaxis compliance, and toxin exposure to provide early
warnings for high-risk patients.

Cross-disorder predictors
Across bleeding disorders, key predictors consistently included:

e Genetic factors: F8 mutations, conserved missense mutations,
non-synonymous point mutations (41, 44, 45)

e Laboratory biomarkers: Factor VIII activity, platelet count,
neutrophil and lymphocyte levels (39, 43, 45)

e Clinical history: Cumulative bleed count,
comorbidities, disease duration (39, 45, 47)

e Demographic factors: Age, sex, and sociodemographic/

procedures,

environmental exposures (40, 45, 46, 50)

Integration of these predictors into ML algorithms enhanced
disease classification, early diagnosis, and personalized treatment
strategies (Figure 2).

Discussion

This systematic review highlights the advancements in
machine learning (ML) applications for predicting and managing
bleeding disorders. A comparison of the best-performing models

| Key Predictors of Bleeding Disordon\

{
Immune Thromboeytopenia (ITP) Hemophilia A
+ Low abeckste lymphocyte count
+ Low platelet count (<20 x 10"
2ad ptide-HLA binding offinities
+ Uncontrolled diabates
. Age
+ Cardiovascular disease
+ Skin and mucosa bleeding + Baseline factor VIll activity
2.0
pot + Gender
—_— + Cumulative bleed count

FIGURE 2
Predictors of bleeding disorders.
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across studies provides valuable insights into their predictive
performance, strengths, and limitations.

Comparison of best-performing models

Across studies, Random Forest, XGBoost, and LightGBM
consistently demonstrated strong predictive performance and
interpretability. For immune thrombocytopenia (ITP), Random
Forest achieved high accuracy, particularly in distinguishing
ITP from other thrombocytopenic conditions. In hemophilia A
prediction, LightGBM and Random Forest were most effective,
with LightGBM achieving an F1-score of ~0.99. Gradient Boosting
Machines and Random Forest also performed well in von
Willebrand disease (VWD) classification, identifying undiagnosed
cases with high accuracy. For cirrhosis-related variceal bleeding,
LogitBoost proved highly accurate, while broad population-level
analysis favored Random Forest and CatBoost for target joint
prediction in hemophilia patients.

Strengths and limitations

The success of ensemble learning models underscores
their ability to handle complex, multidimensional datasets.
Techniques such as SHAP values and Lasso regression improved
interpretability, while hyperparameter tuning enhanced predictive
performance. Nonetheless, several limitations were evident
across the literature. Common issues included class imbalance,
missing data, and confounding, all of which may have influenced
reported outcomes. External validation was limited, constraining
generalizability. Deep learning models, although promising,
demonstrated only moderate accuracy and remain difficult to
implement clinically due to their “black box” nature. Addressing
these limitations will require improved dataset quality, broader
external validation, and the development of interpretable models
suited for real-world settings.

The outcomes predicted by AI models also varied considerably.
Short-term predictions included critical bleeding within weeks (An
et al.) and treatment response over 12 weeks (Chowdary et al.).
Long-term predictions encompassed inhibitor development, target
joint formation, and severity classification. This range suggests that
some models are better suited to acute decision-making, while
others inform longitudinal management. Most studies relied on
baseline predictors—demographics, genetics, or initial laboratory
values-while only a few incorporated time-varying variables such
as serial platelet counts, evolving comorbidities, or treatment
adherence. Incorporating longitudinal data could substantially
enhance clinical relevance.

Although a meta-analysis could have pooled diagnostic
accuracy estimates, the heterogeneity of model architectures,
predictors, outcomes, and metrics made statistical synthesis
inappropriate. Instead, standardized reporting of AUROC, PPV,
calibration, and consistent outcome definitions will be essential
for future meta-analyses. Importantly, several studies were rated
as moderate to high risk of bias—particularly due to missing
outcome data, inadequate adjustment for confounders, or selective
reporting-likely inflating reported accuracy. Conversely, findings
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from low-risk studies (Sidonio Jr et al.) more likely reflect
true clinical performance. Overall, while results are promising,
confidence is stronger in models with rigorous methodology and
external validation.

Despite encouraging technical results, adoption remains slow.
Challenges include fragmented datasets, poor interoperability
across IT systems, regulatory hurdles, limited clinician familiarity,
and concerns over transparency. Access inequities persist,
especially in low-resource settings. Addressing these barriers will
require coordinated efforts—-multi-center registries, integration of
interpretable Al into EHRs, and clinician training.

Heterogeneity and generalizability

Heterogeneity was evident across disorders and study designs.
In hemophilia, genetic and structural features dominated; in
VWD, healthcare utilization and bleeding patterns were key;
in ITP, platelet counts and comorbidities were critical; and
in cirrhosis, clinical and endoscopic data were central. Shared
predictors such as platelet count and factor VIII activity emerged
across disorders. However, most models were developed in high-
income countries, limiting insights for low-resource contexts
where diagnostic gaps are greatest. Future work should test
generalizability in these settings.

Clinical implications and future
directions

Machine learning approaches show promise for early diagnosis,
risk stratification, and treatment optimization in bleeding
disorders. Identifying undiagnosed cases—particularly in VWD
and hemophilia-highlights potential for improved outcomes. Yet,
most studies remain confined to retrospective design and internal
validation. Prospective validation, randomized controlled trials of
Al-assisted decision-making, and cost-effectiveness analyses are
needed to guide real-world adoption.

Implementation should emphasize metrics with direct clinical
meaning. For instance, PPV reflects the proportion of positive
predictions that are correct and is critical in bleeding disorders,
where false positives may lead to unnecessary factor replacement,
invasive procedures, or prolonged monitoring. Sidonio Jr et al,,
reported PPVs of 75%-83%, which are encouraging but still
insufficient for routine practice.

Practical integration requires embedding tools into clinical
workflows. Examples include EHR-based risk alerts in ITP
or dosing support in hemophilia prophylaxis. Barriers include
interoperability, trust, regulation, and cost. Solutions may involve
federated learning for data privacy, decision-support dashboards
for clinicians, and structured training.

Future research should prioritize prospective, multi-center
validation, registry-based adaptive trials, and integration of
longitudinal and environmental data. Wearables and remote
monitoring could enable personalized, real-time management. At
the policy level, regulators must establish frameworks for Al
adoption in rare hematologic disorders, ensuring safety while
encouraging innovation.
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Conclusion

Machine learning has emerged as a transformative tool in
bleeding disorder prediction and management, enabling early
diagnosis and personalized treatment. Ensemble models such as
Random Forest, XGBoost, and LightGBM demonstrate strong
predictive capabilities, but challenges like data imbalance and
limited external validation must be addressed for broader
clinical adoption.

Future research should focus on real-world validation,

electronic health record integration, and explainable AI
methodologies. By refining ML models and ensuring their
accessibility in clinical workflows, these advancements can enhance
bleeding disorder management, ultimately improving patient

outcomes and quality of life.
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