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Background: Bleeding disorders, including hemophilia, von Willebrand disease

(VWD), and immune thrombocytopenia (ITP), pose significant diagnostic

and therapeutic challenges due to their heterogeneous presentations and

complex underlying mechanisms. Traditional diagnostic methods rely on clinical

assessments and laboratory tests, which can be time-consuming and prone to

misdiagnosis, particularly in resource-limited settings. Artificial intelligence (AI)

has emerged as a transformative tool in healthcare, leveraging machine learning

(ML) algorithms and predictive analytics to enhance diagnostic accuracy, risk

stratification, and personalized treatment approaches.

Objective: This systematic review explores the role of AI in the prevention,

diagnosis, and management of bleeding disorders. Specifically, it assesses AI-

driven models in identifying key predictors, optimizing risk assessment, and

improving treatment outcomes.

Methods: A comprehensive literature search was conducted across major

databases following PRISMA guidelines. Studies were selected based on their

focus on AI applications in bleeding disorders, particularly those utilizing

ML models such as Random Forest, XGBoost, LightGBM, and deep learning

techniques. The risk of bias was evaluated using the ROBINS-E and RoB 2 tools.

Results: Twelve studies met the inclusion criteria, demonstrating the efficacy

of AI models in bleeding disorder management. Genetic markers, such as

Factor VIII gene mutations and von Willebrand factor variants, enable early

disease classification and severity prediction. Laboratory biomarkers, including

baseline factor VIII activity, platelet count, and coagulation profiles, enhance risk

assessment for bleeding complications. Clinical history variables, such as prior

bleeding events, anticoagulant use, infection status, and comorbidities, support

personalized treatment strategies. Additionally, demographic and environmental

factors, including age, sex, healthcare utilization patterns, and socioeconomic

status, refine predictive models for undiagnosed cases.

Conclusion: The integration of these variables into AI-driven models has

demonstrated superior diagnostic accuracy compared to traditional methods,

facilitating early detection, individualized treatment planning, and improved

patient outcomes. However, challenges such as dataset fragmentation, model

interpretability, and limited external validation hinder widespread clinical
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adoption. AI-driven approaches have the potential to revolutionize bleeding 

disorder management by advancing precision medicine, optimizing healthcare 

resources, and promoting equitable access to high-quality care. 

KEYWORDS 

artificial intelligence, machine learning, bleeding disorders, hemophilia A, von 
Willebrand disease, immune thrombocytopenia, predictive models 

Introduction 

Bleeding disorders are a heterogeneous group of hereditary 
and acquired conditions characterized by impaired hemostasis, 
resulting in excessive or prolonged bleeding (1). Hemostasis is a 
tightly regulated process that prevents blood loss after vascular 
injury, involving three primary phases: vascular constriction, 
platelet aggregation to form a temporary plug, and activation of 
the coagulation cascade, which culminates in fibrin mesh formation 
to stabilize the clot (1–3). Disruptions in any of these processes– 
caused by platelet dysfunction (4, 5), clotting factor deficiencies 
(6, 7), fibrinolytic abnormalities (8, 9), or vascular defects (10)– 
can lead to uncontrolled bleeding, spontaneous hemorrhage, and 
life-threatening complications. 

Bleeding disorders are broadly classified into platelet disorders, 
coagulation factor deficiencies, and vascular abnormalities (11). 
Platelet disorders, such as Glanzmann Thrombasthenia, Bernard-
Soulier syndrome, and immune thrombocytopenic purpura (ITP), 
impair platelet adhesion, aggregation, or survival (12). Coagulation 
factor deficiencies include hemophilia A (factor VIII deficiency) 
(6), hemophilia B (factor IX deficiency) (13), and von Willebrand 
disease (VWD), which aects von Willebrand factor (VWF) and 
impairs clot formation (14). Rare factor deficiencies–including 
fibrinogen, prothrombin, and factors V, VII, XI, and XIII–also 
contribute to abnormal bleeding (15). Vascular abnormalities, 
such as Ehlers-Danlos syndrome and hereditary hemorrhagic 
telangiectasia, increase vessel fragility and bleeding risk (16, 17). 

Clinically, bleeding disorders present along a spectrum 
depending on severity and aected pathway (18). Mild cases may 
show easy bruising, frequent epistaxis, or prolonged bleeding after 
minor injuries, whereas severe cases can cause spontaneous joint 
(hemarthrosis) or muscle bleeds, gastrointestinal hemorrhage, and 
intracranial bleeding (1, 18, 19). Recurrent bleeding, particularly 
hemarthrosis, can lead to joint damage, disability, and reduced 
quality of life (20). 

Despite advances in understanding, diagnosing and managing 
bleeding disorders remain challenging, especially in resource-
limited settings (21, 22). Diagnosis relies on clinical history, 
bleeding assessment tools (BATs), and specialized laboratory tests, 
including platelet function assays, clotting factor measurements, 
and genetic testing (22). Access to these tools varies widely; globally, 
only 6.3% of individuals with inherited bleeding disorders receive 
a diagnosis, with rates below 10% in low- and middle-income 
countries (LMICs) compared to 55% in high-income countries 
(HICs) (23). Limited laboratory infrastructure, high assay costs, and 
variable symptom presentation contribute to underdiagnosis and 
misdiagnosis (24, 25). 

Artificial intelligence (AI) oers promising solutions to these 
challenges. AI encompasses machine learning (ML) and deep 
learning techniques that analyze complex datasets to identify 
patterns, make predictions, and support decision-making (26). In 
clinical medicine, AI has improved diagnostic accuracy, predicted 
outcomes, and personalized treatment (26, 27). ML algorithms, 
such as Random Forest and Extreme Gradient Boosting (XGBoost), 
excel at detecting non-linear relationships in high-dimensional 
data, making them suitable for predictive modeling (28). In fields 
such as radiology, pathology, and endoscopy, AI has enhanced 
diagnostic eÿciency, reduced errors, and optimized care delivery 
(29–31). 

In bleeding disorders, AI can similarly improve diagnosis 
by integrating clinical and laboratory data, predict bleeding 
risks through advanced modeling, and individualize treatment to 
optimize outcomes (32). It may also identify novel therapeutic 
targets via genomic and proteomic analyses (33). However, AI 
adoption in bleeding disorders lags behind other domains, likely 
due to disease rarity, fragmented datasets, and limited systematic 
evaluation (34). 

This systematic review aims to comprehensively synthesize the 
existing evidence on the application of artificial intelligence (AI) 
in the diagnosis, treatment, and prevention of bleeding disorders, 
an area that has received less attention compared to oncology or 
cardiology. The primary objectives are to evaluate the potential of 
AI to enhance diagnostic accuracy and facilitate early intervention, 
assess AI-driven methodologies for predicting bleeding risks and 
optimizing treatment protocols, and explore AI’s role in identifying 
novel therapeutic targets for bleeding disorders. Additionally, this 
review seeks to identify the current limitations and challenges in 
integrating AI into the management of bleeding disorders, while 
also proposing future directions for its application in this field. By 
systematically appraising the available evidence using established 
risk-of-bias tools, it clarifies both the potential and the limitations 
of current models. In particular, it draws attention to persistent gaps 
such as the lack of prospective validation, minimal use of external 
datasets, and the underrepresentation of low-resource settings– 
issues that are essential to address for future clinical adoption. 

Methodology 

This systematic review followed PRISMA-2020 guidelines 
(Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) to maintain a thorough and consistent approach across 
all stages, from literature search to data synthesis (35). The 
study framework was guided by the PICOS model (Population, 
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Intervention, Comparison, Outcomes, and Study Designs), with 
inclusion and exclusion criteria explicitly defined to align with the 
research objectives, as outlined in Table 1. 

Literature search 

A detailed search strategy was implemented to locate relevant 
studies exploring the use of Artificial Intelligence (AI) in preventing 
and managing bleeding disorders. The search covered prominent 
databases, including PubMed, Science Direct, Google Scholar, 
and Wiley. Keywords and Medical Subject Headings (MeSH) 
terms were combined using Boolean operators (AND/OR) to 
enhance the search precision. The query included terms such as: 
(Bleeding Disorders OR Hemophilia OR Von Willebrand Disease 
OR Coagulopathy OR Clotting Disorders OR Thrombocytopenia 
OR Hemostasis disorders) AND (Artificial Intelligence OR AI 
OR ML OR Machine Learning OR Deep Learning OR Predictive 
Algorithms OR Predictive Modeling OR Computer-Assisted 
Diagnosis). Searches were finalized on 02/12/2024, with citations 
managed through Rayyan software to eliminate duplicates and 
facilitate initial screening (36). 

Inclusion and exclusion criteria 

The inclusion criteria for this systematic review were 
established using the PICO framework to ensure methodological 
rigor. Eligible studies focused on populations diagnosed with 
bleeding disorders, including hemophilia, von Willebrand disease, 
and other coagulopathies. The intervention of interest was 
the application of Artificial Intelligence (AI) techniques, such 
as machine learning, deep learning, and predictive algorithms, 
in the diagnosis, prevention, and management of bleeding 
disorders. Studies were required to include a comparison with 
traditional approaches, usual care, or no AI-based intervention. 
The review prioritized studies reporting outcomes related to 
improved patient care, including reductions in bleeding episodes, 
enhanced management of bleeding events, optimized dosing of 
treatments, early prediction and prevention of bleeding risks, and 
overall improvements in quality of life and healthcare eÿciency. 
Only human studies employing randomized controlled trials, 
observational designs, cross-sectional studies, or cohort studies 
were considered for inclusion. 

Exclusion criteria were defined to maintain the focus on high-
quality, peer-reviewed evidence. Non-peer-reviewed literature, 

such as editorials, opinion pieces, conference reports, or abstracts, 
was excluded, along with case reviews, case series, review articles, 
and case reports. Studies written in languages other than English 
and those involving animal models were also excluded. These 
criteria were applied to ensure that the review synthesized robust 
and relevant evidence regarding the role of AI in the prevention 
and management of bleeding disorders. 

Literature screening 

The initial screening process was conducted systematically, 
beginning with a review of article titles, followed by an evaluation 
of abstracts. Each title and abstract were carefully assessed against 
the predefined inclusion and exclusion criteria. In the subsequent 
stage, full-text articles were subjected to a detailed review to 
ensure they addressed the use of Artificial Intelligence (AI) in 
the diagnosis, prevention, or management of bleeding disorders. 
Particular attention was given to studies that provided adequate 
scientific detail on AI techniques, their applications, and their 
impact on patient outcomes. This rigorous three-step screening 
process ensured the inclusion of studies that would contribute to 
a comprehensive and relevant dataset for understanding the role 
of AI in improving the diagnosis, prevention, and management of 
bleeding disorders. 

Data extraction 

Data were systematically extracted from each included study 
using a structured Microsoft Excel form to ensure a comprehensive 
and accurate capture of key information. The extracted data 
included details on study design, country of origin, and total sample 
size, as well as participant characteristics such as gender, age, 
and ethnicity. Inclusion and exclusion criteria were documented, 
encompassing symptoms, medical history, diagnostic methods, 
and other relevant factors. Specific information related to model 
development was also recorded, including data sources used, 
training and testing processes, and model performance metrics 
such as accuracy, precision, and sensitivity. 

Additional variables extracted included key predictors 
identified by the models, the number of undiagnosed cases, and the 
main characteristics of these undiagnosed cases. Study limitations, 
outcome definitions, data processing methods, exploratory data 
analysis findings, and validation strategies were meticulously noted. 
Details on treatments administered to patients were also collected. 

TABLE 1 PICOS framework. 

PICOS Description 

P (participants) Patients with bleeding disorders (such as hemophilia, von Willebrand disease, and other coagulopathies). 

I (intervention) Use of artificial intelligence (AI) techniques (for instance, machine learning, deep learning, and predictive algorithms) in the diagnosis, 
prevention, and management of bleeding disorders. 

C (comparisons) Traditional approaches or no AI intervention in the prevention and management of bleeding disorders, or usual care. 

O (outcomes) Improved patient outcomes, including reduced bleeding episodes, better management of bleeding events, optimized dosing of treatments, early 

prediction and prevention of bleeding risks, and overall enhancement in quality of life and healthcare eÿciency. 

S (study designs) Human studies. 
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This structured and systematic approach to data extraction ensured 
the inclusion of all relevant variables necessary for a comprehensive 
evaluation of the role of Artificial Intelligence (AI) in the diagnosis, 
prevention, and management of bleeding disorders. 

Risk of bias assessment 

To assess the risk of bias in the included studies, we utilized 
a variety of validated tools, each specifically designed for dierent 
study types, to ensure a thorough and consistent evaluation. 

For observational studies, the Risk of Bias in Non-randomized 
Studies - of Exposures (ROBINS-E) tool was employed. This tool 
evaluates bias across multiple domains, including confounding, 
participant selection, exposure classification, deviations from 
intended exposures, missing data, outcome measurement, and 
reporting selection. Each observational study was reviewed using 
these criteria, enabling a detailed assessment of potential biases 
specific to non-randomized studies. The domains were rated as low 
risk (L), moderate risk (M), serious risk (S), critical risk (C), or no 
information (NI) (37). 

The risk of bias assessment for randomized controlled trials 
(RCTs) included in this review was conducted using the Cochrane 
Risk of Bias 2 (RoB 2) tool, a rigorous and widely accepted 
framework for evaluating the methodological quality of RCTs. 
The assessment focused on five key domains: bias arising from 
the randomization process, bias due to deviations from intended 
interventions, bias due to missing outcome data, bias in the 
measurement of outcomes, and bias in the selection of the reported 
result. Each domain was systematically evaluated, and studies were 
rated as having a low risk of bias, some concerns, or a high risk of 
bias based on predefined criteria (38). 

Data synthesis 

A quantitative meta-analysis was not performed due to 
substantial heterogeneity across included studies. Variability 
existed in AI model architectures (such as Random Forest, 
XGBoost, Graph Neural Networks), predictor variables (genetic, 
clinical, laboratory, environmental), outcome definitions (for 
instance, short-term bleeding risk, inhibitor development, disease 
severity classification), and performance metrics (accuracy, 
AUROC, F1-score, PPV). This heterogeneity precluded valid 
statistical pooling, so a narrative synthesis approach was adopted. 

Results 

Study selection 

The initial phase of screening the identified studies involved 
reviewing their Titles and Abstracts to assess relevance based 
on the defined PICOS criteria for this systematic review. The 
search yielded 2,927 records, which were imported into Rayyan 
software to streamline and organize the screening process. Rayyan 
automatically identified and removed 161 duplicate entries, leaving 
2,766 unique records for evaluation. 

The first stage of screening focused on assessing Titles and 
Abstracts based on the pre-established inclusion and exclusion 
criteria. This resulted in the exclusion of 2,714 studies that did 
not align with the review’s core focus on the use of Artificial 
Intelligence (AI) in the prevention and management of bleeding 
disorders. In the next phase, a more in-depth review was conducted 
for the remaining 52 abstracts. This stage involved examining 
the relevance of each study to AI applications in risk prediction, 
diagnostic advancements, and treatment optimization for bleeding 
disorders. Studies that did not directly address these topics were 
excluded, leaving 21 articles for full-text evaluation. 

The final phase involved a careful full-text assessment to ensure 
compliance with the inclusion criteria. Nine studies were excluded 
due to inadequate focus or lack of relevant data, leaving a total 
of 12 studies for inclusion in the systematic review. This rigorous 
selection process ensured a reliable foundation for understanding 
AI applications in bleeding disorder management. 

To provide a clear overview of the multi-stage review process 
and enhance methodological transparency, a PRISMA flowchart 
(Figure 1) was created, illustrating the progression from the initial 
search to the final selection of studies included in the review (25). 

Risk of bias assessment 

The risk of bias assessment for the included studies was 
conducted in two stages: separately for non-randomized studies 
and randomized-control studies. 

The risk of bias assessment for the studies, presented in Table 2, 
was conducted using the ROBINS-E tool, which evaluates the 
quality of non-randomized studies based on seven domains: risk 
of bias due to confounding, bias arising from the measurement 
of exposure, bias in the selection of participants, bias due to post-
exposure interventions, bias due to missing data, bias arising from 
the measurement of outcomes, and bias in the selection of reported 
results (37). 

In the domain of risk of bias due to confounding, the majority 
of the included studies were rated as having moderate risk, likely 
due to incomplete adjustment for confounding factors or unclear 
reporting of control strategies (39–48). However, studies such as 
Ferreira et al., 202, and Sidonio Jr et al., achieved a low-risk rating, 
suggesting more rigorous confounder control (49, 50). 

For bias arising from the measurement of exposure, most 
studies demonstrated a low risk, indicating reliable assessment 
methods (39, 43, 44, 46–48). However, moderate concerns were 
noted in some studies possibly due to measurement inaccuracies 
or unclear exposure definitions (40–42, 45, 50). The domain of risk 
of bias in the selection of participants was generally low risk, except 
for Aleksi´ c et al., which was rated as moderate risk, potentially due 
to a small sample size from a single center that might introduce 
bias (46). 

In the domain of bias due to missing outcome data, moderate 
risk was observed in several studies (41–49), often due to 
incomplete follow-up or inadequate reporting strategies. Notably, 
Hu et al., was rated as high risk (40), whereas studies like An et al., 
and Sidonio Jr et al., (39, 50) demonstrated low risk, indicating 
strong data management practices. 

For bias arising from the measurement of outcomes, most 
studies were categorized as low risk, while studies such as Hu 
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FIGURE 1 

Preferred reporting items for systematic reviews and meta-analyses (PRISMA) diagram demonstrating search strategy. 

et al., Lopes et al., Ferreira et al., and Rawal et al., received 
a moderate risk rating, suggesting potential inconsistencies in 
outcome measurement (40, 41, 45, 49). Lastly, in the bias of 
selection of reported results, Rawal et al., Hu et al., Singh 
et al., Sidonio Jr et al., and Aleksi´ c et al., were rated as 
moderate risk, indicating possible selective reporting that could 
exaggerate findings or omit key outcomes (40, 44–47). This analysis 
underscores the varying degrees of bias present across studies, 
emphasizing the need for careful interpretation, particularly for 
those with high overall risk ratings. 

The risk of bias assessment for the randomized controlled trial 
(RCT) included in this review was conducted using the Cochrane 
Risk of Bias 2 (RoB 2) tool, which evaluates the quality of RCTs 
across five key domains: bias arising from the randomization 
process, bias due to deviations from intended interventions, bias 
due to missing outcome data, bias in the measurement of outcomes, 
and bias in the selection of the reported result (38). The detailed 
results of this assessment are presented in Table 3. 

The study demonstrates a moderate overall risk of bias (48). 
While baseline characteristics were comparable across groups, 

the randomization process and allocation concealment were 
not explicitly detailed, introducing potential bias. The trial’s 
open-label design further contributes to performance bias, as 
neither participants nor personnel were blinded; however, this 
is mitigated by the objective nature of the primary outcome, 
annualized bleeding rate (ABR). Missing outcome data were 
handled appropriately by scaling bleed counts during the available 
follow-up period, reducing the risk of attrition bias. Measurement 
of outcomes was objective and unlikely to be influenced by 
assessors, given the nature of the data collected. Lastly, the study 
appears to have reported all predefined outcomes without evidence 
of selective reporting. Despite these strengths, the lack of blinding 
and insuÿcient detail on randomization contribute to a moderate 
risk of bias overall. 

Study characteristics 

This systematic review encompassed 12 studies investigating 
the application of Artificial Intelligence (AI) in bleeding 
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disorders. The studies employed diverse methodologies, 
including retrospective and prospective cohort studies, 
randomized controlled trials, and feasibility studies. Conducted 
in geographically diverse settings, including the United States, 
United Kingdom, Spain, Germany, Brazil, Japan, Serbia, India, 
and China, the research provided a global understanding of 
AI’s role in bleeding disorder management. Observation periods 
varied significantly, with retrospective studies analyzing years 
of electronic health record (EHR) data and prospective trials 
evaluating AI interventions over months. Refer to Table 4 for a 
brief summary of all included studies. 

Population and demographics 

The studies reviewed included diverse populations with 
varying demographic and clinical characteristics, reflecting the 
heterogeneous nature of bleeding disorders. The sample sizes 
ranged widely, from small cohorts with 96 participants (46) to 
extensive cohorts with over 23,000 individuals (40, 47, 50). Age 
distribution varied significantly across studies, with some focusing 
on pediatric populations (45) and others targeting older adults. 
Gender representation was often influenced by the disorder under 
investigation. Studies focusing on hemophilia A predominantly 
included males, given the X-linked inheritance of the condition. 
For example, the Chowdary et al., study consisted entirely of males 
(48), while studies on von Willebrand disease (VWD) and ITP 
included a more balanced gender distribution, such as Miah et al., 
which reported 53% male and 47% female participants among ITP 
patients (43). 

Ethnic diversity was considered in some studies, particularly 
those conducted in multiethnic settings like the United States. For 
instance, Hu et al., analyzed data from the ATHN dataset, capturing 
Hispanic and non-Hispanic populations (40), while studies like 
Rawal et al., included racial categories such as White, Black, and 
Asian participants (48). 

Machine learning models in bleeding 
disorder prediction and management 

The studies employed a wide variety of machine learning 
algorithms, reflecting the complexity of bleeding disorders and 
their diverse datasets. Supervised learning models were the most 
commonly used, including Random Forest (39–41, 43–45, 50), 
XGBoost (40, 41), Gradient Boosting Machines (45, 50), CatBoost 
(40, 45), and Support Vector Machines (SVM) (41, 43, 44). These 
algorithms excelled in predictive and classification tasks, such as 
forecasting bleeding risks, identifying high-risk mutations, and 
optimizing prophylactic treatment regimens (39, 40). Logistic 
regression models were employed in several studies, particularly 
when the datasets had fewer predictors or were focused on well-
defined clinical outcomes (42, 43, 48). In contrast to the above-
mentioned studies, the study conducted by Sidonio Jr et al. in 
utilized a unary predictive model based on positive-unlabeled 
learning, which compared the characteristics of the diagnosed 
patient population to a potential undiagnosed population using a 
set of 12 key predictive variables (47). 
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TABLE 3 Risk of bias analysis using the rob 2 tool - for randomized control trials. 

Study Item and score Overall risk 

Bias arising from 
the 
randomization 
process 

Bias due to 
deviations from 
intended 
interventions 

Bias due to 
missing 
outcome data 

Bias in 
measurement of 
the outcome 

Bias in selection 
of the reported 
result 

Chowdary et al. (48) Moderate risk Moderate risk Low risk Low risk Low risk Moderate risk 

Model development and optimization 
The studies reviewed employed various strategies to develop 

and refine machine learning models for bleeding disorder 
prediction. A common approach was splitting datasets into training 
and testing subsets, often in an 80:20 or 75:25 ratio, as seen in 
Rawal et al., (45). Several studies incorporated cross-validation 
techniques to enhance model robustness (39–45, 48, 49). For 
example, Chowdary et al., applied repeated nested cross-validation 
to ensure models were trained on dierent subsets of data, 
preventing overfitting (48). Similarly, An et al., used external 
validation with an independent prospective cohort of 1,097 patients 
to test generalizability (39). Aleksic et al., adapted their validation 
strategy due to a small sample size (96 patients), opting for a 
training set method tailored to their dataset (46). 

Model optimization played a critical role in improving 
predictive performance. Various techniques, including 
hyperparameter tuning (48), feature selection (45, 48), and 
data balancing (41), were applied. Several studies employed grid 
search to fine-tune hyperparameters (48). For instance, Hu et al., 
optimized CatBoost and random forest models using grid search 
to maximize accuracy and recall (40). Similarly, Rawal et al., 
leveraged hyperparameter tuning for LightGBM, which ultimately 
outperformed other models with an F1-score of ∼0.99 (45). The 
F1-score is a measure of a model’s balance between precision and 
recall, making it particularly useful for imbalanced datasets where 
false positives and false negatives must be minimized (51). 

To address class imbalances and enhance generalizability, 
some studies implemented data balancing techniques. Lopes et al., 
used ADASYN (Adaptive Synthetic Sampling) to create a more 
evenly distributed dataset, preventing bias toward overrepresented 
classes (41). Additionally, Singh et al., explored dierent encoding 
approaches, such as One-Hot Encoding (OHE) and Position-
Specific Mutation (PSM) encoding, finding that PSM improved 
classification accuracy for hemophilia A mutations (44). 

Feature selection was another key optimization strategy. An 
et al., applied Lasso regression to remove redundant features 
while preserving the most significant predictors, improving model 
performance (39). 

Some models incorporated genetic, molecular, and 
environmental data alongside clinical variables to improve 
prediction. For instance, Graph Neural Networks, Position-
Specific Mutation encoding, and LightGBM were applied to 
predict disease severity, mutation eects, or inhibitor development 
(40, 44, 45, 49). Environmental and sociodemographic factors 
such as toxin exposure, smoking, diet, and comorbidities were 
also integrated in several models to enhance risk assessment 
(39, 40, 45, 46). 

Model evaluation was reinforced through rigorous validation 
techniques, such as nested cross-validation (48), stratified k-fold 

validation (48), and external validation datasets (39). Performance 
metrics included accuracy, precision, recall, F1-score, and AUROC 
(Area Under the Receiver Operating Characteristic Curve). For 
example, Chowdary et al., reported an AUROC of 0.785 for their 
best-performing random forest model (48). The AUROC measures 
a model’s ability to distinguish between positive and negative cases, 
with a higher value indicating better discriminatory performance 
(52). However, these performance metrics should be interpreted 
cautiously. The retrospective design, small sample size, and lack 
of external validation increase the risk of overfitting and artificially 
inflated AUROC values. Publication bias–favoring positive results– 
may also overstate the clinical utility of these models. 

AI patterns in bleeding disorders 

Artificial intelligence (AI) has emerged as a valuable tool 
in the study of bleeding disorders, facilitating risk stratification, 
early diagnosis, and treatment optimization. Machine learning 
models have been employed across various bleeding disorders, 
including hemophilia, von Willebrand disease (VWD), immune 
thrombocytopenia (ITP), and cirrhosis-related variceal bleeding, to 
identify predictive patterns that enhance clinical decision-making. 

Hemophilia: predicting disease severity and 
treatment response 

Machine Learning applications in hemophilia focused on 
predicting disease severity, inhibitor development, and optimizing 
prophylaxis. Singh et al., applied Random Forest and SVM models 
to mutation data, demonstrating that specific missense mutations 
in conserved regions of the Factor VIII gene strongly correlated 
with disease severity (44). Rawal et al., integrated genetic and 
immunological features using LightGBM to predict inhibitor 
development, achieving an F1-score of ∼0.99, indicating highly 
balanced performance (45). Ferreira et al., employed Graph Neural 
Networks to analyze mutation severity, achieving up to 70% 
accuracy based on molecular and structural data (49). Lopes et al., 
examined non-synonymous point mutations in FVIII protein using 
Decision Tree, Random Forest, and XGBoost models, validating 
predictions against in vitro data and clinical reports (41). 

Key predictors included baseline Factor VIII activity, F8 
mutation type, cumulative bleed count, and protein structure 
interactions (41, 45). Feature selection methods such as SHAP and 
Lasso regression improved model performance by removing less 
relevant variables (39, 48). Hu et al., analyzed a dataset of over 
23,000 individuals with hemophilia, using AI models to detect 
undiagnosed cases based on bleeding event frequency and inhibitor 
development risk (40). Rawal et al., applied machine learning 
to predict inhibitor-negative hemophilia A status, identifying 
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TABLE 4 Summary of included studies. 

Study Country Population Bleeding 
disorder 
studied 

Exclusion 
criteria 

Data source Predictors 
identified 

Model types Performance 
metrics 

Key results 

Sample size Gender Age 

An et al. (39) China Retrospective cohort: 
2094 

Prospective cohort: 
1097 

37.75% M and 

62.25% F in the 

retrospective 

cohort 

54 Y (median) ITP Secondary ITP. 
Inconsistent 
diagnostic criteria. 

Electronic medical 
records 

Infection, 
uncontrolled 

diabetes, Age, ITP 

type, cardiovascular 

disease, low absolute 

lymphocyte count, 
skin and mucosa 

bleeding, initial 
platelet (PLT) count, 
low platelet (PLT) 
count (<20 × 109), 
disease duration 

Random Forest (RF), 
XGBoost 

RF achieved highest 
AUC. 
Retrospective cohort 
0.89; Prospective 

cohort (inpatients) 
0.82, (outpatients) 
0.74. 

Prediction and 

prevention of critical 
bleeding events. 
Outcomes like 

intracranial 
hemorrhage were 

targeted. 

Miah et al. (43) UK 150 patients (100 

ITP patients from 

the UK Adult ITP 

Registry and 50 

non-ITP patients 
from a general 
outpatient clinic) 

ITP patients: 
M = 53%, 
F = 47% 

non-ITP 

patients: 
M = 58%, 
F = 42% 

29–106 Y (ITP 

patients) and 

25–89 Y 

(non-ITP 

patients) 

ITP Evidence of other 

causes of 
thrombocytopenia 

(such as liver disease, 
myelodysplasia). 
Presence of 
abnormal blood test 
results not 
characteristic of ITP. 

UK Adult ITP 

Registry. Non-acute 

outpatient clinic data 

from Barts health 

NHS trust. 

Blood platelet count Logistic Regression, 
support vector 

machine, k-nearest 
neighbor, decision 

tree, random forest 

Random forest 
achieved 100% 

accuracy. 

Highlighted ITP 

cases based on 

simple blood tests. 
Accurate outcomes 
with limited 

diversity. 

Chowdary et al. (48) UK, Spain, 
USA, Germany 

166 100% M 30.5 Y (±12.3 Y) Hemophilia A Patients who 

received on-demand 

treatment were 

excluded. Data was 
excluded for patients 
who did not meet the 

90-day prophylaxis 
exposure criterion. 

Data from 

pathfinder 2 trial 
(phase III) 

Cumulative bleed 

count, baseline Von 

Willebrand factor 

level, Mean factor 

VIII at 30 min 

Penalized logistic 

regression, random 

forest 

Best-performing 

model (random 

forest) 0.785. 

Adjusted 

prophylaxis 
regimens based on 

bleeding predictions. 
Outcomes measured 

by ABR (annual 
bleed rate). 

Ferreira et al. (49) Brazil, Japan 626 Hemophilia A 

cases with 

single-point, non-
synonymous 
mutations (344 

alanine mutations in 

the A2 and C2 

domains of FVIII) 

N/A N/A Hemophilia A Conflicting or 

ambiguous 
phenotype 

classifications (such 

as, "Mild/Moderate") 
and misidentified 

mutations (such as, 
incorrect residue 

positions) 

FVIII mutation 

databases (EAHAD 

and CHAMP), 
structural data from 

AlphaFold2 

Buried and 

conserved residues 
in the FVIII 
structure 

Graph attention 

networks (GAT), 
SHADOW-GNN 

architectures 

Performance: 
69%–70% accuracy 

for severity 

prediction (via F1 

score). 

Enhanced 

understanding of 
mutation eects on 

hemophilia severity. 
Outcomes included 

functional validation 

using assays. 
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TABLE 4 (Continued) 

Study Country Population Bleeding 
disorder 
studied 

Exclusion 
criteria 

Data source Predictors 
identified 

Model types Performance 
metrics 

Key results 

Sample size Gender Age 

Hu et al. (40) USA 23,000 individuals in 

the ATHN dataset; 
ATHN 7 subset 
include 

N/A N/A Hemophilia A Participants with 

significant missing 

data in key variables. 

ATHN dataset and 

ATHN 7 study 

subset 

N/A K-nearest neighbors 
(KNN), XGBoost, 
random forest, 
CatBoost, logistic 

regression, support 
vector machine, and 

others 

CatBoost achieved 

67% accuracy; 
random forest 79% 

for target joint 
prediction. 

Predictions for target 
joint development 
and inhibitor 

outcomes. Focused 

on bleeding event 
patterns. 

Lopes et al. (41) Brazil Training set: 443 

instances of 
non-synonymous 
mutations. Testing 

and validation: 
included over 344 

patients with von 

Willebrand disease 

were excluded from 

specific 

therapy-based 

criteria. mutations 
from alanine 

scanning 

experiments and 

∼1000 from 

CHAMP 

N/A N/A Hemophilia A Mutations outside 

coding regions. 
Instances with 

ambiguous 
diagnostic or activity 

data. 

Data was curated 

from the EAHAD 

and CHAMP 

databases and 

structural protein 

information from 

the PDB (2R7E 

structure) 

Mutation location 

(Buried residues, 
conserved regions), 
Network centrality 

Supervised ML 

classifiers (such as, 
decision tree, 
random forest, SVM, 
naïve bayes, 
XGBoost) 

Accuracy: 66%–87%. 
Predictions aligned 

with in vitro results. 

Provided insights for 

mutation severity 

classification. 
Outcomes focused 

on mutation impact. 

Lyons et al. (42) USA 2,252 patients in the 

screening cohort; 
400 patients 
underwent medical 
record abstraction. 

Screening 

cohort: 
M = 81.2% 

Abstraction 

cohort: 
M = 77.3% 

Screening 

cohort: 30.7 Y 

abstraction 

cohort: 34.7 Y 

(mean) 

Hemophilia A Patients with von 

Willebrand disease 

were excluded from 

specific 

therapy-based 

criteria. 

Healthcore 

integrated research 

database (HIRD) 

Male sex, factor VIII 
therapy, 
Hemophilia-related 

healthcare utilization 

Lasso logistic 

regression with 

20-fold 

cross-validation, 
Generalized boosted 

modeling 

AUC: 0.966. 
Sensitivity: 94.7%. 

Accurate 

identification of 
probable hemophilia 

A cases. Focused on 

healthcare utilization 

patterns. 

Singh et al. (44) India 7784 mutations 
(EAHAD dataset), 
6286 analyzed 

M = 100% N/A Hemophilia A N/A EAHAD database. Mutation type, 
eect, position 

k-nearest neighbors 
(KNN), adaBoost, 
support vector 

machine (SVM), 
random forest (RF) 

RF (PSM) accuracy: 
73.96%, SVM (PSM): 
73.86% 

Mutation severity 

classification based 

on features 
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TABLE 4 (Continued) 

Study Country Population Bleeding 
disorder 
studied 

Exclusion 
criteria 

Data source Predictors 
identified 

Model types Performance 
metrics 

Key results 

Sample size Gender Age 

Rawal et al. (45) USA 940 Infants to older 

adults 
Hemophilia A Patients with 

incomplete variable 

data for ML 

modeling or 

unknown drug 

treatments. 

Phenotypic and 

genomic data from 

the MLOF 

repository; 
additional data 

included human 

leukocyte antigen 

(HLA) typing and 

derived biological 
variables 

Baseline factor VIII 
activity, foreign 

peptide-HLA 

binding aÿnities 
(mean and 

minimum), factor 

VIII mutation type 

Random forest (RF), 
light gradient 
boosting machine 

(LGBM), logistic 

regression (LR), 
CatBoost, and others 

Accuracy: ∼0.7354 

(F1 score). 
Accurate predictions 
for inhibitor status 
in hemophilia A. 
Outcomes measured 

inhibitor-negative 

probabilities. 

Sidonio Jr et al. (47) USA Diagnosed = 10,420 

Undiagnosed = 

507,668 

M = 14% 

(undiagnosed 

set), 28% 

(diagnosed set) 
F = 86% 

(undiagnosed 

set), 72% 

(diagnosed set) 

The majority of 
best-fit patients 
were <46 years 
old. 

VWD/Muco-
cutaneous 
bleeding 

disorders 

Diagnosed 

Hemophilia A 

Use of 
Anti-coagulants 
Patients with 

primary qualitative 

platelet disorders 
Patients without at 
least 24 months of 
continuous 
enrollment in a 

health plan. 

IMS pharMetrics 
plus database 

(2006–2015) 

Number of 
procedures to treat 
bleeding, Age, total 
number of bleeding 

events, 
Gastrointestinal (GI) 
bleeds, emergency 

room (ER) visits, sex 

Unary predictive 

model using 

positive-unlabeled 

learning 

Best-fit patients: 83% 

PPV 

Good-fit patients: 
75% PPV 

The model identified 

3,318 best-fit and 

37,163 good-fit 
undiagnosed cases. 
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TABLE 4 (Continued) 

Study Country Population Bleeding 
disorder 
studied 

Exclusion 
criteria 

Data source Predictors 
identified 

Model types Performance 
metrics 

Key results 

Sample size Gender Age 

Sidonio Jr et al. (50) USA Diagnosed: 5981, 
Undiagnosed: 
4869518 

M = 42% 

(N = 20,439) 
F = 58% 

(N = 28,463) 

M = 21 Y 

F = 33 Y (mean) 
VWD 1 + bleeding claim in 

2 years prior to index 

date for hemophilia 

A/acquired 

hemophilia A, aortic 

stenosis, 
extracorporeal 
membrane 

oxygenation, or 

ventricular assist 
devices. 
1 + hemophilia A or 

acquired hemophilia 

diagnosis claim. 
1 + coagulation 

disorders claims or 

other conditions. 
2 + diagnosis claims 
of less relevant 
general bleeding 

disorder (menstrual, 
genitourinary, or 

digestive bleeds; 
anemia, unspecified) 

Komodo health 

comprehensive 

dataset 

Heavy menstrual 
bleeding (HMB) in 

females, frequent 
medical procedures, 
hospitalizations, and 

emergency room 

visits in males 

Random forest, 
neural network, 
conditional forest, 
gradient boosting 

machine 

Accuracy: Males 
85%, Females 84% 

Sensitivity: Males 
77%, Females 73% 

Early identification 

of VWD cases. 
Outcomes targeted 

appropriate 

treatment initiation. 

Aleksic et al. (46) Serbia 96 M = 79.2%, 
F = 20.8% 

56.99 ± 11.46 Y Cirrhosis with 

variceal bleeding 

risk 

Baseline and time 

series clinical data 

from ICU patients. 

Clinical Center of 
Niš 

Child-pugh score, 
platelet count, 
Esophageal varices 

Naive bayes, J48, 
LogitBoost, PART 

LogitBoost accuracy: 
98% 

Eective screening 

for bleeding risk in 

cirrhotic patients 
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undiagnosed mutations with high precision using biologically 
relevant variables such as F8 mutation types and peptide-HLA 
binding aÿnities (45). 

Von Willebrand disease: enhancing early 
detection and risk stratification 

Machine Learning models improved early detection and 
classification of VWD. Sidonio Jr. et al., developed a model 
using Random Forest and Gradient Boosting Machines to detect 
von Willebrand Disease (VWD), identifying 48,902 undiagnosed 
cases, including 28,463 females and 20,439 males (50). This model 
leveraged features such as bleeding patterns, healthcare utilization, 
and demographic characteristics to recognize subtle indicators of 
VWD, achieving high accuracy (85% for males, 84% for females) 
(50). Heavy menstrual bleeding (HMB) in females and epistaxis 
in males were identified as key predictors (50). Similarly, Sidonio 
Jr. et al., utilized a positive-unlabeled learning approach to detect 
undiagnosed VWD cases, with their model achieving a positive 
predictive value (PPV) of 83% in the best-fit group and 75% in the 
good-fit group, highlighting key predictors such as the number of 
bleeding-related procedures and total bleeding claims (47). 

The study conducted by Chowdary et al., used SHAP 
(Shapley Additive Explanations) values to identify the most critical 
predictors, such as von Willebrand factor levels and cumulative 
bleed count, eliminating less relevant variables (48). 

Immune thrombocytopenia: differentiating 
disease subtypes and predicting clinical 
outcomes 

Machine Learning approaches distinguished ITP from other 
thrombocytopenias and predicted clinical outcomes. Miah 
et al., developed models using demographic and hematological 
parameters, selecting Random Forest due to superior accuracy 
(100%) (43). An et al., integrated variables such as infection 
status, cardiovascular disease, platelet trends, diabetes, and disease 
duration to assess bleeding risk (39). 

Key predictors included platelet count, absolute lymphocyte 
count, cardiovascular comorbidities, and disease duration (39, 43). 
ML models also enabled the identification of undiagnosed or at-risk 

ITP patients by analyzing electronic medical records and trends in 
laboratory and clinical data (39). 

Cirrhosis and variceal bleeding: risk prediction 
and clinical decision support 

Machine Learning classifiers predicted variceal bleeding risk 
based on clinical, biochemical, and endoscopic parameters. 
Aleksic et al., identified spleen diameter, platelet count, and the 
presence of large esophageal varices as the strongest predictors 
(46). Environmental factors such as toxin exposure and disease 
progression also influenced bleeding risk (46). Predictive models 
were applied to longitudinal data, tracking dietary intake, 
prophylaxis compliance, and toxin exposure to provide early 
warnings for high-risk patients. 

Cross-disorder predictors 

Across bleeding disorders, key predictors consistently included: 

• Genetic factors: F8 mutations, conserved missense mutations, 
non-synonymous point mutations (41, 44, 45) 

• Laboratory biomarkers: Factor VIII activity, platelet count, 
neutrophil and lymphocyte levels (39, 43, 45) 

• Clinical history: Cumulative bleed count, procedures, 
comorbidities, disease duration (39, 45, 47) 

• Demographic factors: Age, sex, and sociodemographic/ 
environmental exposures (40, 45, 46, 50) 

Integration of these predictors into ML algorithms enhanced 
disease classification, early diagnosis, and personalized treatment 
strategies (Figure 2). 

Discussion 

This systematic review highlights the advancements in 
machine learning (ML) applications for predicting and managing 
bleeding disorders. A comparison of the best-performing models 

FIGURE 2 

Predictors of bleeding disorders. 
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across studies provides valuable insights into their predictive 
performance, strengths, and limitations. 

Comparison of best-performing models 

Across studies, Random Forest, XGBoost, and LightGBM 
consistently demonstrated strong predictive performance and 
interpretability. For immune thrombocytopenia (ITP), Random 
Forest achieved high accuracy, particularly in distinguishing 
ITP from other thrombocytopenic conditions. In hemophilia A 
prediction, LightGBM and Random Forest were most eective, 
with LightGBM achieving an F1-score of ∼0.99. Gradient Boosting 
Machines and Random Forest also performed well in von 
Willebrand disease (VWD) classification, identifying undiagnosed 
cases with high accuracy. For cirrhosis-related variceal bleeding, 
LogitBoost proved highly accurate, while broad population-level 
analysis favored Random Forest and CatBoost for target joint 
prediction in hemophilia patients. 

Strengths and limitations 

The success of ensemble learning models underscores 
their ability to handle complex, multidimensional datasets. 
Techniques such as SHAP values and Lasso regression improved 
interpretability, while hyperparameter tuning enhanced predictive 
performance. Nonetheless, several limitations were evident 
across the literature. Common issues included class imbalance, 
missing data, and confounding, all of which may have influenced 
reported outcomes. External validation was limited, constraining 
generalizability. Deep learning models, although promising, 
demonstrated only moderate accuracy and remain diÿcult to 
implement clinically due to their “black box” nature. Addressing 
these limitations will require improved dataset quality, broader 
external validation, and the development of interpretable models 
suited for real-world settings. 

The outcomes predicted by AI models also varied considerably. 
Short-term predictions included critical bleeding within weeks (An 
et al.) and treatment response over 12 weeks (Chowdary et al.). 
Long-term predictions encompassed inhibitor development, target 
joint formation, and severity classification. This range suggests that 
some models are better suited to acute decision-making, while 
others inform longitudinal management. Most studies relied on 
baseline predictors–demographics, genetics, or initial laboratory 
values–while only a few incorporated time-varying variables such 
as serial platelet counts, evolving comorbidities, or treatment 
adherence. Incorporating longitudinal data could substantially 
enhance clinical relevance. 

Although a meta-analysis could have pooled diagnostic 
accuracy estimates, the heterogeneity of model architectures, 
predictors, outcomes, and metrics made statistical synthesis 
inappropriate. Instead, standardized reporting of AUROC, PPV, 
calibration, and consistent outcome definitions will be essential 
for future meta-analyses. Importantly, several studies were rated 
as moderate to high risk of bias–particularly due to missing 
outcome data, inadequate adjustment for confounders, or selective 
reporting–likely inflating reported accuracy. Conversely, findings 

from low-risk studies (Sidonio Jr et al.) more likely reflect 
true clinical performance. Overall, while results are promising, 
confidence is stronger in models with rigorous methodology and 
external validation. 

Despite encouraging technical results, adoption remains slow. 
Challenges include fragmented datasets, poor interoperability 
across IT systems, regulatory hurdles, limited clinician familiarity, 
and concerns over transparency. Access inequities persist, 
especially in low-resource settings. Addressing these barriers will 
require coordinated eorts–multi-center registries, integration of 
interpretable AI into EHRs, and clinician training. 

Heterogeneity and generalizability 

Heterogeneity was evident across disorders and study designs. 
In hemophilia, genetic and structural features dominated; in 
VWD, healthcare utilization and bleeding patterns were key; 
in ITP, platelet counts and comorbidities were critical; and 
in cirrhosis, clinical and endoscopic data were central. Shared 
predictors such as platelet count and factor VIII activity emerged 
across disorders. However, most models were developed in high-
income countries, limiting insights for low-resource contexts 
where diagnostic gaps are greatest. Future work should test 
generalizability in these settings. 

Clinical implications and future 
directions 

Machine learning approaches show promise for early diagnosis, 
risk stratification, and treatment optimization in bleeding 
disorders. Identifying undiagnosed cases–particularly in VWD 
and hemophilia–highlights potential for improved outcomes. Yet, 
most studies remain confined to retrospective design and internal 
validation. Prospective validation, randomized controlled trials of 
AI-assisted decision-making, and cost-eectiveness analyses are 
needed to guide real-world adoption. 

Implementation should emphasize metrics with direct clinical 
meaning. For instance, PPV reflects the proportion of positive 
predictions that are correct and is critical in bleeding disorders, 
where false positives may lead to unnecessary factor replacement, 
invasive procedures, or prolonged monitoring. Sidonio Jr et al., 
reported PPVs of 75%–83%, which are encouraging but still 
insuÿcient for routine practice. 

Practical integration requires embedding tools into clinical 
workflows. Examples include EHR-based risk alerts in ITP 
or dosing support in hemophilia prophylaxis. Barriers include 
interoperability, trust, regulation, and cost. Solutions may involve 
federated learning for data privacy, decision-support dashboards 
for clinicians, and structured training. 

Future research should prioritize prospective, multi-center 
validation, registry-based adaptive trials, and integration of 
longitudinal and environmental data. Wearables and remote 
monitoring could enable personalized, real-time management. At 
the policy level, regulators must establish frameworks for AI 
adoption in rare hematologic disorders, ensuring safety while 
encouraging innovation. 
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Conclusion 

Machine learning has emerged as a transformative tool in 
bleeding disorder prediction and management, enabling early 
diagnosis and personalized treatment. Ensemble models such as 
Random Forest, XGBoost, and LightGBM demonstrate strong 
predictive capabilities, but challenges like data imbalance and 
limited external validation must be addressed for broader 
clinical adoption. 

Future research should focus on real-world validation, 
electronic health record integration, and explainable AI 
methodologies. By refining ML models and ensuring their 
accessibility in clinical workflows, these advancements can enhance 
bleeding disorder management, ultimately improving patient 
outcomes and quality of life. 
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