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Fibrosis of the filtering bleb remains the predominant cause of glaucoma

filtering surgery failure, mediated by interconnected pathological processes

including postoperative local inflammation, aberrant fibroblast proliferation,

and deposition of the extracellular matrix (ECM). The antimetabolite drugs

5-fluorouracil (5-FU) and mitomycin C (MMC) are e�ective in preventing

filtering bleb fibrosis, but their non-specific cytotoxic e�ects necessitate the

development of targeted therapeutic alternatives. Fibrosis is a group of diseases

with similar pathological mechanisms and molecular features. By analyzing

evidence of Sinomenine’s (SIN) anti-fibrotic e�ects across multiple organs, this

study explores its potential use in glaucoma filtration surgery (GFS) to reduce

scarring: (1) SIN inhibits trauma-induced NF-κB activation in Tenon’s fibroblasts

(TFs), reduces neutrophil and macrophage infiltration, and suppresses cytokine

cascades. Besides, SIN targets the phosphatidylinositol-3-kinase (PI3K)/Akt

pathway to attenuate macrophage M2 polarization and neutrophil recruitment,

thereby interrupting fibrotic progression. (2) SIN suppresses transforming

growth factor-β (TGF-β)/Smad3 signaling and inhibits the transdi�erentiation

of fibroblasts into α smooth muscle actin (α SMA) expressing myofibroblasts

(MFs). SIN also blocks fibroblast proliferation andmigration via PI3K/Akt/mTORC1

axis inhibition, restraining myofibroblast di�erentiation—the central pathological

event in filtering bleb scarring. SIN shows antifibrotic e�cacy, and feasibility

studies on its application may o�er novel insights into antifibrotic strategies.
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1 Introduction

Glaucoma is a group of optic neuropathies characterized by progressive degeneration
of retinal ganglion cells, leading to optic nerve damage and visual field loss. Primary
open-angle glaucoma (POAG) is the most common type of glaucoma worldwide. Most
cases of POAG may progress to total blindness without the patient experiencing any
pain or discomfort. Glaucoma has become the leading cause of irreversible blindness
worldwide (1–3). It is projected that by 2040, the number of glaucoma cases will reach 110
million worldwide, with up to 60% of the cases in Asia, posing a serious threat to global
visual health and quality of life (4, 5). Multiple factors influence the risk of developing
glaucoma, including age, race, family history, corneal thickness, systemic hypotension,
cerebrospinal fluid pressure, intraocular pressure (IOP), and vascular disorders (6).
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GRAPHICAL ABSTRACT

This graphical abstract systematically delineates the formation mechanisms of filtering bleb fibrosis, current therapeutic strategies, and the potential

role of SIN in inhibiting fibrotic progression. The development of filtering bleb fibrosis is closely associated with inflammatory responses after GFS,

TFs activation, and their transdi�erentiation into myofibroblasts. Current clinical interventionsprimarily employ glucocorticoids, 5-FU and MMC. SIN,

a bioactive alkaloid, exhibits anti-inflammatory, fibroblast proliferation-inhibiting, and apoptosis-promoting properties, and may serve as a potential

therapeutic approach for suppressing filtering bleb fibrosis.

Pathological elevation of intraocular pressure (IOP) is an
independent risk factor for glaucoma. Lowering IOP through
various treatments is an established strategy for preventing
vision loss in patients with glaucoma (7). When medication
and laser therapies fail to adequately control IOP, surgical
intervention becomes the primary therapeutic consideration.
Glaucoma filtration surgery (GFS) is the first-line surgical option in
current clinical practice. This surgical procedure facilitates aqueous
humor drainage through the creation of a subconjunctival filtration
channel to regulate IOP. The key determinant of this procedure
is the establishment and maintenance of a patent and functioning
filtering bleb. However, the procedure damages the ocular tissues,
activating the wound repair cascade. Inflammatory response during
the early healing phase may drive fibrosis. This process involves
the proliferation and differentiation of fibroblasts and the excessive
deposition of extracellular matrix (ECM). These changes cause
postoperative fibrosis of the filtering bleb, which in turn damages
the function of the filtering bleb, block the outflow of aqueous

humor, and ultimately lead to failure of GFS (8, 9). Therefore, the
prevention of excessive fibrosis of the surgical area has been amajor
research focus in GFS.

Antimetabolite agents such as 5-fluorouracil (5-FU) and
mitomycin C (MMC) are standard therapeutic agents to prevent
fibrosis of filtering blebs. Although these agents effectively prolong
the survival duration of filtering blebs and enhance the long-
term success rate of glaucoma filtration surgery (GFS), they carry
significant risks of ocular complications. These include thin-walled
cystic blebs predisposing to late leakage, heightened infection risks,
chronic hypotony-associated pathologies, and corneal epithelial
damage (10, 11). Investigating alternative therapeutic approaches
could help improve clinical outcomes.

Sinomenine (SIN) is an alkaloid monomer derived from
Sinomenium acutum, a plant of the Menispermaceae family. Its
molecular formula is C19H23NO4, and its molecular weight is
329.39 (12). SIN shows immunosuppressive, anti-inflammatory,
apoptosis-inducing, antihypertensive, analgesic, and other
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pharmacological effects, and it is potentially efficacious for
antifibrotic applications. SIN exerts its antifibrotic effects primarily
through inhibiting signaling pathways [including transforming
growth factor-β (TGF-β)/Smad, phosphatidylinositol-3-kinase
(PI3K)/Akt, and NF-κB], suppressing inflammatory cytokine
release, and downregulating fibroblast activation. Fibrosis in
the filtering bleb shares a similar pathology with fibrosis of
other tissues and organs, but there have been no reports of
SIN inhibiting fibrosis in the filtering bleb. In this review, we
analyze the mechanisms of fibrosis of the filtering bleb and the
pharmacological effects of SIN in order to evaluate the feasibility of
using SIN to inhibit fibrosis after GFS.

2 Mechanism of fibrosis of filtering
bleb after GFS

2.1 Healing process

The healing process of the filtering bleb after GFS is in
accordance with general wound healing, following the pattern
of hemostasis, inflammation, cellular proliferation, and tissue
remodeling (13, 14). After the procedure, platelets aggregate
at damaged vessels and form fibrin clots, with platelets
releasing inflammatory factors, growth factors, and activating
the inflammatory response. During the inflammatory phase,
cellular infiltration is increased. The cytokine secretion drives
fibroblast activation, and fibroblasts sustainably proliferate and
transdifferentiate into myofibroblasts (MFs) which express
α-smooth muscle actin (α-SMA) (15). Large amounts of
ECM are released by MFs and promote protein deposition.
This causes migration and epithelialization of epithelial cells,
neovascularization, and granulation tissue formation, leading to
tissue remodeling and eventual scar formation (16).

2.2 Injury-induced activation

The Tenon’s capsule, also known as the fascial sheath of
the eyeball, is a dense connective tissue that wraps around the
outer sclera and is populated by fibroblasts (17). Fibroblasts are
able to transdifferentiate into MFs, which play a central role in
ECM synthesis and secretion. They facilitate wound healing, and
are also involved in numerous fibrotic diseases. Fibrosis of the
filtering bleb is mainly induced by the proliferation, migration
and contraction of Tenon’s fibroblasts (TFs). Hyperproliferation
and differentiation of TFs are important for postoperative fibrosis
in the filtering area. Surgical procedures inevitably cause some
degree of damage to the cornea, conjunctiva, Tenon’s capsule, and
sclera. During the healing process of the filtering area, excessive
fibrosis develops. Studies have shown (18) that patients with
glaucoma exhibit significant fibrotic changes in TFs, as evidenced
by the transdifferentiation of fibroblasts to myofibroblasts, and
associated changes such as mitochondrial fission, ECM remodeling,
proliferation, inflammation, and apoptosis. These changes may
be related to their pathogenesis and/or the damage caused by
local treatment.

2.3 Inflammatory response

Inflammation is one of the crucial factors in the formation
of scarring and occurs in the early stages of wound healing.
Excessive and prolonged inflammation impairs wound healing
and promotes scar formation (19). The acute inflammatory
response is characterized by increased exudation, thickening of
the filtering bleb, dense collagenous tissue, and hyperproliferation
of fibroblasts, and excessive angiogenesis. As a result of the
activation of the endogenous coagulation cascade reaction,
large amounts of cytokines and growth factors are released,
causing the wound healing phase to prolong the inflammatory
phase. These factors include tumor necrosis factor-α (TNF-α),
interleukin (IL), transforming growth factor-β (TGF-β), platelet-
derived growth factor (PDGF), and vascular endothelial growth
factor (VEGF), which are able to recruit and activate fibroblasts
and vascular endothelial cells in turn (20–22). TNF-α, as an
inflammatorymediator, promotes inflammatory cell recruitment in
subconjunctival tissues and exerts a destructive effect on trabecular
cells by up-regulating the expression of pro-inflammatory factors,
such as IL-1 and IL-6. Fibroblast proliferation exhibits a higher
rate and longer duration after TNF-α intervention (22). IL-6 plays
a crucial role in the development of scar formation after GFS by
accelerating the fibrotic process by promoting the proliferation
of CD4+ T cells, inhibiting autophagy, enhancing endoplasmic
reticulum stress, and promoting the transformation of fibroblasts
in the early stages of inflammation (23, 24). TGF-β in atrial fluid
has been shown to promote fibroblast migration, proliferation,
and differentiation, as well as increase the expression of type
I collagen and fibronectin, leading to scarring of postoperative
filtration channels (25, 26). VEGF directly modulates a spectrum
of pro-fibrotic genetic pathways by orchestrating myofibroblast
differentiation through upregulation of collagen synthesis and
α-smooth muscle actin (α-SMA) expression, thereby mediating
fibrotic progression (27). PDGF induces vascular repair, promotes
proliferation and migration of macrophages and fibroblasts to the
wound site, and stimulates fibroblasts to transdifferentiate into
myofibroblasts, which enhances the ECM and angiogenesis and
promotes scarring (28, 29).

2.4 Fibroblast transdi�erentiation

TFs are activated by a combination of cytokines and growth
factors, start to proliferate and migrate, and undergo sustained
transdifferentiation into MFs. MFs synthesize large amounts
of collagen-rich ECM. The disordered collagen fibers induce
abnormal cell movement around the wound, leading to excessive
blood vessel proliferation, scar tissue formation, and tissue
tightening during scar formation. During the fibrotic remodeling
phase, TFs and MFs gradually undergo apoptosis, and the ECM
forms a dense scar through the dehydration of collagen cross-links
induced by selective degradation (30), which blocks the functional
filtering bleb and disrupts aqueous humor drainage.

In summary, fibrosis is a common pathological outcome of
trauma and inflammatory responses, and excessive fibrosis leads to
scar formation (Figure 1).
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FIGURE 1

Stages of wound healing following glaucoma filtration surgery. (Fibrosis of filtering blebs following GFS is predominantly mediated by the

proliferation, migration, and contractile activity of TFs. Surgical trauma triggers vascular disruption, releasing platelets and blood components that

initiate coagulation cascades. Necrotic tissue debris, coagulative processes, and microbial infiltration collectively induce inflammatory activation.

Inflammatory cells infiltrate the wound site to phagocytize cellular debris and pathogens while secreting growth factors and cytokines, including

TGF-β, VEGF, PDGF, and IL-6. During the proliferative phase, neovascularization occurs while TFs are activated and transdi�erentiate into MFs

expressing α-SMA. Concurrently, ECM synthesis establishes a granulation tissue sca�old, facilitating wound contraction and repair. Ultimately, ECM

remodeling occurs, culminating in the maturation of granulation tissue into dense fibrotic scar tissue).

3 Current status of fibrosis of filtering
bleb medication after GFS

To mitigate the fibrosis of the filtering bleb after GFS,
glucocorticoids (31), and antimetabolites are commonly
used in clinical practice. Corticosteroids are able to modulate
fibroblast recruitment and inhibit their activity by alleviating the
inflammatory response and reducing the release of inflammatory
mediators. This supports their role in regulating the fibrotic
process. However, glucocorticoids may increase the risk of
postoperative infection (32). The antimetabolites mitomycin
C (MMC) and 5-Fluorouracil (5-FU) are now commonly used
clinical antifibrotic drugs. MMC, a broad-spectrum antitumor
antibiotic isolated from Streptomyces, is a DNA cross-linking
alkylating agent. MMC inhibits cellular DNA synthesis and
replication, reduces cell proliferation, induces apoptosis in target
TFs, and partially mitigates the fibrotic process (33). Compared
with 5-FU, MMC is more effective and long-lasting in inhibiting
the proliferation of fibroblasts, and it is considered the gold
standard for mitigating postoperative fibrosis (34, 35). However,
both MMC and 5-FU are associated with side effects such as
thin-walled cystic blebs, late bleb leakage, bleb-related infections,
chronic hypotony, hypotony maculopathy, and corneal epithelial
toxicity (36–38).

Emerging experimental studies have revealed that
immunosuppressive agents such as rapamycin augment cellular
autophagic activity and, thus inhibit tissue fibrosis (39, 40).
In in vitro experiments, bevacizumab has been shown to inhibit
fibroblast proliferation by reducing new blood vessel formation and
collagen deposition. It also suppress scar formation progression

in animal models (41). Another study (42) demonstrated that the
combination of MMC and bevacizumab enhances the success rate
of GFS compared to MMC alone. Postoperative follow-up further
revealed improved maintenance of filtering bleb morphology in
patients. Intravitreal injection of ranibizumab has been shown
to reduce angiogenesis and maintain postoperative filtering bleb
morphology (43). Although anti-vascular endothelial growth
factor agents exhibit anti-fibrotic effects, their use in this context

remains controversial and requires further investigation (44).
Rosiglitazone blocks the p38 signaling pathway. This inhibition

suppresses TGF-β1-induced proliferation and differentiation of
TFs and prolongs functional bleb survival (45). A novel protein,
the S58 aptamer, targeting TGF-β receptor II, suppresses fibroblast

transdifferentiation into myofibroblasts mediated by TGF-β2 (46).
Comparative studies with mitomycin C (MMC) demonstrated
a significant reduction in myofibroblast numbers in the S58

aptamer-treated group (47). However, the free S58 aptamer is
susceptible to nuclease degradation and requires nanocarrier-based
delivery systems (e.g., exosomes) (48). IP-10 peptide is a small-

molecule cytokine that inhibits fibroblast migration, angiogenesis,

and collagen deposition by binding to the CXCR3 receptor. It
blocks VEGF-induced angiogenesis and promotes the regression
of neovascularization (49). Studies have shown that IP-10p-treated
filtering blebs exhibit reduced collagen deposition, decreased cell

density, and inhibited scar formation (50). The vascular density
of filtering blebs in the IP-10p group was also lower than that
in the MMC-treated group. Additionally, the IP-10p combined
with MMC group demonstrated reduced conjunctival damage
compared to MMC alone. Animal experimental studies on Rho
kinase (51) and matrix metalloproteinases (52) have shown
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antifibrotic efficacy. All these agents exhibit certain anti-fibrotic
potential in filtering blebs and represent viable alternatives.
However, their efficacy and safety in human glaucoma patients still
require further clinical testing.

In recent years, active ingredients of traditional Chinese
medicine have shown unique potential in inhibiting postoperative
fibrosis in glaucoma due to their multi-target regulatory properties.
Studies have found that homoharringtonine, an antimetabolic
agent, acts as an anti-fibroblast proliferative agent by inhibiting
DNA synthesis (53). It has been shown that Hansenulae
mitigate fibrosis progression by inhibiting fibroblast proliferation
through apoptosis and down-regulating filtration bleb fibrosis
(54). Quercetin is a flavonoid compound. In vitro experiments
revealed that it inhibits postoperative glaucoma fibrosis by
inhibiting collagen synthesis and cell proliferation (55, 56).
Although significant progress has been made in previous studies,
herbal monomers still face challenges in antifibrosis research.
Current research is still at the stage of in vitro and animal
experiments, with a lack of dynamic simulation systems capable of
replicating physiological aqueous microenvironments. Clarifying
the mechanisms of herbal monomers in filtering bleb fibrosis
and developing optimized delivery methods with precise dosages
will establish a robust foundation for clinical trials, thereby
enhancing the evidence base for clinical translation. Identification
of herbal components with high efficacy, low toxicity, and high
bioavailability is critical for postoperative antifibrotic studies
in glaucoma.

SIN is a purified alkaloid from the traditional Chinese
medicine Sinomenium acutum (57). SIN has been shown to
reduce the formation of scar tissue in organs and tissues (58),
including mitigating fibrosis in the lungs, liver, kidneys, and
other tissues (59–63). Because of the similarity in the pathological
mechanisms of fibrotic diseases, SIN is hypothesized to exert
antifibrotic effects after GFS. Although the antifibrotic effect of
SIN has not been widely applied in the field of ophthalmic
diseases, its extensive research background, low toxicity, and high
production yield suggest potential value (64). Investigating the
pharmacological properties of SIN will help to understand its
antifibrotic mechanisms after GFS and provide new therapies for
postoperative fibrosis management. As a promising alternative or
adjuvant agent, SIN warrants further exploration in preclinical
models and clinical trials to validate its translational potential.

4 SIN prevents and suppresses fibrosis
of filtering bleb after GFS

4.1 Anti-inflammatory

As the initiating phase of tissue repair and scar formation,
reducing the inflammatory response helps inhibit postoperative
filtering bleb fibrosis. Studies have shown that SIN reduces the
secretion of inflammatory factors like IL-6, GM-CSF, IL-12 p40,
IL-1α, IL-1β, TNF-α and other inflammatory factors in the
serum of mice, and demonstrates significant anti-inflammatory
activity (65). SINO-WCJ-33, a SIN derivative, significantly reverses
elevated serum levels of IL-2, IL-6, and TNF-α in mice and plays
an important role in modulating inflammatory responses (66).
In ophthalmology research, SIN eye drops given to mice with

experimental dry eye showed that the SIN-treated group exhibited
significantly reduced corneal expression of IL-1β and TNF-α
compared to controls, along with increased tear production (67).

Damaged cells and pathogens are cleared when the
inflammatory response initiates, and subsequently neutrophils,
macrophages, and lymphocytes are recruited to the injury site,
producing clots, platelet-derived mediators, cytokines, and other
factors. These mediators in turn induce fibroblast migration and
transdifferentiate fibroblasts intoMFs. These changes cause protein
deposition and the formation of dense scar tissue (68). Previous
research has demonstrated that therapeutic strategies targeting
the inflammatory response after GFS reduce the progression of
filtering bleb fibrosis. SIN exhibits significant anti-inflammatory
effects, inhibiting the infiltration of inflammatory cells and the
production of various cytokines, thereby reducing postoperative
filtering bleb fibrosis (69, 70).

4.2 Inhibits fibroblast proliferation and
promotes apoptosis

SIN significantly inhibits fibroblast proliferation and promotes
apoptosis. By inhibiting TGF-β1/Smad3, PI3K/Akt, and NF-κB
signaling pathways, SIN inhibits the migration and proliferation
of fibroblasts and A549 cells. It prevents myofibroblast
transdifferentiation and epithelial mesenchymal transition,
resulting in reduced ECM protein expression (71). SIN has been
shown to inhibit fibrosis progression by promoting collagen-I
and collagen-III degradation through upregulation of ADAMTS-1
expression (72). After SIN treatment, fibroblasts exhibit reduced
activity, decreased colony formation, and increased apoptosis rates.
This suggests that SIN directly inhibits fibroblast proliferation
while promoting apoptosis. These changes may be produced by
upregulation of miR-23b-3p expression and downregulation of
FGF9 expression in the miR-23b-3p/FGF9 axis (73). Similar to
other fibrotic pathologies, involves excessive collagen and ECM
deposition mediated by fibroblasts. Furthermore, another study
reported the dose-dependent pro-apoptotic effect of SIN on human
Tenon fibroblasts (74).

Western blot analysis showed that the TGF-β1 signaling
pathway in human fibroblasts was significantly inhibited after SIN
treatment. Meanwhile, the expression levels of Cyclin D1, Bcl-2,
and MMP2 were significantly reduced. This study demonstrated
that SIN suppresses fibroblast growth and migration, an effect
mediated through inhibition of the TGF-β1 signaling pathway.
These findings establish a mechanistic foundation for further
exploration of SIN in anti-fibrotic therapy.

Fibroblasts are involved in fibrotic activities in the body
and play an important role in promoting angiogenesis and
granulation tissue formation. As wound healing proceeds to the
cell proliferation stage, fibroblasts are recruited and activated to
transdifferentiate into MFs, leading to increased collagen synthesis
and deposition. This further drives fibrosis (75). In this stage,
the key steps to mitigate fibrosis of the filtering bleb after GFS
include: (1) inhibition of fibroblast migration and proliferation,
and promotion of fibroblast apoptosis; and (2) suppression of
MF transdifferentiation and induction of their apoptosis. A large
body of evidence shows that SIN not only inhibits fibroblast
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migration, and proliferation but also promotes fibroblast apoptosis,
reduces α-SMA expression, and enhances collagen degradation.
SIN effectively inhibits the progression of fibrosis. TFs are one of
the key effector cells in fibrosis of filtering bleb after GFS (76).
SIN may suppress the fibrosis of the filtering bleb after GFS by
modulating the activity of TFs and thereby maintaining functional
filtering bleb to increase the success of the procedure.

4.3 Possible molecular mechanisms

The antifibrotic effect of SIN is mainly reflected in: (1) the
anti-inflammatory effect of SIN attenuates the local inflammatory
reaction after trauma or surgery, reduces inflammatory cell
infiltration and cytokine release, and inhibits fibrosis at the
injury site; and (2) SIN inhibits the activation, migration,
and proliferation of fibroblasts, promotes their apoptosis, and
suppresses their transdifferentiation into myofibroblasts. Based
on its anti-inflammatory and antifibrotic pharmacological effects,
evidence suggests that SIN helps maintain the function of the
filtering bleb after GFS and prevent fibrosis. At present, studies on
the molecular mechanism of SIN’s antifibrotic effect on filtering
bleb have mainly focused on the TGF-β/Smad, PI3K/AKT and
NF-κB signaling pathways.

4.3.1 TGF-β/Smad
TGF-β/Smad is a major pathway leading to scar formation,

closely associated with ECM synthesis and fibroblast
transdifferentiation (77, 78). Glaucoma patients exhibit elevated
TGF-β concentrations in the aqueous humor and trabecular
meshwork, suggesting that targeting TGF-β signaling represents
a key therapeutic strategy for preventing postoperative fibrosis
(79, 80). As a multifunctional dimeric polypeptide growth factor,
TGF-β has been shown to promote proliferation, migration, and
myofibroblast transdifferentiation of various target cells, and
enhances the production of fibrosis-related proteins (81). The
Smad protein family acts as TGF-β downstream intracellular
effectors (82), with Smad2, Smad3, Smad4, and Smad7 being
essential signaling components. Upon activation, TGF-β binds
to the type II receptor (TβRII), which phosphorylates and
activates the type I receptor (TβRI) kinase. This initiates the
Smad-dependent signaling pathway, leading to phosphorylation
and activation of downstream effectors such as Smad2 and Smad3,
which mediate various biological effects (83–85). It was found
that SIN-treated human fibroblasts not only exhibited cell cycle
arrest but also underwent apoptosis. As the concentration of SIN
increased, the number of apoptotic cells rose, accompanied by
inhibition of TGF-β1 signaling. This was further evidenced by a
decrease in the expression of Cyclin D1, a key regulator of the
G1-to-S phase transition, and Bcl-2, an anti-apoptotic protein. In
addition, the expression of MMP-2, which is associated with ECM
remodeling and fibroblast migration, was also reduced. These
findings indicate that SIN inhibits fibroblast proliferation and
migration by regulating the TGF-β1/Smad signaling pathway (74).
On the one hand, SIN reduces TGF-β release, inhibits its binding
to cell surface receptors, and decreases ECM synthesis. On the

other hand, it inhibits Smad protein phosphorylation, reduces their
activation, and disrupts TGF-β signaling (86, 87).

4.3.2 PI3K/AKT
The PI3K/AKT pathway consists of phosphatidylinositol-3-

kinase (PI3K), protein kinase B (PKB), and its downstream
molecules (88). PKB, also known as AKT, is a serine/threonine
protein kinase and the principal downstream effector of the PI3K
signaling pathway. Upon exogenous stimulation, PI3K is activated,
leading to phosphorylation of AKT in cells and tissues. This
activation induces a variety of biological effects, including the
regulation of cell metabolism, growth, proliferation, and apoptosis.
It also modulates oxidative stress, inflammatory responses, and
energy homeostasis through multiple downstream targets (89). SIN
attenuates renal fibrosis by modulating the PI3K-AKT pathway and
affecting autophagy levels through BMSC-exo carrying miR-204-
5p (90). Upon inhibition of PI3K activity, Akt phosphorylation
and activation are reduced, which disrupts downstream signaling
pathways, decreases cell proliferation and survival, and suppresses
tissue fibrosis (91, 92).

4.3.3 NF-κB
NF-κB is a family of transcription factors widely involved in

regulation of cellular immunity, inflammation, proliferation, and
apoptosis, primarily modulating inflammatory responses and cell
survival (93, 94). As one of the classical inflammatory signaling
pathways, NF-κB induces the transcription of various pro-
inflammatory cytokines, promotes ECM synthesis, and contributes
to fibrosis (95). SIN inhibits the nuclear translocation of NF-κB p65
subunit andthe DNA-binding activity of NF-κB in synoviocytes,
which might be one of anti-inflammatory mechanisms (96). SIN
increases A2A receptor and suppresses NF-κB pathway activation
via the α7 nicotinic acetylcholine receptor in adjuvant-induced
arthritis rats (97, 98). The inflammatory response is a key
contributor to fibrosis. Suppressing the expression of inflammatory
cytokines helps slow fibrotic progression, and SIN’s antifibrotic
effect is likely mediated through inhibition of NF-κB signaling.

5 Discussion and conclusion

GFS remains the gold-standard intervention for refractory
glaucoma, but postoperative fibrosis of the filtering bleb is a
leading cause of surgical failure. The pathogenesis of filtering
bleb fibrosis is multifactorial, involving inflammatory, fibroblast
proliferation and transdifferentiation, ECM deposition, aberrant
angiogenesis, and pro-fibrotic cytokine signaling. This process
is originally part of postoperative injury healing, but excessive
fibrosis may lead to filtering bleb dysfunction. Although current
therapies show some efficacy, they are frequently associated with
considerable toxicity and adverse effects. Furthermore, several
emerging therapies remain at the experimental stage, and the
development of safe and effective agents to prevent or attenuate
filtering bleb fibrosis after GFS remains a significant challenge.

Fibrosis of the filtering bleb after GFS shares a similar
pathological mechanism with other fibrotic diseases. Although
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no studies have reported the effect of SIN on filtering bleb
fibrosis, analysis of fibrosis mechanisms and SIN’s pharmacological
properties suggests its therapeutic potential. SIN exerts anti-
inflammatory effects by reducing inflammatory reactions,
decreasing inflammatory cell infiltration and cytokine release,
thereby inhibiting fibrosis at the injury site. SIN inhibits the
activation, migration, and proliferation of fibroblasts while
promoting their apoptosis. It suppresses the transdifferentiation
of fibroblasts into myofibroblasts. It decreases the expression
of α-SMA, reduces protein deposition, and promotes collagen
degradation. SIN’s antifibrotic effects on filtering bleb fibrosis
after GFS may involve the TGF-β/Smad, PI3K/Akt, and NF-κB
signaling pathways.

The strong histamine-releasing effects of SIN may induce skin
edema, pruritus, and gastrointestinal reactions (99), suggesting
the need to be vigilant for patients with asthma and a history
of allergy during clinical application. The study showed (100)
that the distribution pattern of SIN in organs after multiple
administrations was similar to that of a single administration,
and no drug residues were detected in any tissue after 1
week of drug withdrawal, suggesting no accumulation in the
body. It is worth noting that SIN concentrations are highest
in the liver, and lower in the heart. Histological observation
suggests relatively obvious morphological changes in liver tissue.
However, no significant abnormalities were detected in liver
function tests (ALT, AST), renal function (BUN), or urinary
sediment in rats following 6 weeks of continuous administration
and 1 week of withdrawal. This indicates that high-dose
SIN did not compromise hepatic or renal enzymatic profiles,
despite causing subtle histological alterations in the liver.
Prolonged oral administration of SIN may induce hepatotoxicity,
nephrotoxicity, and cardiotoxicity. Regular monitoring is therefore
recommended for patients with severe hepatic or cardiovascular
diseases. Additionally, caution is advised when using SIN in
patients undergoing systemic immunosuppressive therapy for
autoimmune diseases, as well as in pregnant or breastfeeding
women (101, 102).

The safety profile of Sinomenine in ophthalmic applications is
currently under investigation, with topical ocular administration
considered effective for mitigating the aforementioned risks.
After treatment with 0.05 and 0.1% Sinomenine (SIN) eye
drops administered four times daily, slit lamp examination and
corneal staining revealed no significant ocular irritation or corneal
damage in mouse dry eye models (67). In rabbit uveitis models,
administration of 0.5% SIN solution or gel showed no significant
ocular irritation. Histopathological examination further confirmed
that neither corneal epithelial detachment nor stromal damage
occurred after treatment with 0.5% SIN solution or gel (103). In
another study (104), the use of 1% SIN eye drops (four times
daily for 7 days) significantly inhibited inflammation, reduced
neovascularization, and promoted epithelial repair, effectively
treating acute phase damage to the cornea in alkali burns.
No corneal opacity, iris inflammation, or persistent conjunctival
hyperemia was observed during the trial. The corneal epithelium
and stromal structures remained intact with no pathological
damage. However, the study lasted only 7 days, so long-term
observation is still needed to explore its effect on subsequent
scar formation.

By analyzing the mechanism of fibrosis in filtering bleb
formation, current therapies, and SIN’s pharmacological effects,
SIN shows potential to maintain filtering bleb function after GFS.
This analysis offers novel perspectives for studying anti-fibrotic
strategies targeting the filtering bleb. Further studies are required
to evaluate SIN’s efficacy and safety, with the aim of providing a
better therapeutic option for glaucoma surgery patients.
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