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Diabetic kidney disease (DKD), a major microvascular complication of diabetes,

is closely associated with functional imbalances in ion channels regulating

sodium (Na+), calcium (Ca2+), potassium (K+), and chloride (Cl−). This review

systematically examines the roles of ion channels in glomerular filtration

barrier dysfunction, tubular reabsorption, and fibrotic processes in DKD, with

emphasis on the pathological relevance of sodium-glucose cotransporter

2 (SGLT2), epithelial sodium channels (ENaC), transient receptor potential

(TRP) channels, chloride channels, aquaporins (AQPs), and PIEZO channels.

We further evaluate the clinical efficacy and challenges of ion channel-

targeted therapies, including SGLT2 inhibitors and mineralocorticoid receptor

antagonists. Emerging strategies integrating ion channel omics, machine

learning, engineered biomaterials, and exosome-based delivery systems are

proposed to shift DKD treatment paradigms from disease progression delay

to pathological reversal. Interdisciplinary collaboration is critical to achieving

personalized precision medicine, offering novel perspectives for DKD diagnosis

and management.

KEYWORDS

ion channels, diabetic kidney disease, targeted therapy, precision medicine, sodium-
glucose cotransporter 2

1 Introduction

Diabetic kidney disease (DKD), one of the most severe microvascular complications
of diabetes, has become the leading cause of end-stage renal disease (ESRD) worldwide.
Epidemiological data indicate that approximately 40% of diabetic patients develop chronic
kidney disease (CKD), with type 2 diabetes posing a higher risk. Between 1990 and 2017,
diabetes-related CKD cases surged by 74%, from 1.4 million to 2.4 million (1–3). The
proportion of ESRD cases attributed to diabetes increased from 19% in 2000 to 29.7%
in 2015, with further increases anticipated (3). The Western Pacific region (e.g., China,
Japan) and the United States exhibit the highest incidence of diabetes-related ESRD,
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with rates 2–3 times greater than those in Europe (4). China alone
has over 110 million diabetic patients, of whom 32.5% with type 2
diabetes develop CKD, translating to over 30 million DKD cases.
However, awareness and screening rates remain alarmingly low
at 26% and < 55%, respectively (4–7). DKD now represents the
primary etiology of CKD-related hospitalizations in China and
dominates new hemodialysis cases. These trends underscore the
immense global healthcare and economic burden of CKD.

The core pathological features of DKD include glomerular
hyperfiltration, podocyte injury, tubulointerstitial fibrosis, and
chronic inflammatory microenvironments. Disease progression is
driven not only by metabolic dysregulation but also by complex
molecular network imbalances (8–12). While conventional
therapies targeting glycemic control, blood pressure management,
and renin-angiotensin-aldosterone system (RAAS) inhibition
remain foundational, approximately 30% of DKD patients
experience relentless renal function decline despite intensive
treatment, highlighting the urgent need for novel therapeutic
targets (7–9, 13).

This review specifically addresses this therapeutic gap by
examining the pivotal role of ion channel dysfunction in DKD
pathogenesis—a mechanism insufficiently targeted by current
treatments. Recent studies implicate ion channel dysfunction as
a pivotal driver of DKD pathogenesis. The kidney, a hub for
ion transport, relies on precise regulation of Na+, K+, and
Ca2+ channels. For instance, SGLT2 overexpression in proximal
tubules exacerbates Na+ and glucose reabsorption, inducing
glomerular hypertension and oxidative stress, thereby accelerating
podocyte detachment and basement membrane thickening (14).
Conversely, aberrant ENaC activation in distal nephrons promotes
Na+ retention, hypertension, and tubulointerstitial fibrosis via
a “metabolic-hemodynamic” vicious cycle (15–17). Additionally,
pathological Ca2+ influx mediated by TRP channels (e.g., TRPC6,
TRPV4) triggers podocyte cytoskeletal remodeling, mitochondrial
dysfunction, and apoptotic signaling, directly contributing to
proteinuria (17–19).

Mounting evidence demonstrates that SGLT2 inhibitors confer
renal protection through three distinct yet complementary
mechanisms: First, by suppressing excessive glucose and
sodium reabsorption in proximal tubules, these agents
restore tubuloglomerular feedback and ameliorate glomerular
hyperfiltration (20). Second, they modulate tissue oxygenation
homeostasis while attenuating inflammatory and fibrotic pathways
(21). Third, they promote blood pressure reduction (mean
decrease 3.3 mmHg) and vascular resistance improvement
through enhanced urinary sodium and glucose excretion (20).
Clinical trials confirm that SGLT2 inhibitors reduce the risk of
composite renal endpoints by 30% (including end-stage renal
disease and serum creatinine doubling), accompanied by modest
reductions in HbA1c (0.25%) and body weight (0.8 kg) (20).
Notably, these nephroprotective effects appear mediated through
common mechanisms in both diabetic and non-diabetic CKD
populations, while providing additional cardiovascular benefits
including amelioration of atherosclerosis and mitigation of uremic
toxin-induced cardiac damage (22, 23).

Representative SGLT2 inhibitors (e.g., dapagliflozin) exert
their effects by reducing intraglomerular pressure and restoring
tubuloglomerular feedback, thereby optimizing renal energy
metabolism. The DAPA-CKD trial demonstrated that dapagliflozin

could delay ESRD progression by 6.6 years (24–26). Similarly,
the selective mineralocorticoid receptor antagonist finerenone,
by inhibiting ENaC overactivation, achieves a 32% reduction in
urinary albumin-to-creatinine ratio (UACR) and a 23% decrease
in kidney-related events, marking a therapeutic breakthrough in
DKD management (27). Emerging therapeutic strategies, including
TRPC5 inhibitors, have shown promise in reversing podocyte
injury in preclinical models (28, 29), highlighting the substantial
clinical potential of ion channel-targeted therapies. However,
challenges persist due to the complexity and tissue specificity
of ion channel regulation. For example, SGLT2 inhibitors may
induce euglycemic ketoacidosis, while ENaC antagonists require
careful monitoring of hyperkalemia risk (30). Future research
must integrate single-cell omics and structural biology (e.g., cryo-
electron microscopy) to elucidate dynamic ion channel expression
profiles across renal cell populations and develop subtype-specific
modulators. Recent structural resolution of the Cav2.1 calcium
channel subunit (31) provides a molecular blueprint for selective
drug design, a strategy applicable to DKD-related channels.

Ion channel dysregulation exhibits intricate associations with
inflammatory and fibrotic pathways in DKD. A comprehensive
elucidation of these molecular networks will enable targeted
therapeutic interventions to achieve disease remission. Our
purpose is thus threefold: (1) Elucidate molecular linkages
between ion channel dysregulation and DKD progression;
(2) Evaluate clinical challenges in translating channel-targeted
therapies; (3) Propose precision strategies (e.g., single-cell omics,
structural pharmacology) to develop subtype-specific modulators
that mitigate off-target risks while maximizing renoprotection.
By integrating these insights, we aim to advance ion channel
therapeutics from disease management toward personalized,
pathology-reversing regimens for DKD.

2 Literature search strategies

We conducted a systematic narrative literature review utilizing
PubMed, Web of Science, Google Scholar, and EMBASE databases
(2022–2025) with the following search terms: “ion channels,”
“diabetic kidney disease,” “SGLT2 inhibitors,” “TRP channels,”
and “precision therapy.” The review incorporated preclinical
studies, clinical trials, and relevant review articles. Furthermore,
we critically examine future research directions and clinical
prospects regarding ion channel modulation in DKD, while
providing expert perspectives. This review synthesizes current
evidence concerning ion channel mechanisms, therapeutic targets,
and innovative multidisciplinary approaches (including multi-
omics integration, machine learning applications, engineered
nanocarrier systems, and structural pharmacology) to transform
DKD treatment paradigms from disease progression delay to
potential pathological reversal.

3 Pathogenesis and current research
in DKD

The pathogenesis of DKD involves multifactorial interactions
among energy metabolic dysregulation, oxidative stress,
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inflammatory responses, fibrosis, genetic susceptibility, renin
angiotensin system (RAS) intestinal flora and metabolites forming
a complex “metabolic-inflammatory-fibrotic” cascade network.
Current mechanistic research has shifted from a singular metabolic
perspective to multidimensional network regulation, integrating
interdisciplinary technologies to dissect the “gene-environment-
Gut Microbiota-metabolism” interplay, which is critical for
elucidating the underlying mechanisms of DKD (Figure 1).

3.1 Energy metabolic dysregulation and
oxidative stress

Hyperglycemia activates the polyol pathway, protein kinase
C (PKC) signaling, and accumulation of advanced glycation
end products (AGEs), inducing renal oxidative stress and
energy metabolism abnormalities (32–37). AGE binding to
its receptor (RAGE) activates NADPH oxidase, leading to
reactive oxygen species (ROS) overproduction, mitochondrial
dysfunction, and DNA damage, thereby promoting podocyte
apoptosis and glomerular basement membrane thickening (35–38).
Additionally, hyperglycemia suppresses ATP-sensitive potassium
(KATP) channels, exacerbating membrane depolarization and
calcium overload, further damaging tubular epithelial cells (39).

3.2 Inflammation and immune
dysregulation

Chronic inflammation is a key driver of DKD progression.
Hyperglycemia activates NF-κB and TGF-β1 pathways, promoting

macrophage infiltration and release of pro-inflammatory cytokines
(e.g., TNF-α, IL-6, IL-1β), thereby fostering an inflammatory
microenvironment (39–41). Overexpression of monocyte
chemoattractant protein-1 (MCP-1) and fibronectin (FN)
accelerates glomerulosclerosis, while Th17/Treg cell imbalance
impairs anti-inflammatory responses, perpetuating a vicious cycle
(42–44).

3.3 Podocyte injury and renal fibrosis

Podocytes, critical components of the glomerular filtration
barrier, undergo injury that underlies proteinuria and renal
functional loss (45, 46). Hyperglycemia induces aberrant
expression of long non-coding RNAs (e.g., lncRNA evf-2) in
podocytes, which bind heterogeneous nuclear ribonucleoprotein
U (hnRNPU) to regulate cell cycle re-entry and inflammatory
responses, exacerbating podocyte detachment (47). Pathological
calcium influx mediated by transient receptor potential (TRP)
channels (e.g., TRPC6, TRPV4) triggers podocyte cytoskeletal
remodeling and apoptosis, further disrupting the filtration
barrier (48–50). TGF-β1 signaling activation drives epithelial-
mesenchymal transition (EMT), promoting tubulointerstitial
fibrosis and extracellular matrix (ECM) deposition (51).

3.4 Genetic and epigenetic regulation

Genetic polymorphisms (e.g., ACE insertion/deletion
polymorphism) and epigenetic modifications (e.g., DNA
methylation, histone acetylation) significantly influence DKD

FIGURE 1

Schematic diagram of pathophysiological mechanism of DKD. DKD, diabetic kidney disease; ROS, reactive oxygen species.
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susceptibility (52–58). Genetic predispositions conferred by
polymorphisms in ELMO1, AGTR1, and P2 × 7 also play critical
roles in DKD pathogenesis (53–55). Furthermore, lncRNAs (e.g.,
H19, MALAT1) modulate chromatin remodeling to influence
inflammation-related gene expression, while miRNAs (e.g., miR-
21, miR-29) target fibrotic pathway genes, contributing to renal
fibrosis (56–62). These findings underscore the pivotal role of
genetic factors in DKD development.

3.5 Multiple regulatory effects of renin
angiotensin system (RAS)

The renin-angiotensin(Ang)-aldosterone system (RAAS) plays
a critical role in the pathogenesis of both acute and chronic
kidney diseases.

Recent studies have demonstrated that abnormal activation
of the renin-angiotensin system (RAS) not only promotes
glomerular injury through the classical Ang II/AT1R axis but
also involves novel mechanisms including RhoA/ROCK signaling
pathway-mediated cytoskeletal remodeling (63–65). RAS activation
upregulates the RhoA/ROCK signaling pathway, resulting in
increased endothelial permeability and cytoskeletal reorganization.
Similar mechanisms may be triggered by mechanical stress (such
as glomerular hypertension) in DKD. Inhibition of RhoA/ROCK
can reduce podocyte detachment and mesangial matrix deposition,
indicating this pathway serves as a crucial downstream effector
of RAS (63). Additionally, emerging research suggests that the
histone deacetylase SIRT6 can attenuate RAS-induced profibrotic
and oxidative stress responses by inhibiting the Wnt/β-catenin
signaling pathway, thereby ameliorating podocyte injury and
glomerulosclerosis (66). Ellagic acid has been shown to significantly
reduce TNF-α levels in cisplatin-induced nephrotoxicity models
while suppressing the ERK1/2-NF-κB inflammatory pathway
through SIRT6 activation (67). Additionally, non-classical RAS
components contribute to renal injury. The imbalance of the
Ang-(1–7)/Mas axis exacerbates oxidative stress, while aldosterone
promotes fibrosis through upregulation of ENaC and TGF-β1.
Novel non-steroidal mineralocorticoid receptor antagonists (e.g.,
Finerenone) can partially reverse these pathological processes (68).

3.6 Mechanisms of interaction between
gut microbiota dysbiosis and the
gut-kidney axis

The gut microbiota, as the largest microbial ecosystem in the
human body, plays a pivotal role in host metabolic processes.
Dysbiosis of the gut microbiota is closely associated with metabolic
disorders such as diabetes. Patients with diabetic nephropathy
(DN) exhibit significant differences in both the compositional
distribution of gut microbiota and the levels of gut-derived
metabolites compared to healthy individuals (69). Microbial
metabolites, including short-chain fatty acids (SCFAs), bile acids,
hydrogen sulfide, and uremic toxins, function as chemical
messengers (70). These metabolites influence renal function in
DN by modulating immune responses, inflammatory cascades, and
oxidative stress pathways.

The latest research has revealed the key role of intestinal flora
imbalance in DKD and potential intervention strategies: SGLT2
inhibitors (such as dapagliflozin) can delay the progress of DKD by
regulating bile acid metabolism spectrum, enhancing antioxidant
capacity, and dynamically improving the structure of intestinal
flora (71). Additionally, probiotic intervention (such as lactic
acid bacteria) can produce indole derivatives through tryptophan
metabolism, inhibit the activation of aryl hydrocarbon receptor
(AHR) pathway, reduce glomerular basement membrane damage
and podocyte apoptosis, and provide a new treatment approach for
membranous nephropathy complicated with DKD (72). Clinical
studies further found that the characteristics of intestinal flora in
patients with DKD (especially in ESRD stage) were significantly
correlated with deterioration of renal function (such as decreased
eGFR, accumulation of uremic toxins) and psychological distress
(73). These findings provide a theoretical foundation for multi-
dimensional interventions targeting the gut-kidney axis, including
microbiota remodeling and metabolite regulation.

3.7 Interorgan regulatory networks in
metabolic disorders

Metabolic disorders such as diabetes are characterized by
nutrient metabolism dysregulation. Recent studies highlight the
critical role of amino acids in metabolic homeostasis. Branched-
chain amino acids (BCAAs)—leucine, isoleucine, and valine—are
essential amino acids with potent metabolic regulatory effects.
Elevated plasma BCAA levels in DKD patients, coupled with
downregulation of catabolic genes (e.g., BCKDK), exacerbate
mitochondrial dysfunction and oxidative stress via AMPK pathway
suppression (74, 75).

Furthermore, the latest research reveals that intestinal flora
dysbiosis in DKD patients leads to abnormal metabolite profiles,
manifested by reduced short-chain fatty acids (such as acetic
acid and propionic acid) and accumulated uremic toxins (such
as TMAO and indoxyl sulfate). These changes aggravate renal
inflammation and fibrosis by activating the AHR pathway and pro-
inflammatory factors (IL-6 and TNF-α) (72, 75). SGLT2 inhibitors
(such as dapagliflozin) can enhance antioxidant capacity and
delay DKD progression by regulating bile acid metabolic profiles
and maintaining bacterial population balance. Simultaneously,
probiotics (such as lactic acid bacteria) inhibit the AHR pathway
through tryptophan-derived indole metabolites, thereby reducing
kidney injury (66, 71, 72). Traditional Chinese medicine (such
as Tangshen formula) promotes SCFA production and reduces
uremic toxins by remodeling microbial composition (including
Firmicutes/Bacteroidetes ratio regulation), with mechanisms
involving multi-target modulation of the gut-kidney axis (72).
Multigroup analyses further confirm that Blautia abundance and
bile acid dysmetabolism in hypertensive DKD models drive disease
progression via the microbial-intestinal-metabolic axis, suggesting
that targeted microbial metabolic microenvironment interventions
(such as FMT and metabolite supplementation) represent novel
therapeutic directions for DKD (73). Future studies should employ
multi-omics technologies to analyze flora-metabolite interaction
networks for optimizing precision intervention strategies.
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4 Role of ion channels in DKD
pathogenesis and targeted
intervention strategies: from
mechanistic insights to precision
therapy

Ion channels, as core regulators of renal electrolyte balance
and signal transduction, are critically implicated in the pathological
progression of DKD (76–81). Dysfunction of ion channels in
DKD exhibits spatiotemporal specificity and network-dependent
regulation, intricately intertwined with metabolic disturbances,
oxidative stress, inflammatory fibrosis, and podocyte injury.
Hyperglycemia-induced activation of the polyol pathway, protein
kinase C (PKC), and advanced glycation end product (AGE)
signaling initiates a vicious cycle of ion channel dysfunction
and oxidative stress. This section systematically examines the
physiological roles and dysregulation of sodium (Na+), calcium
(Ca2+), potassium (K+), and chloride (Cl−) channels across
nephron segments in DKD, integrating recent preclinical and
clinical advances.The following table shows the latest studies on ion
channel-targeted therapies in DKD models and their corresponding
mechanisms in DKD (Table 1).

4.1 Sodium channels

Sodium channels are pivotal molecular components for
maintaining systemic sodium homeostasis and blood pressure
regulation, distributed across distinct nephron segments to execute
specialized functions. This section focuses on sodium channels
critically involved in DKD pathophysiology.

4.1.1 Sodium-glucose cotransporter 2 (SGLT2)
Sodium-glucose cotransporters (SGLTs) in renal proximal

tubules, particularly SGLT2, play a central role in glucose
homeostasis by reabsorbing 90% of filtered glucose. SGLT2,
localized to the apical membrane of proximal tubule S1/S2
segments, actively transports one glucose molecule with two
sodium ions, serving as the rate-limiting step for glomerular
glucose reabsorption. In DKD, hyperglycemia upregulates
SGLT2 expression via hypoxia-inducible factor-1α (HIF-1α)-
and reactive oxygen species (ROS)-dependent transcriptional
regulation, exacerbating sodium-glucose reabsorption and
glomerular hyperfiltration. This “tubuloglomerular feedback
imbalance” not only elevates intraglomerular capillary
pressure but also induces podocyte hypertrophy and
basement membrane thickening through mTORC1 activation
(82–84).

SGLT2 inhibitors (e.g., dapagliflozin) exhibit renoprotective
effects beyond glucose lowering (85–87). The DAPA-CKD
trial, the first renal outcome study of SGLT2 inhibitors in
CKD patients (with or without type 2 diabetes), demonstrated
that dapagliflozin significantly reduced: Primary composite
endpoint risk (eGFR decline ≥ 50%, progression to ESRD,
renal/cardiovascular death) by 39%. Renal-specific composite
endpoint risk (eGFR decline ≥ 50%, progression to ESRD,
renal death) by 44%. Cardiovascular composite endpoint risk

(cardiovascular death or heart failure hospitalization) by 29%.
All-cause mortality risk by 31% (87–90). Mechanisms include: (1)
hemodynamic improvement: Inhibiting proximal tubule sodium
reabsorption, activating macula densa pressure sensors, restoring
tubuloglomerular feedback, and reducing intraglomerular pressure
(10–15 mmHg); (2) metabolic reprogramming: Activating
AMPK/SIRT1 to enhance fatty acid oxidation and reduce
lipotoxicity; (3) anti-inflammatory effects: Suppressing NLRP3
inflammasome activation and lowering IL-1β/IL-18 levels
(86, 87).

However, SGLT2 inhibitors may rarely induce euglycemic
ketoacidosis (incidence: 0.1–0.3%), attributed to increased
proximal tubule ketone reabsorption and pancreatic α-cell
glucagon dysregulation (91, 92). Dual SGLT1/2 inhibitors (e.g.,
sotagliflozin), which inhibit intestinal SGLT1 to reduce glucose
absorption, may mitigate this risk but require further validation
(93–95).

4.1.2 Epithelial sodium channel (ENaC)
The epithelial sodium channel (ENaC), also known as

the amiloride-sensitive sodium channel (ASSC), is a Na+-
permeable ion channel located in the apical membranes of
epithelial cells in the kidney, lung, colon, and other tissues.
ENaC-mediated Na+ transport is critical for regulating salt
and water absorption across epithelial surfaces (1, 2, 8–
10, 15). Composed of α, β, and γ subunits, ENaC in the
distal nephron (distal convoluted tubule and collecting duct)
mediates aldosterone-dependent sodium reabsorption (15–17).
Hyperglycemia alters ENaC gating, disrupting renal electrolyte
homeostasis, exacerbating hypertension, and accelerating
DKD progression (15–17, 96). In DKD, mineralocorticoid
receptor (MR) overactivation phosphorylates ENaC via
serum/glucocorticoid-regulated kinase 1 (SGK1), increasing
membrane expression and open probability, leading to sodium
retention and elevated blood pressure (97). Additionally, ROS
suppress Nedd4-2, a ubiquitin ligase responsible for ENaC
γ-subunit degradation, further enhancing channel activity (15–17,
96–98).

Mineralocorticoid Receptor Antagonists (MRAs) targeting
the ENaC-MR axis offer precision therapy for DKD. Traditional
steroidal MRAs (e.g., spironolactone, eplerenone) showed
limited long-term renal benefits and safety concerns, prompting
the development of non-steroidal MRAs. Finerenone, a
selective non-steroidal MRA, significantly reduces: Major
endpoint incidence (ESRD, sustained eGFR decline, or
death). Secondary endpoints (cardiovascular death, non-
fatal myocardial infarction, non-fatal stroke, or heart failure
hospitalization); with a lower incidence of hyperkalemia
compared to steroidal MRAs (99–102). Renoprotective
mechanisms include: (1) anti-fibrotic effects: Downregulating
TGF-β1/Smad3, profibrotic growth factors (CCN2, CTGF);
(2) endothelial protection: Restoring NO bioavailability
and reducing endothelin-1 levels. Finerenone also alleviates
macrophage overactivation via regulation of the complement
C5a-C5aR1 axis (G protein subunit alpha i2) and ameliorates
high glucose-induced podocyte epithelial-mesenchymal
transition through Krüppel-like factor 5 (KLF5) modulation
(103–105).
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TABLE 1 Ion channel-targeted therapies in DKD models.

Drug/target Model (cell/animal) Dose/concentration Key mechanism References

Dapagliflozin
(SGLT2i)

db/db mice, STZ-induced mice, human
podocytes

1 mg/kg, 10 µM Modulates ERRα-ACOX1 axis-mediated lipid
metabolism

(163)

STZ-induced mice 10 mg·kg Inhibits ferroptosis and ameliorates renal
fibrosis

(164)

REDD1-knockout (PodKO)
STZ-induced mice

1 mg/kg, 5, 10, or 20 µM Reduces renal REDD1 protein abundance and
immune cell infiltration

(165)

HFD/STZ-induced mice, HK-2 cells 1 mg/kg Alleviates renal inflammation/fibrosis via gut
microbiota remodeling

(166)

db/db mice; STZ -induced
Sprague-Dawley (SD) rats, BV2
microglia

1 mg/kg, 0.28 mg/3 µL Upregulates MCPIP1 to improve
hypothalamic neuroinflammation

(167)

Empagliflozin
(SGLT2i)

STZ-induced CD-1 mice and HFD-fed
C57BL/6 mice, HK-2 cells

10 mg/kg, 1 mM Downregulates renal tubular PKM2 to reduce
fibrosis

(168)

db/db mice 0.045% Blocks AGE-RAGE axis-mediated metabolic
derangements

(169)

STZ 35 mg/kg Regulates redox profile and inhibits pyroptosis (170)

db/db 15 mg/kg Improves mitochondrial quality control via
Prdx3-PINK1 pathway

(171)

SGLT2 knockout STZ/HFD-induced
diabetic

10 mg/kg Rebalancing mitochondria-associated
endoplasmic reticulum membranes

(172)

Finerenone
(MRA)

db/db mice,HFD/STZ-Induced C5aR1
KO mice,RAW 264.7, mouse
macrophage cell line

10 mg/kg, 5 mM Suppresses C5a-C5aR1 axis activation in
macrophages

(103)

HFD/STZ mice; Human kidney proximal
tubular epithelial cells (HK-2 cells)

3 mg/kg, 5 mM Enhances mitochondrial function via
PI3K/Akt/eNOS signaling

(173)

TRPC6 inhibition Trpc6-knockout mice, STZ mice N/A Trpc6 may play an important role in
contributing to the interaction of diabetes and
hypertension to promote kidney injury.

(162)

CLCA1/TMEM16A
siRNA

db/db mice, MCT cells N/A Links H2S deficiency to
CLCA1/TMEM16A-mediated Cl− current
dysregulation

(116)

Piezo1 inhibition Piezo1-knockout STZ/HFD mice N/A Promotes podocyte injury via
Piezo1/NFATc1/TRPC6 axis

(133)

4.2 Calcium channels

The pathogenesis of DKD involves a complex interplay between
calcium signaling imbalance and energy metabolism dysregulation,
synergistically driving renal injury progression. Podocytes, as
critical components of the glomerular filtration barrier, develop
ion channel abnormalities—such as disrupted mitochondrial-
endoplasmic reticulum calcium cycling and cytoskeletal
dynamics—that underlie proteinuria. Hyperglycemia-induced
intracellular calcium overload activates calcium-dependent
proteases (e.g., calpain) and TRPC6 channels, leading to mesangial
extracellular matrix deposition and podocyte cytoskeletal collapse,
which exacerbate proteinuria and glomerulosclerosis (1, 2, 8–13,
19). Concurrently, endoplasmic reticulum calcium dyshomeostasis
and mitochondrial calcium overload trigger oxidative stress and
inflammatory responses, promoting apoptosis of renal tubular
epithelial cells (1, 2, 8, 11, 12, 19).

At the metabolic level, mitochondrial dysfunction (e.g.,
excessive ROS production, impaired fatty acid oxidation) and
AMPK/mTOR pathway imbalance induce cellular energy crises.

Enhanced glycolysis exacerbates microenvironment acidosis and
metabolic memory effects, further accelerating fibrosis (1, 2, 10,
13, 19). Notably, calcium signaling and energy metabolism form
an intersecting regulatory network via mitochondria-associated ER
membranes (MAMs) and calcium-dependent metabolic enzymes
(e.g., pyruvate dehydrogenase, PDH), where oxidative stress
and NF-κB-driven inflammation create a self-perpetuating cycle
that amplifies renal damage. Therapeutic strategies targeting
voltage-gated calcium channels (VGCCs), TRP channels, AMPK
activation, mTOR inhibition, or mitochondrial antioxidants show
potential clinical value. Future research should explore multi-target
interventions to disrupt this pathological loop, advancing precision
therapy for DKD.

4.2.1 Transient receptor potential (TRP) channels
The TRP channel family (e.g., TRPC5, TRPC6, TRPV4) plays

a central role in podocyte injury in DKD (18, 29, 50, 80, 106).
Hyperglycemia activates angiotensin II (Ang II)/AT1R signaling,
upregulating TRPC6 expression and inducing pathological
calcium influx (intracellular Ca+ concentration > 500 nM), which
drives the following pathological effects: Podocyte cytoskeletal
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disintegration: Calcium-dependent protease calpain cleaves
synaptopodin and nephrin, disrupting slit diaphragm integrity;
Mitochondrial damage: Calcium overload opens mitochondrial
permeability transition pores (mPTP), reducing ATP synthesis by
50–70%. Apoptotic signaling: Calcium/calmodulin -dependent
kinase II (CaMKII) phosphorylates FOXO1, suppressing anti-
apoptotic genes (e.g., Bcl-2) (28, 106, 107). Salemkour et al.
demonstrated that dual inhibition of TRPC6 and calpain restores
glomerular autophagy flux, reducing renal injury with high clinical
translational potential (50). Additionally, the TRPC5 inhibitor
GFB-887 is under investigation for safety and efficacy in focal
segmental glomerulosclerosis, refractory minimal change disease,
and DKD (28).

4.2.2 Voltage-gated calcium channels (VGCCs)
VGCCs mediate calcium influx during membrane

depolarization and are essential for neurotransmission, muscle
contraction, membrane excitability, synaptic plasticity, and gene
expression (108). In DKD, hyperglycemia aberrantly activates
L-type VGCCs (e.g., Cav1.2) in mesangial cells, increasing
calcium current density (2–3 fold) and driving fibrosis via:
(1) inflammatory cytokine release: Calcium signaling activates
nuclear factor of activated T cells (NFAT), promoting TGF-β1,
connective tissue growth factor (CTGF), and IL-6 synthesis; (2)
extracellular matrix (ECM) deposition: Upregulating collagen IV
and fibronectin expression; (3) cellular proliferation: Activating
ERK1/2 pathways to induce pathological mesangial cell hyperplasia
(108). Peng et al. revealed that low-dose nifedipine can enhance
EPCs’ angiogenic potential and implied that chronic treatment
with low-dose nifedipine may be a safe and economic manner
to prevent ischemic diseases in diabetes (109). Preclinical and
clinical studies suggest that L-type calcium channel blockers (e.g.,
manidipine, nifedipine) mitigate renal dysfunction, highlighting
the need for kidney-specific VGCC modulators (110).

4.3 Potassium ion channels

Potassium ion channels play a pivotal role in electrolyte balance
and urine concentration in the kidneys, predominantly localized
in renal tubular epithelial cells (e.g., principal cells of the distal
convoluted tubule and collecting duct). By regulating potassium
secretion and reabsorption (e.g., ROMK channel-mediated
potassium secretion), these channels maintain serum potassium
homeostasis. Under pathological conditions, dysfunctional
potassium channels (due to genetic mutations, pharmacological
inhibition, or chronic kidney disease) may lead to hyperkalemia
(impaired excretion) or hypokalemia (excessive loss), triggering
systemic physiological abnormalities.

4.3.1 Renal outer medullary potassium channel
(ROMK)

ROMK, located on the apical membrane of the thick ascending
limb (TAL) of the loop of Henle, mediates potassium recycling
to sustain NKCC2 (Na+-K+-2Cl− cotransporter) activity,
which is critical for the urine-concentrating mechanism (1,
2, 8–10). Hyperglycemia suppresses ATP-sensitive potassium
channel (KATP) opening via the AGEs-RAGE pathway, inducing

depolarization of renal tubular epithelial cell membranes,
mitochondrial electron transport chain uncoupling, and a 3–
5-fold increase in ROS production. ROS further activates the
NLRP3 inflammasome, promoting IL-1β and IL-18 release and
establishing an “oxidative stress-inflammation” cascade. This
cascade activates NF-κB and TGF-β1 signaling pathways, driving
macrophage infiltration and collagen deposition (111). Single-cell
RNA sequencing has revealed significant downregulation of fatty
acid oxidation-related genes and upregulation of injury markers
(e.g., Havcr1, Vcam1) and pro-inflammatory factors (e.g., SPP1) in
proximal tubular cells of DKD patients, suggesting that ion channel
dysfunction exacerbates renal microenvironment deterioration
via metabolic reprogramming and dysregulated intercellular
communication (112, 113). In DKD, hyperglycemia phosphorylates
ROMK at the S44 residue (2-fold increase in phosphorylation)
via the PKC pathway, leading to channel internalization and
degradation. Consequences include: (1) impaired potassium
secretion: Elevated serum potassium (> 5.0 mmol/L) activates
ENaC, aggravating sodium retention. (2) TAL dysfunction:
Reduced NKCC2 activity diminishes urinary concentrating
capacity, worsening polyuria (96). ROMK gene (KCNJ1) mutations
cause Bartter syndrome type II (hypokalemic alkalosis), whose
pathological phenotype mirrors ROMK inhibition in DKD as a
“mirror phenomenon.” The lack of selective ROMK inhibitors has
hindered therapeutic exploration. Single-cell electrophysiology
combined with CRISPR screening has identified aberrant crosstalk
between ROMK and Kir4.1/5.1 channels in DKD renal tubular
cells, suggesting the need for multi-target potassium channel
modulators to restore electrolyte homeostasis (114).

4.4 Chloride ion channels

Chloride channels are widely distributed in glomerular and
tubular epithelial cells, regulating cell volume, transmembrane
potential, ion transport, and signaling (79, 114). Emerging
evidence highlights the critical role of chloride channels (ClCs)
in DKD pathogenesis via ion dysregulation, inflammation,
oxidative stress, and fibrotic signaling. In diabetes, hyperglycemia-
induced mitochondrial dysfunction and endoplasmic reticulum
(ER) stress impair ClC activity (e.g., downregulated CLC-5
in proximal tubules), disrupting lysosomal acidification and
protein degradation, thereby exacerbating cellular injury (115).
Dysfunctional ClCs, including calcium-activated TMEM16A
(ANO1) and volume-regulated VRAC (LRRC8), trigger NLRP3
inflammasome activation, excessive ROS production, and
TGF-β/Smad-driven epithelial-mesenchymal transition (EMT),
promoting glomerulosclerosis and interstitial fibrosis (116).
Notably, TMEM16A upregulation in diabetic models correlates
with elevated pro-inflammatory cytokines and extracellular
matrix deposition, while its inhibition ameliorates proteinuria
and renal damage (116). Impaired Cl− transport via CLC-5
disrupts autophagic flux, accelerating podocyte apoptosis. These
channels also modulate hemodynamic stress by influencing renal
vascular tone and sodium retention (117). Additionally, the
cystic fibrosis transmembrane conductance regulator (CFTR), a
cAMP-activated ATP-gated Cl− channel, has recently been linked
to DKD pathology. Studies suggest CFTR upregulation suppresses
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the Wnt/β-catenin pathway, improving tubular lesions during
DKD (115, 117). Although challenges remain in subtype selectivity
and long-term safety, targeting specific ClCs (e.g., TMEM16A
inhibitors or CLC-K antagonists) shows therapeutic promise in
preclinical studies. Spatiotemporal regulation of ClCs may unveil
novel strategies to mitigate DKD progression (118).

4.5 Aquaporins

Aquaporins (AQPs), a family of membrane proteins regulating
transmembrane water and solute transport, are integral to diverse
physiological processes (119, 120). Recent evidence underscores
their role in DKD pathogenesis, particularly in water homeostasis,
metabolic dysregulation, and cellular injury (119–121). In diabetes,
hyperglycemia-induced AQP1 downregulation in proximal tubules
disrupts water reabsorption, exacerbating tubular dysfunction and
proteinuria. Impaired AQP7 expression in adipocytes contributes
to dyslipidemia and lipotoxicity, while defective glycerol transport
via AQP7 aggravates insulin resistance and ectopic lipid deposition,
linking metabolic imbalance to DKD progression (122). Preclinical
studies demonstrate that berberine-mediated PI3K/Akt activation
restores AQP1, improving renal function in diabetic models (123).
Single-cell sequencing by Tsai et al. identified AQP4 as a key
mediator of early DKD signaling and intercellular crosstalk (124).
Despite progress, the molecular mechanisms of AQP-mediated
renal protection remain incompletely defined, necessitating further
research into tissue-specific regulatory networks and translational
strategies targeting AQPs to alleviate DKD.

4.6 Mechanosensitive ion channels

DKD is characterized by glomerulosclerosis, mesangial
expansion, and proteinuria, with podocyte injury playing a
central role. Podocytes endure significant mechanical stress (e.g.,
circumferential wall stress, filtration slit shear stress, and Bowman’s
capsule fluid shear stress) due to their anatomical structure (125).
Piezo proteins (Piezo1/2), key mammalian mechanotransducers,
convert mechanical stimuli into intracellular chemical signals,
regulating diverse physiological processes and disease progression
(126). Given their mechanosensory properties and DKD pathology,
Piezo1 likely acts as a critical mediator linking mechanical stress
(e.g., glomerular hypertension, hemodynamic shear forces) and
metabolic disturbances to downstream inflammatory, oxidative,
and fibrotic pathways. Analogous to fibrosis in liver, lung, and
intestine, glomerular hyperfiltration-induced mechanical stress
(e.g., shear forces, intraglomerular hypertension) may activate
Piezo1 in endothelial cells and podocytes, triggering sustained
Ca2+ influx. This activates the ROS-NLRP3 inflammasome axis,
promotes IL-1β release, and synergizes with TGF-β/Smad signaling
to drive EMT and extracellular matrix deposition, accelerating
renal fibrosis (126–130). Additionally, metabolic disturbances (e.g.,
lipotoxicity) may enhance Piezo sensitivity via altered membrane
fluidity, amplifying oxidative-inflammatory cascades, podocyte
detachment, and filtration barrier disruption. Notably, aberrant
Piezo1 activation in immune cells (e.g., platelets, neutrophils)
exacerbates microthrombosis and NETosis-related inflammation,

forming a “metabolic-mechanical-immune” network (131,
132). Li et al. reported Piezo1 upregulation in DKD, where the
Piezo1/NFATc1/TRPC6 axis promotes podocyte injury. Podocyte-
specific Piezo1 knockout attenuates DKD progression (133).
Current studies show that selective inhibitors (e.g., GsMTx4)
or genetic targeting of Piezo1 ameliorates proteinuria, podocyte
injury, and fibrosis in diabetic and hypertensive models. However,
tissue-specific strategies (e.g., avoiding systemic bleeding risks) and
dynamic effects across disease stages require further exploration
(133, 134). Integrating mechanobiology and metabolomics may
elucidate spatiotemporal regulation of Piezo1 in renal cells, offering
novel targets for DKD intervention.

4.7 Voltage-dependent anion channels
(VDAC)

VDACs (voltage-dependent anion-selective channels), also
termed mitochondrial porins, are the most abundant proteins
in the outer mitochondrial membrane (OMM). They mediate
ion (e.g., Ca2+) and metabolite (e.g., ATP, tRNA, DNA)
exchange between mitochondria and the cytosol, ensuring
mitochondrial complex function and energy production (135).
In DKD, upregulated expression of the ER-resident protein
reticulon-1A (RTN1A) exacerbates tubular epithelial cell (TEC)
injury via ER stress. TEC-specific RTN1A overexpression
worsens DKD phenotypes, including tubular damage, interstitial
fibrosis, and renal dysfunction. Mechanistically, RTN1A disrupts
ER-mitochondria contacts by interacting with mitochondrial
hexokinase-1 (HK-1) and VDAC1, dissociating their binding.
HK-1/VDAC1 dissociation activates apoptosis and inflammasome
pathways, driving TEC loss (136).

4.8 Toward precision ion channel
therapeutics

The aforementioned ion channels play central roles in DKD
pathogenesis by modulating glomerular function, podocyte
homeostasis, and mitochondrial metabolism. Non-selective
cation channels (e.g., TRPV4, TRPC5) drive endothelial injury
and podocyte apoptosis via calcium overload, oxidative stress,
and inflammation, while mitochondrial channel dysfunction
exacerbates metabolic imbalance (76–81). Emerging precision
strategies include: (1) Small-molecule inhibitors: Targeting channel
activity (e.g., TRPV4 antagonists) or upstream regulators (e.g.,
finerenone for mineralocorticoid receptors) to improve proteinuria
and renal function. (2) Multi-target therapies: Synergistically
regulating metabolic and ionic homeostasis (e.g., SGLT2 inhibitors
combined with TRPC6 antagonists). (3) Biomarker-guided
approaches: Leveraging urinary exosomal miRNAs (e.g., miR-
29c) or DNA methylation signatures for early diagnosis and
treatment stratification.

Advanced delivery systems: Utilizing kidney-targeted
nanoparticles or engineered exosomes to enhance therapeutic
specificity. Despite progress, key challenges remain: (1)
deciphering crosstalk between ion channel networks and
metabolic/inflammatory pathways. (2) Validating clinical efficacy
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of novel targets (e.g., Piezo1, VDAC1) in diverse patient cohorts.
(3) Optimizing personalized regimens through multi-omics
integration (genomics, proteomics, metabolomics) (137–139).

By bridging mechanistic insights with scalable clinical tools, ion
channel-targeted therapies are transitioning from disease delay to
pathomechanistic reversal, offering a transformative framework for
precision nephrology.

5 Current challenges and future
directions

Despite significant progress in ion channel-targeted therapies
for DKD, clinical translation faces multiple challenges. Current
strategies have evolved from single-receptor blockade to
multidimensional precision interventions. Future efforts should
focus on: (1) Subtype-selective drug design: Leveraging cryo-
electron microscopy (cryo-EM) and AI-based predictions to
resolve dynamic channel conformations. (2) Spatiotemporal-
specific modulation: Utilizing nanotechnology for localized,
high-concentration drug delivery to renal tissues. (3) Multi-
target synergistic interventions: Combining SGLT2 inhibitors,
MRAs, and TRP antagonists to overcome compensatory signaling
activation.These strategies aim to shift DKD treatment paradigms
from “disease delay” to “pathological reversal.” This section
systematically analyzes current limitations—spanning technical
bottlenecks, safety optimization, and therapeutic innovation—and
proposes a breakthrough tripartite strategy integrating precision
medicine, multi-omics technologies, and optimized drug safety.

5.1 Integration of precision medicine and
multi-omics

The convergence of precision medicine and multi-omics
technologies is advancing DKD intervention toward cell-specific
and dynamic regulation. Single-cell sequencing and spatial
transcriptomics reveal upregulated SGLT2 and ENaC expression
in proximal tubular epithelial cells and abnormal TRPC5/TRPC6
ratios in podocytes of DKD patients, highlighting the need for
subtype/cell-specific inhibitors (140–143). Metabolomics identifies
branched-chain amino acid (BCAA) accumulation as a driver
of mitochondrial dysfunction via KATP channel inhibition
(74). Machine learning algorithms are increasingly applied to
integrate multi-omics data, systematically capturing complex
interactions and establishing robust data linkages. AI-driven multi-
omics platforms can decode “ion channel-metabolite-epigenetic”
networks, enhancing patient stratification and therapeutic efficacy
(144). To mitigate systemic side effects (e.g., ketoacidosis with
SGLT2 inhibitors, renal limitations of non-steroidal MRAs),
novel delivery systems—such as kidney-targeted nanocarriers
(e.g., PEGylated liposomes achieving 10-fold higher renal drug
concentration) and exosomes—enable precise delivery, minimizing
off-target effects (145–147). Furthermore, multi-target therapies
(e.g., SGLT2 inhibitors combined with finerenone) demonstrate
synergistic benefits by dual inhibition of sodium reabsorption
and TGF-β1/Smad3 signaling, reducing UACR. However, cross-
scale models (e.g., PhysiCell) are required to quantify synergy and

toxicity risks (148, 149). Future studies must integrate multi-omics
data with dynamic pharmacodynamic models to transition DKD
treatment from “single-target intervention” to “spatiotemporal
precision modulation.”

5.2 Cutting-edge technological
innovations

Cutting-edge research is driving systemic innovation from
molecular mechanisms to clinical paradigms, primarily manifested
in the following aspects:

5.2.1 Structure-guided drug design
Cryo-electron microscopy (cryo-EM)-resolved TRPC5-

calmodulin complexes, combined with AI-driven molecular
dynamics simulations (e.g., AlphaFold 3), empower structural
pharmacology to develop conformation-selective inhibitors. For
instance, non-competitive antagonists targeting TRPC5 allosteric
sites are being designed to circumvent cardiovascular side effects
associated with traditional pore-blocking agents (150, 151).

5.2.2 Dynamic channel network analysis
Integration of single-cell multi-omics with optogenetic

techniques (e.g., ChR2 optogenetic systems) enables real-time
dissection of ion channel dynamics. Light-activated modulation
allows precise activation or inhibition of specific channels,
achieving spatiotemporal control over channel behavior and
revealing their regulatory patterns (152).

5.2.3 Advanced drug screening platforms
Kidney organoid co-culture systems coupled with

microelectrode arrays replicate DKD pathological
microenvironments and monitor ionic current fluctuations in
real time, significantly enhancing drug screening efficiency.
Concurrently, machine learning models (e.g., AlphaFold 3)
accelerate virtual drug discovery by predicting dynamic ion
channel conformations (151, 153).

5.3 Toward precision spatiotemporal
modulation

The interdisciplinary integration of these technologies propels
DKD therapeutics from “static target inhibition” to “precision
spatiotemporal modulation.” Ion channel network regulation offers
a novel strategy to disrupt the “metabolic-inflammatory-fibrotic”
cycle in DKD. While targeted therapies (e.g., SGLT2 inhibitors,
TRP antagonists) show clinical promise, challenges persist in
subtype selectivity, delivery efficiency, and patient heterogeneity.
Future integration of cryo-EM structural insights, single-cell
multi-omics, and AI predictive analytics will unravel channel
regulatory networks, enabling patient-tailored regimens. Through
global collaborations (e.g., the DKD Channelome Initiative),
standardized omics pipelines, validated biomarkers, and ethical
AI guidelines can democratize access to precision nephrology,
ultimately transitioning DKD care from delayed intervention to
pathological reversal.
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6 Discussion and perspectives

6.1 Core pathogenic role of ion channel
dysregulation

The pathological progression of DKD is fundamentally
driven by a vicious cycle of ion channel network dysfunction
and “metabolic-inflammatory-fibrotic” cascades. This review
systematically demonstrates that ion channel dysregulation—
via calcium overload, oxidative stress, and inflammatory
microenvironments—serves as a core driver of podocyte injury,
glomerulosclerosis, and interstitial fibrosis (1, 2, 9–14). Clinically
validated therapies targeting SGLT2, ENaC, and TRP channels
(e.g., dapagliflozin, finerenone, GSK2193874) have marked a
paradigm shift in DKD management from “symptom control” to
“mechanism-based intervention” (82–92, 99–102).

6.2 Critical bottlenecks for pathological
reversal

However, achieving pathological reversal requires overcoming
the following bottlenecks and advancing interdisciplinary
innovation.

6.2.1 Molecular mechanism elucidation
Transitioning from static targets to dynamic networks, the

spatiotemporal specificity and regulatory dynamics of ion channels
are central to DKD complexity. Cryo-EM and single-cell multi-
omics technologies can unravel “channel-metabolism” crosstalk as
novel therapeutic targets.

6.2.2 Therapeutic strategy innovation
Establishment of a three-tiered precision intervention

framework. (1) Early-stage intervention (high-risk screening):
AI models integrating ion channel gene polymorphisms and
metabolic biomarkers to predict critical targets and identify high-
risk individuals. (2) Mid-stage reversal (targeting core pathology):
Precision strategies for renal-targeted drug accumulation. (3)
Late-stage synergy (multi-pathway blockade): Combinatorial
therapies to enhance treatment efficacy.

6.2.3 Technological challenges and
interdisciplinary breakthroughs

(1) Drug delivery limitations: Current nanocarriers (e.g.,
liposomes, gold nanoparticles) exhibit ∼40% renal targeting
efficiency, with unresolved long-term biocompatibility issues
(e.g., hepatosplenic accumulation toxicity) (145–147). In contrast,
exosomes—with superior biocompatibility, target specificity, and
extended half-life—are emerging as promising delivery vehicles.
Engineered exosomes modified with renal tubular-specific markers
significantly enhance targeting efficiency (146, 147). (2) Dynamic
monitoring: Traditional electrophysiology fails to track ion channel
activity in live tissues. Novel techniques, such as optogenetics
(e.g., ChR2-mediated KATP channel activation) combined with
two-photon microscopy, enable real-time monitoring of podocyte
calcium signaling and filtration barrier permeability (152).

6.3 Future directions: bridging discovery
to clinical impact

Precision drug design, powered by cryo-EM structural insights
and AI-driven molecular dynamics (AlphaFold 3), will yield
conformation-selective inhibitors (150–153). Global consortia
like the DKD Channelome Initiative aim to standardize omics
pipelines, validate target engagement biomarkers, and establish
ethical AI guidelines for vulnerable populations.

Future research should prioritize precision medicine
approaches to bridge ion channel discoveries and clinical
applications. First, artificial intelligence-driven multi-omics
integration—incorporating urinary exosomal RNA profiles,
single-cell epigenetic data, and wearable device metrics—
will enable prediction of individual channelopathies (e.g.,
concurrent TRPC6/Piezo1 dysregulation) and optimization
of SGLT2 inhibitor therapeutic responses. Simultaneously,
biodegradable nanocarriers (e.g., megalin-targeted PLGA
nanoparticles) and customized exosomes (e.g., CD133-
engineered vesicles for glomerular targeting) could improve
renal drug delivery efficiency while reducing off-target
effects. Second, international collaborations such as the
DKD Channelome Initiative should establish standardized
biomarker protocols (e.g., TRPV4 autoantibody detection)
for diverse populations, resolving genetic variability while
ensuring target validation through blockchain-protected
data exchange. Advanced structural biology tools (cryo-EM
and AlphaFold 3) will elucidate glucose-altered ion channel
architectures to develop highly selective (> 100-fold) allosteric
drugs, complemented by patient-derived organoid-microfluidic
systems for customized drug testing. Ultimately, innovative trial
designs integrating computational patient avatars and adaptive
Bayesian methods could halve DKD progression rates by 2,030
via coordinated modulation of metabolic, inflammatory, and
fibrotic pathways.

6.4 Multitarget regulation by traditional
chinese medicine (TCM) in DKD
management

Traditional Chinese Medicine (TCM) and integrated TCM-
Western medicine strategies exhibit substantial therapeutic
potential in the diagnosis and management of DKD. As a
central manifestation of diabetic microvascular complications,
DKD necessitates combined interventions targeting metabolic
regulation and renal protection. TCM modulates multiple
pathological pathways in DKD: Alpiniae Oxyphyllae Fructus
ameliorates inflammation and oxidative stress by activating
podocyte autophagy, regulating non-coding RNAs, and
restoring gut microbiota balance (154, 155). Poria cocos
and its active components attenuate renal fibrosis through
TGF-β1/Smad and NF-κB signaling pathway inhibition (156).
Jingui Shenqi Pills, when combined with Western medications,
reduce urinary albumin-to-creatinine ratio (ACR), modulate
gut microbiota composition (e.g., increasing Prevotella
abundance), and suppress inflammatory cytokines such as
IL-2 (157). TCM also corrects epigenetic dysregulation (e.g.,
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FIGURE 2

Schematic diagram of a series of ion channels related to DKD. DKD, diabetic kidney disease.

suppressing DNMT1-mediated DNA methylation), potentially
reversing “metabolic memory” to delay DKD progression
(158, 159).

In contrast, SGLT2 inhibitors (e.g., dapagliflozin) primarily
inhibit proximal tubular sodium-glucose reabsorption,
ameliorate glomerular hyperfiltration, and exert metabolic
(e.g., glycemic and blood pressure control) and anti-
inflammatory or anti-fibrotic effects. Clinical trials confirm
their efficacy in slowing end-stage renal disease progression,
independent of glucose-lowering mechanisms. While both
TCM and SGLT2 inhibitors demonstrate renoprotective
properties, TCM’s multi-dimensional regulation (e.g.,
epigenetics, microbiome) may address broader pathological
networks, whereas SGLT2 inhibitors predominantly improve
hemodynamic abnormalities.

Integrated therapies further enhance DKD management:
Early-stage DKD patients benefit from combined angiotensin
system inhibitors (ACEI/ARB), SGLT2 inhibitors (e.g.,
dapagliflozin), and TCM formulas (e.g., Tang Shen Fang),
which synergistically reduce proteinuria, improve metabolic
profiles, and restore gut microbiota homeostasis (160).
High-risk patients with nephrotic-range proteinuria achieve
superior renal outcomes (12-month proteinuria reduction:
7,289.25 mg vs. 4,512.79 mg) and fewer glycemic fluctuations
with low-dose multi-target immunosuppressive regimens

(glucocorticoids + tacrolimus + mycophenolate mofetil) compared
to cyclophosphamide-based protocols (161).

Mechanistic studies reveal that Astragaloside IV alleviates
podocyte oxidative injury via JNK/ERK1/2 pathway suppression,
triptolide inhibits complement C5b-9 deposition through
p38MAPK modulation, and Panax notoginseng oral liquid
activates Nrf2/HO-1 to enhance antioxidant defenses, collectively
preserving renal function (159). These advancements underscore
the promise of targeting “metabolic memory” and multi-
pathway interventions for DKD, warranting further validation
of TCM’s mechanistic precision and long-term safety in
multicenter trials.

7 Conclusion

In conclusion, ion channel network modulation offers a novel
therapeutic paradigm for disrupting the “metabolic-inflammatory-
fibrotic” vicious cycle in DKD. While targeted therapies (e.g.,
SGLT2 inhibitors and TRP channel antagonists) demonstrate
clinical efficacy, persistent challenges remain regarding subtype
selectivity, drug delivery efficiency, and patient heterogeneity.
The convergence of cryo-electron microscopy (cryo-EM), single-
cell multi-omics profiling, and AI-based predictive modeling
will elucidate comprehensive channel regulatory networks, while
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parallel exploration of traditional medicine compounds may
enable truly personalized therapeutics (Figure 2). Through
multidisciplinary collaboration and innovative pharmacologic
development, we can potentially transform DKD management—
from merely delaying disease progression to achieving pathological
reversal of ion imbalance-induced renal injury.
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