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Background: Osteoporosis is a metabolic bone disease characterized by a
decrease in the amount of bone per unit volume. It is highly prevalent and
has a harsh impact on patients’ lives. The development of accurate predictive
models for osteoporosis is beneficial in helping physicians improve the accuracy
of clinical diagnosis and provide a high-quality treatment experience for
older adults.

Method: In this study, a robust and accurate prediction model for osteoporosis
was developed and validated based on machine learning and SHAP techniques.
We validated the model using ROC, calibration, and DCA curves. The data in
this paper were obtained from elderly participants in several communities in
Beijing from June 2021 to May 2022, including 161 (27.6%) males and 423 (72.4%)
females, 248 (42.47%) with osteoporosis and 336 (57.53%) without osteoporosis.
Results: Upon comparing and assessing the predictive outcomes of 135
models utilizing a combination of 10 machine learning algorithms, we found
that the KNN4RF combination algorithm performs the best in terms of
prediction performance. The Sensitivity, Specificity, PPV, NPV, Precision, Recall,
F1, Detection Prevalence, AUC, and Brier metrics of this combined algorithm are
0.7500, 0.6634,0.6136,0.7614, 0.6136,0.7200, 0.6626, 0.5000, 0.904, and 0.1601.
Calibration and decision curve analyses further demonstrated the model’s
potential clinical utility. Ultimately, we created the Shiny web application for
osteoporosis diagnosis.

Conclusions: The osteoporosis prediction model is readily generalizable and
can aid physicians in efficiently screening for osteoporosis in the broader older
demographic. This will facilitate rapid detection and diagnosis of the disease, as
well as the formulation of improved therapeutic treatment strategies for patients.

KEYWORDS
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1 Introduction

Osteoporosis is a systemic skeletal disease, and as one of the most prevalent
metabolic disorders, its pathogenesis is characterized by a decrease in the amount of
bone per unit volume, which leads to fractures. Osteoporosis has, therefore, received
progressively increased attention in orthopedics and endocrinology (1, 2). In recent
years, the prevalence of osteoporosis has risen due to population aging and the
extension of average human lifetime (3). Each year, ~75 million people worldwide have
osteoporosis (4). Projections show that by 2050, Asia is expected to have the highest
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prevalence of osteoporosis, accounting for 50% of global
osteoporotic fractures (5). It is worth pointing out that the
management of osteoporosis places a heavy burden on the
economy. In the United States, the estimated cost of this burden
ranges between $13.7 and $20.3 billion; in the European Union,
the cost is as high as €31 billion; and in the Asia-Pacific region,
the figure reaches $13 billion (6-8). The condition results in
diminished mobility and wellbeing, along with the potential for
fragility, fractures, and mortality. This disorder adversely affects
the lives of elderly individuals with osteoporosis and imposes a
considerable medical and economic cost on society. Osteoporosis
is frequently undetected in both the early and late phases of the
illness, resulting in many patients receiving a diagnosis only after
experiencing a fragility fracture (9, 10).

Confirmation of the diagnosis of osteoporosis and assessment
of bone mineral density (BMD) involves a variety of technological
dual-energy CT (DECT),
dual-energy X-ray absorptiometry (DXA), and multichannel

tools, such as ultrasonography,
convolutional neural network (MCNN)-based processing of
raw radiofrequency signals from quantitative ultrasound (QUS)
(11-14). Among these methods, DXA has been used as the
technique of choice for assessing BMD and calculating T-scores
for the diagnosis of osteoporosis due to its high accuracy and wide
acceptance (15, 16). According to the guidelines issued by the
World Health Organization (WHO) in 1994, osteoporosis can be
diagnosed in postmenopausal women and men over 50 years of
age if their T-score is not higher than —2.5 standard deviations (T
<-2.5SD) (17). However, the critical technology for DXA testing is
X-rays, which leads to limitations that potentially affect multiple
systems of the body and a wide range of diseases, problems that
cannot be circumvented in current treatments (18-20). Given
this, early osteoporosis screening, prediction, and diagnosis are
particularly critical. There is an extremely urgent need to develop
scientific, rational, and easy-to-use tools for early clinical screening,
prediction, and diagnosis.

Shim et al. (21) used machine learning models using gradient
boosting machine (GBM), support vector machine (SVM), artificial
neural network (ANN), and logistic regression (LR) methods for
osteoporosis risk prediction model development, and the optimal
model, ANN, was derived with a model sensitivity of 0.741 under
five-fold cross-validation. Lee et al. (22) used GridSearchCV or
RandomizedSearchCV to measure each model’s AUC, accuracy,
and F1 scores using five-fold cross-validation after selecting the
optimal hyper-parameter combinations for models such as LR. A
prediction model for osteoporosis based on the LR algorithm was
finally constructed with a model accuracy of 0.75. While these
models exhibit reasonable performance, their predictive ability
may be limited by the model selection and feature inclusion
strategies employed. To compensate for these shortcomings, our
study introduces a novel ensemble model using a combinatorial
algorithm. The diagnostic logic of the model is also made more
relevant to social life by innovatively incorporating social factors
(e.g., education level).

The clinical data used in this study were derived from the paper
“Construction and Validation of a Nomogram Clinical Prediction
Model for Predicting Osteoporosis in an Asymptomatic Elderly
Population in Beijing.” In the study, the researchers constructed a
clinical nomogram prediction model for osteoporosis using SPSS
26.0 and R 4.0.2 software, which was designed to assist clinicians
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in quickly recognizing whether a patient has osteoporosis. The
study results showed that the three parameters of gender, education
level, and body weight have significant predictive value for the
diagnosis of osteoporosis, which can assist physicians in making
a rapid and effective diagnosis. This study used machine learning
techniques to retest the original study by applying 10 machine
learning methods and combining them to form 135 machine
learning models to establish the optimal clinical prediction model.
In addition, by applying the SHAP technique, we further elucidated
the importance of each parameter in the model. This approach
differs from the underlying nomogram model used in earlier studies
in that we utilize a combination of machine learning algorithms
to achieve a higher level of prediction, along with the deployment
of the Shiny program to enable online disease prediction. These
methodological innovations were not present in earlier studies and
represent a significant improvement in prediction performance and
clinical applicability.

Ultimately, this study developed a set of diagnostic tools for
osteoporosis based on the Shiny platform. It aims to improve
clinicians’ diagnostic accuracy and alleviate the potential side
effects and financial burden associated with dual-energy X-ray
absorptiometry (DXA) testing.

Unlike
medicine, machine learning techniques forecast new observations

conventional statistical analysis approaches in
by obtaining knowledge from existing information. Nevertheless,
exhibit

considerable requirements for transparency and interpretability.

numerous sophisticated machine learning models
To clarify the predictive and evaluative mechanisms behind
machine learning models, explainable artificial intelligence
(XAI) techniques have been utilized in clinical research. Among
these, the SHAP (Shapley Additive exPlanations) method
quantifies the extent and direction of variable contributions to the
predicted outcomes of machine learning models, offering a visual
representation of these contributions (23).

This study utilized patients’ clinical markers to predict
osteoporosis through a machine learning (ML) model, with the
model’s prognostic results clarified by SHAP technology. This

study’s principal findings and contributions are summarized below:

(1) A machine learning model for accurately predicting patients
with osteoporosis was successfully constructed.

(2) The combined K nearest neighbor (KNN) and random
forest (RF) model demonstrated excellent performance in
distinguishing patients from non-patients.

(3) This study employed the SHAP method to enhance
the model’s interpretability by elucidating the relative
significance of various factors inside the model.

(4) We developed a diagnostic application for osteoporosis
based on the Shiny platform, aiming to assist clinicians in
achieving a rapid and accurate diagnosis of the disease.

2 Materials and methods

2.1 Study population
The clinical characteristics data of osteoporosis patients utilized
in this study were sourced from the research titled “Construction

and Validation of a Nomogram Clinical Prediction Model for
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Predicting Osteoporosis in an Asymptomatic Elderly Population
in Beijing” (24). The data were collected in a cross-sectional
study. Inclusion criteria were: (1) elderly men (age >50 years)
and women (menopausal; age >50 years); (2) ability to accept and
undergo BMD screening; (3) completion of a questionnaire and
provision of basic physical information; (4) history of residency
in Beijing of more than 5 years; and (5) voluntary participation
in the study and signing of an informed consent form. Exclusion
criteria: (1) previous lumbar spine or hip surgery; (2) low back
pain with VAS score >3 (i.e., obvious discomfort); (3) limitation of
limb movement or communication disorders or mental illness; (4)
history of a malignant tumor. This study was based on published
retrospective datasets and employed a multi-cohort observational
study design, a secondary analysis of human data. The data
used was anonymized and did not contain any sensitive personal
information. All subjects were adults, and informed consent was
obtained from themselves or their legal guardians at the time of
data collection.

All methods were carried out in accordance with relevant
guidelines and regulations, and the study protocol was approved
by the Biomedical Ethics Committee of West China Hospital,
Sichuan University.

2.2 Data set indicators and measurement
criteria

This study used a combination of questionnaire research
and standardized assessment to collect several clinical indicators
related to osteoporosis from the participants. These indicators
included age, gender, physical activity participation, educational
background, body height, weight, waist size, smoking history,
and alcohol consumption history. Educational background was
categorized as “middle school,” “high school,” and “undergraduate”
in this study. Alcohol consumption history was defined as intake
of more than 50ml at least once a week for more than 1 year
and either current consumption of alcohol or no abstinence
from alcohol within the past 3 years. All clinical measurements
were performed by experienced professionals following established
standardized procedures. Participants stood barefoot, and their
height was measured with a straightedge (0.1 cm precision) from
the sole of the foot to the apex of the head. Body weight
was assessed utilizing an electronic scale (precision 0.1kg) in a
minimally dressed indoor environment. Waist circumference was
measured at the level of the umbilicus using a tape measure with
an accuracy of 0.1 cm according to the World Health Organization
(WHO) anthropometric guidelines. All physical measurements
were conducted twice, and the average values were documented to
reduce measurement mistakes.

2.3 Algorithm combination approach,
model development and performance
evaluation

In this study, the dataset was randomly divided into a training
set and a test set, which accounted for 70 and 30%, respectively. 10
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machine learning algorithms were used, including Elastic Network
Regression (Elastic Net), Logistic Regression (LR), Classification
and Regression Trees (CART), Random Forest (RF), Support
Vector Machine (SVM), Bayes, k-Nearest Neighbors (KNN),
Neural Networks (NN), Fisher Discriminant Analysis (FDA) and
Gradient Boosting Machine (GBM), a total of 10 algorithms, were
used to analyze the data of osteoporosis patients predictively.

We innovatively tested the alpha parameters of the elastic
network regression algorithms individually (with alpha ranging
from 0.1 to 0.9). The combination approach used in this study
is a sequential combination method, where each base learner is
trained and optimized separately. Then, the predictions of some
models are used as new features, which are input into another
model for secondary modeling, leading to model combination
and construction. We combined these algorithms two-by-two to
form 135 different combinations of machine learning models for
training. In this study, a systematic hyperparameter optimization
of multiple machine learning models was performed using R’s caret
framework. Prior to each round of model combination, the key
hyperparameters of each base model were first tuned using the grid
search (GRID SEARCH) method to enhance their performance.
All models were trained using 10-fold cross-validation to ensure
robustness and accuracy. For ensemble models constructed using
caretEnsemble, class probability estimation was performed using
bootstrap resampling (n = 25), and performance was assessed
using the twoClassSummary metric (e.g., for the random forest
component, the mtry parameter was optimized over a range of 2-4,
with an optimal value of mtry = 3. For the KNN component, the
optimal number of neighbors was k = 5.) Subsequently, we utilized
Accuracy with a 95% Confidence Interval, Sensitivity, Specificity,
Positive Predictive Value (PPV), Negative Predictive Value (NPV),
Precision, Recall, F1 Score, Detection Prevalence, and Brier Score
to comprehensively evaluate and screen the performance of the
models on the test set.

In addition, we plotted the Calibration Curves and Decision
Curve Analysis (DCA) curves of the top 10 models regarding
Accuracy. Further, we screened the models with the best
performance by comparing metrics such as Area Under the Curve
(AUCQC). Specifically, the first batch of models with the top 10
screening accuracies is prioritized in the subsequent selection of
AUC and Brier scores to balance the consistency of discrimination
and calibration capabilities, especially in cases of unbalanced
categories. The final selection of the best models combines criteria
such as the highest AUC and Brier metrics, the highest number of
metrics in each category, and DCA curves. This process aims to
validate the Accuracy of the models and their potential application
in clinical prediction.

2.4 Statistical methods

Data analysis for this study relied on R Studio (version
4.3.0) and Python (version 3.11.0). At the initial stage, this study
used a univariate analysis strategy to identify seven variables
of clinical relevance, which included osteoporosis status (OP),
gender, education level, height, weight, waistline, and smoking and
drinking habits. In this study, we have not used multicollinearity
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indicators (e.g., variance inflation factor VIF, correlation matrix)
for validation. However, we have ensured model robustness
through elastic network regularization, SHAP feature contribution
analysis, and 10-fold cross-validation.

On this basis, these filtered variables were incorporated into
the input parameters of 135 machine-learning models. Specifically,
the Enet model uses the “glmnet” function, the LR model uses
the “glm” function, the CART model uses the “rpart” function,
the RF model uses the “rf” function, the SVM model uses the
“svmLinear3” function, and the Bayes model uses the “bayesglm”
function, the KNN model uses the “knn” function, the NN model
uses the “nnet” function, the FDA model uses the “fda” function,
and the GBM model uses the “gbm” function.

To evaluate the model’s performance, we utilized the
“plotROC,” “caret,” “autoReg,” “pROC; and “e1071” packages
of the R software to generate baseline tables and ROC curves.
Meanwhile, using Python software, we plotted the SHAP
values to visualize and analyze the degree of influence of the
model parameters.

This study used a two-sided P-value of <0.05 to judge the
results’ statistical significance.

2.5 SHAP

This study seeks to clarify the distinct impacts of every
variable that is independent in the machine learning model on
the prediction outcomes, utilizing the SHAP (Shapley Additive
Explanations) method. The SHAP technique is grounded in
Shapley value theory, aimed at elucidating both individual and
aggregate forecasts of the model. Shapley values are determined
by evaluating the predicted contribution of all potential variable
combinations to the observations, so assuring an equitable
evaluation of each variable in the prediction. The SHAP
methodology specifically seeks to elucidate the rationale for each
observation’s prediction by quantifying the marginal contribution
of every variable that is independent to the projected result.
This work delineates the approaches and methodological processes
utilized, as depicted in Figure 1, which depicts the comprehensive
analytical process from data preprocessing to model interpretation.

3 Results

3.1 Comparative analysis of patients’
baseline characteristics table

This study includes 584 patients: 423 females and 161 males.
The average age of the patients was 66.90 years, with a standard
deviation of 6.45 years; the key characteristics of the patients
are outlined in Table 1. No statistically significant age difference
was seen between the osteoporosis (OP) group and the non-
osteoporosis (N-OP) group (66.58 £ 6.74 vs. 67.34 £ 6.02 years, P
= 0.157). However, the N-OP group had significantly higher height
(163.54 & 7.77 vs. 159.73 £ 6.89, P < 0.001), weight (68.19 & 10.19
vs. 59.95 4 7.78, P < 0.001) and waist circumference (86.36 4 9.40
vs. 81.76 & 7.76, P < 0.001) than the OP group.
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In the univariate analysis, the differences of seven factors,
including Gender, Smoking, Drinking, Education Level, Height,
Weight, and Waistline, were statistically significant, P < 0.05.
Gender, a critical clinical factor, was identified in both the
training and validation sets, revealing a considerably higher
prevalence of osteoporosis among female patients compared to
males (P < 0.001). Their status as manual laborers was not
statistically significant (P > 0.05). Individuals with high school
and undergraduate education were having a reduced incidence of
osteoporosis relative to individuals with a middle school education
(P < 0.001). Regarding smoking and drinking history, it was
found that the proportion of smoking and drinking was relatively
high in the non-OP group, a phenomenon that the gender factor
may influence. After careful consideration, this study finalized
the variables of OP, Gender, Smoking, Drinking, Education Level,
Height, Weight, and Waistline as parameters for training and
constructing 135 machine-learning models.

3.2 Comparative performance evaluation of
machine learning models for osteoporosis
detection

This study involved the development and evaluation of 135
machine learning models on the training set, with the performance
characteristics of all of them presented in Supplementary Table S1.
Employing Accuracy (95% CI) as the selection criterion, we
identified the 10 models with the best Accuracy and displayed their
comprehensive performance statistics in Table 2. The curved AUC
of these 10 models varies from 0.771 to 0.904, with the KNN+RF
combo model exhibiting the highest AUC value. Figure 2 displays
the associated receiver operating characteristic (ROC) curves.
The NNN+SVM combo model exhibits the highest accuracy
(Accuracy: 0.7102, CIL: 0.6372-0.7760), whilst the accuracy of the
other nine models varies between 0.6875 and 0.6989. Figure 3
illustrates the accuracy of the comparison among the 135 machine-
learning models.

We conducted a multidimensional comparison of the
predictive efficacy of these 10 machine-learning combination
algorithms. The results show that among all the combination
algorithms, the KNN+RF combination model performs the best in
Sensitivity and Detection Prevalence. In contrast, the NN+SVM
combination model dominates Accuracy, PPV, and Precision.

In addition, nine other machine learning algorithms showed
good predictive ability. To further assess the Accuracy of the
models, we calculated the Brier score (brier score). In the reliability
assessment of the brier score, the KNN+RF combination model
outperforms the GBM+RE, GBM+SVM, SVM+FDA, NN+FDA,
NN+SVM, NN+RE KNN+SVM, Bayes+SVM, and SVM+CART
combination models.

Considering each model’s prediction performance, we found
that the combined KNN+RF model has the optimal classification
effect and robustness in recognizing OP while maintaining a
high level of Accuracy. Moreover, to highlight that the superior
performance of the combined KNN+RF model stems from the
advantage of model integration rather than a single algorithm, this
study compares it with the KNN and RF models. As shown in

frontiersin.org


https://doi.org/10.3389/fmed.2025.1607734
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Wang et al. 10.3389/fmed.2025.1607734
@ Older men (age >50) and older women (by menopause; age >50)
(o)) C @Ability to receive and undergo bone density screening
E T 'I‘ Inclusion criteria:  @Complete the questionnaire and provide basic physical information
0] @ Residence history in Beijing >5 years
E 3 > (® Voluntarily participate in the study and sign the informed consent form.
-ﬂ w 'n‘ (@®Have had lumbar spine or hip surgery.
© < . ... (@ Have a condition such as low back pain, VAS score >3(i.e., significant
3 w T Exclusion criteria: physical discomfort)
(®Have limited physical activity or communication problems, or mental illness.
@Have a history of malignant tumour.
()]
£
]
g ® §  Univariate Cox Analysis Stable prognosis-related
) 'ﬂ‘ P < 0.05 in all cohorts clinical indicators (SPRCI)
Q.
©
(m]
Combination of 135 machine learning algorithms
Enet (a=0.1~0.9)
o |
£ !
£ !
g
2 :
Q
=
:E Filtering the top 10 models
& in terms of accuracy values
=
Optimal Model ‘ KNN
) +
() RF
Comparison of model evaluation metrics such as PPV, NPV, AUC and Brier
Medical Insurance Predictor
i 5 T -
Q. i
2— % e e !
> T < |
= n - ) i
: T - sma
%) 0 Y
FIGURE 1
Flowchart of article techniques and methods.

Supplementary Figure S2, KNN+RF outperforms both models in
all evaluation metrics (including AUC, sensitivity, NPV, and F1
score, etc.), which fully reflects the advantages of the combined

Frontiersin Medicine

05

model in terms of discriminative power and overall classification
performance. Based on this, we decided to use the combined KNN
and RF model for the subsequent analysis work.
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TABLE 1 Baseline table of clinical indicators for patients with osteoporosis.

10.3389/fmed.2025.1607734

Characteristics Variables No osteoporosis Osteoporosis All
(N = 336) (N = 248) (N =584)
Gender <0.001
Female 209 (62.2%) 214 (86.3%) 423 (72.4%)
Male 127 (37.8%) 34 (13.7%) 161 (27.6%)
Manual_laborers 0.352
No 225 (67%) 156 (62.9%) 381 (65.2%)
Yes 111 (33%) 92 (37.1%) 203 (34.8%)
Smoking 0.008
No 285 (84.8%) 229 (92.3%) 514 (88%)
Yes 51 (15.2%) 19 (7.7%) 70 (12%)
Drinking 0.002
No 285 (84.8%) 232 (93.5%) 517 (88.5%)
Yes 51 (15.2%) 16 (6.5%) 67 (11.5%)
Education_level <0.001
Junior high school 67 (19.9%) 112 (45.2%) 179 (30.7%)
High school 161 (47.9%) 95 (38.3%) 256 (43.8%)
Undergraduate 108 (32.1%) 41 (16.5%) 149 (25.5%)
Age (years) Mean + SD 66.58 £ 6.74 67.34 £ 6.02 66.90 £ 6.45 0.157
Height Mean + SD 163.54 +7.77 159.73 £+ 6.89 161.92 £+ 7.64 <0.001
Weight Mean + SD 68.19 & 10.19 59.95+£7.78 64.69 £ 10.09 <0.001
Waistline Mean + SD 86.36 £ 9.40 81.76 £7.76 84.41 £9.03 <0.001

3.3 ML model calibration curve and DCA
curve

This study further validated the clinical applicability of
the proposed model via calibration curve and decision curve
analysis (DCA). The analysis of the calibration curve seeks to
evaluate the precision of the model’s predictive outcomes; a curve
that closely aligns with the central diagonal indicates superior
model performance. Figure4A illustrates that the KNN+RF
combination model surpassed the other nine machine-learning
combination models on the calibration curve, indicating superior
prediction accuracy.

Traditional evaluation of machine learning models usually
focuses on diagnostic accuracy, ignoring the actual utility of the
model in clinical applications. The decision curve analysis (DCA)
technique bridges this gap by incorporating the preference factors
of patients or clinical decision-makers to provide a comprehensive
evaluation of the clinical benefits of the models and a visual
presentation of the value of the models for application in the
clinical setting. As shown in Figure 4B, of the 10 machine learning
combination models examined, all demonstrated some clinical
value, with the KNN+REF, SVM+CART, and NN-+RF combination
models performing most prominently in terms of clinical benefit.

Frontiersin Medicine

3.4 Model interpretation and individual
assessment

This research employed the SHAP methodology to illustrate
the influence of designated clinical attributes on OP within
the KNN+RF model. As shown in Figures 5A-D, this study
performed an interpretability analysis of global patient diagnostic
indicators. Figure 5A illustrates the seven primary predictors
of osteoporosis. Including Weight, Waistline, Height, Education
Level, Gender, Smoking, and Drinking; the mean significance
of these variables is shown in Figure 5C. Figure 5B shows the
overall substructure of the dataset of patients with osteoporosis
by supervised clustering, as well as the hierarchical cluster-
based and explanatory similarity to rank the predictors for older
participants, and the bars on the right side of the figure show
the global significance of each input factor. The decision logic,
base values, and predictor parameters of the model are shown in
Figure 5D.

Figure 5E presents a SHAP plot for an elderly participant (non-
osteoporotic patient) to demonstrate the model’s interpretability.
The elder participant had raised waistline, height, weight, and
education levels, and the model forecasted a diminished risk of
osteoporosis for this individual.
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4 Discussion
I
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S traditional DXA testing methods are not only invasive but also
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"_?_ ;‘5 @ 2§ 2 28 83 1817 2 g countries and regions. Therefore, how to effectively predict whether
'&');‘ 23 g 3 2 2 2 2|8 3 s |z an elderly patient has osteoporosis quickly and accurately at an
S early stage in order to guide clinical personalized treatment has
been a significant focus and difficulty in medical research.
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= €3 22 5 8 5 8 % 9 o using machine learning techniques. The therapeutic efficacy of the
; o5 Sl g 88 5 8 2|z created model was rigorously evaluated using contrast analysis
= E and internal confirmation, aiming to enhance early detection and
personalized treatment for elderly osteoporosis patients, hence
- assisting physicians in making more informed decisions. And
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Z ki network regularization effectively reduces the effect of covariance
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E g slolelalslalalola N predictors, thus reducing the risk of multicollinearity. In addition,
2 §§ g8 28 @ N °§° S 10-fold cross-validation is used to ensure model robustness and
% E S B B B Bl Edl Edl Bl g O prevent overfitting.
© This research employed 10 machine learning techniques to
develop 135 predictive models. The integrated machine learning
= ENNNNENR ) methods of GBM+RE GBM+SVM, SVM+FDA, NN+EDA,
= I A I I SR NN+SVM, NN+RFE, KNN+SVM, KNN+RE Bayes+SVM,
% ge| ||| °°|° e and SVM+CART shown strong performance in diagnosing
S osteoporosis patients. Through a thorough evaluation of the
predictive efficacy of various models, we determined that the
u <D( ﬁ KNN+RF model exhibits superior classification performance
é L—L}— g% % é é E § :‘% g é = é and robustness in detecting osteoporosis (OP), achieving the
2 E % S| 3 3 S| 3 3 S| 3|3 s 3 highest AUC.V§lue of 90.4%. Other recent studies have proposed
cE K S relevant prediction models; for example, Jang et al. (25) developed
3 a DNN-based deep learning model using imaging and clinical
% = B data with an AUC of 0.867. Similarly, Carvalho et al. employed
é E E Sl 2 2 85 gl 2 =8 o 2 a comprehensive machine learning model incorporating a large
cH = B} § S E E E E § E E 2 E number of biochemical metrics, achieving an AUC of 0.94 (26).
g 8 E In contrast, our model utilizes only non-invasive features and
:é achieves an AUC of 0.904, highlighting the practical efficiency
g N = and robustness of our model, which does not rely on imaging or
2 ‘_‘f_ S o = ey 2 9l gy - biochemical data. This indicates enhanced predictive capability
g by § e e e g 8 & & 9k 2 Z| £ regarding the presence or absence of osteoporosis, leading us to
5 3 € - '% select the KNN+RF model for further analysis. The calibration
& g plots indicated that the predicted curves of the combined
E‘; = T; KNN+RF model corresponded with the observed curves. DCA
§ g g plots indicated that employing KNN+RE, SVM+CART, and the
;d 5‘2 =l & 3 L é integrated NN+RF model for the diagnosis and prediction of OP,
o § é “E; _ % = % g ol E along with suitable therapeutic actions, is advantageous for patients
E:'I g 5 & E B2 8z 2L 2 g E %n clinical practice. The impact of the iéentiﬁed .characteristics
F e in the KNN+RF model on OP was elucidated using the SHAP
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technique, revealing that the four metrics of Weight, Waistline,
Height, and Education level exerted the most substantial influence
on the diagnosis of OP. This finding is consistent with previous
studies (27, 28).

Relevant literature has found that for osteoporotic fractures,
low body weight is one of its causative risk factors, especially
for older menopausal women, and wasting is one of the main
factors leading to osteoporosis (29-31). This explains the higher
percentage of female patients (72.4% female) in the statistical
analysis of this study. Furthermore, studies have shown that body
fat distribution at different sites is positively correlated with bone
density, regardless of the site (femur or lumbar spine) (32). The
possible reason for this is that different types of fat (e.g., android
fat and gynoid fat) are involved in the endocrine regulation of
bone benefits (33). Also, low body weight may lead to a decrease
in body muscle mass, which can induce sarcopenia and increase
the risk of falls, injuries, and fractures, leading to the complication
of osteoporosis (34), which is consistent with the results of the
baseline table analysis and SHAP analysis in the present study.
Moreover, the protective effect of weight gain against osteoporosis
can be attributed in part to muscle-derived actin, such as irisin,
which has been shown to promote osteoblast differentiation and
bone formation, and is positively correlated with bone mineral
density (35, 36). Additionally, adipose tissue serves as an endocrine
organ, secreting hormones such as adiponectin. In several studies,
adiponectin has been shown to be inversely correlated with
bone mineral density and adiponectin is also inversely correlated
with fat content, so that weight gain will lead to an increase
in bone mineral density from the point of view of endocrine
regulation, which will in turn become a protective factor against
osteoporosis (37, 38). These mechanisms support the observations
made in our model. Gkastaris and Zhang et al. demonstrated
that obesity significantly impacts society and is strongly associated
with osteoporosis. The obesity risk factor is waist circumference
(WC), one of the most critical risk factors for the development
of osteoporosis. Among them, waist circumference (WC) is an
important indicator used to assess the accumulation of abdominal
fat, which is associated with the onset of many diseases (9, 39-43).
In the present study, Waistline was negatively associated with the
prevalence of osteoporosis, which is consistent with the findings of
Murat and Sagak (44). This phenomenon differs from conventional
wisdom, but it has been suggested that there is an obesity
paradox in some populations, whereby moderately overweight
individuals may have a better prognosis for osteoporosis, especially
in women (45).

Ono et al. (46) and Pouresmaeili et al. (47) have shown that
height is an independent risk factor for elderly patients with
osteoporosis and that changes in height are a common clinical
manifestation in elderly patients with osteoporosis accompanied by
vertebral fractures and kyphosis. In addition, the level of education
is also associated with the risk of developing osteoporosis. This
study showed that individuals with higher levels of education
have a better economic status, are more health-conscious, and
are therefore less likely to develop osteoporosis. Wang et al.
(48) showed a higher prevalence of osteoporosis in older adults
with lower education. Meanwhile related studies point out that
this may be because less educated people tend to have poorer
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knowledge about osteoporosis prevention and are more likely to
adopt unhealthy lifestyles, including less robust health literacy
(unwillingness to take medication), poorer preventive behaviors
(e.g., insufficient calcium intake, lack of time and access to
physical activity, etc.), and poor diets, among other conditions. In
developing countries, the prevalence of osteoporosis is significantly
higher than in developed countries. This difference may reflect
differences in urbanization, socioeconomic status (SES), healthcare,
and health education, with scholars such as Du demonstrating that
lower SES and education levels are associated with a higher risk of
osteoporosis (49, 50).

We have designed a state-of-the-art Shiny application to
diagnose the presence of osteoporosis in the elderly population
in order to facilitate its application and dissemination in real-
world clinical practice. The application is a clinical decision support
tool that provides user-friendly outputs, including personalized
predictive probabilities and risk stratification, designed to help
clinicians triage patients or guide follow-up testing. Clinicians
can enter readily available patient data and obtain immediate
predictions to support triage or follow-up recommendations.
In the Shiny online prediction model, a prediction probability
>0.5 is used as the threshold for clinical intervention. This
reflects the default binary classification decision boundary, allowing
for straightforward interpretation: patients with model-estimated
probabilities >0.5 are considered to be at higher risk for
osteoporosis, and further diagnostic evaluation or prophylactic
treatment is recommended to clinicians. As shown in Figures 6A,
B, the app is based on seven authoritative diagnostic guidelines
to assist clinicians in calculating and assessing the individualized
risk of developing osteoporosis. The application can be accessed via
the following link: https://osteoporosispredictionmodel.shinyapps.
io/medic_predict/. The shinyapps.oi server is running as shown in
Supplementary Figure S1.

In clinical practice, models should be constructed and applied
with holistic considerations rather than relying solely on a single
feature for diagnostic prediction. Therefore, the involvement of a
panel of experts is essential to assist in the diagnosis of whether
a tester has osteoporosis. In addition, our findings are highly
consistent with medical literature published worldwide, further
validating the model’s clinical relevance.

This First, the
generalizability of the model in this study is limited by the

research possesses certain limitations.
small sample size, the fact that the data were collected from only
some of the communities in Beijing, and the broad definitions of
certain variables (e.g., smoking and alcohol consumption). In the
future, external validation should be combined with multi-center
and larger-scale data, and model calibration methods should
be introduced to improve stability. Second, the model did not
incorporate important clinical factors, such as comorbidities
and biochemical indicators (e.g., vitamin D and serum calcium),
and was based on only four anthropometric indicators, which
may not fully reflect the complex etiology of osteoporosis. Third,
FRAX is a risk assessment tool recommended by international
guidelines (e.g., NOF, IOF) and contains clinical factors and
optional BMD data (51). In contrast, the model in this study
relies only on basic signs and demographic characteristics, which
are suitable for resource-limited scenarios. Although not directly
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FIGURE 2

(A) GBM+RF; (B) GBM+SVM; (C) KNN+RF; (D) SVM+FDA; (E) NN+FDA; (F) NN+SVM; (G)

compared with FRAX, the predictive performance of both should
be evaluated in the future, and their integration potential should
be explored to enhance clinical utility. Weight, Waistline, Height,
and Education level are independent predictors of osteoporosis in
elderly patients. The clinical prediction model constructed in this
study based on these four independent predictors can realize the
accurate diagnosis of osteoporosis patients and assists physicians in
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devising a more evidence-based treatment plan to enhance patient
prognosis and minimize societal health expenditures. Although
our model predicts good results, some overfitting may occur due
to issues such as data limitations. It should be used as a broad
screening tool, and actual diagnosis still requires expert input and
incorporation of other relevant clinical evidence. Future studies
will include prospective validation using DXA as the gold standard,
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FIGURE 3
Comparison of the accuracy of 135 combined machine learning models.

as well as collection of clinician feedback to assess usability,
acceptance, and consistency with diagnostic outcomes. Moreover,
in future studies, we will further delve into the correlations among
the predictors to enhance the model’s ability to identify and explain
variable interactions.

5 Conclusion

This study used 10 machine learning methods such as Enet,
LR, CART, RE, SVM, Bayes, KNN, NN, FDA, and GBM. We
constructed 135 different machine learning models by combining
them in order to realize the diagnosis of elderly osteoporosis
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patients. This research examines the efficacy of machine learning
methodologies in clinical forecasting. The study’s results indicate
that machine learning methods perform effectively in diagnosing
osteoporosis, with the combined KNN and RF model exhibiting
the most superior classification efficacy and robustness, while all
other model metrics also demonstrate commendable performance.
Furthermore, we have created a Shiny-based online application for
osteoporosis diagnosis, designed to aid clinicians in devising a more
logical treatment strategy, minimizing the adverse effects linked
to DXA testing technology, thus lowering healthcare expenses
and enhancing patient outcomes. For future studies we will
incorporate multicenter datasets to further validate the robustness
and generalizability of the model.
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FIGURE 6

(A) Shiny application identified as Osteoporosis. (B) Shiny application identified as non-osteoporotic.
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