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Bile acids play a dual role by aiding lipid absorption and acting as signaling

molecules by interacting with various receptors. Bile acids are perpetually

recycled via enterohepatic circulation and are biotransformation by gut

microbiota, making bile acid metabolism a critical regulator of intestinal

homeostasis. The intestinal epithelium prominently expresses two key bile acid

receptors - the farnesoid X receptor (FXR) and G protein-coupled bile acid

receptor 1 (TGR5) - which play indispensable roles in maintaining bile acid

homeostasis and intestinal barrier function. Due to the abundant expression of

bile acid receptors and the importance of the intestine in preventing pathogen

invasion, researchers are increasingly focused on the function of bile acids in

this system. This article focuses on the effect of bile acids and their receptors,

FXR and the TGR5, in modulating intestinal barrier function.
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1 Introduction

The core structure of bile acids (BAs) consists of 17 carbon atoms arranged in three
hexane rings and one pentane ring (1). BAs possess both hydrophilic and hydrophobic
regions, enabling them to form mixed micelles with lipids and their digestive products.
This character allows cholesterol and other lipophilic substances to dissolve in bile,
promoting the emulsification and absorption of fats and fat-soluble vitamins, while also
regulating cholesterol stability (2, 3). Furthermore, BAs are recognized as important
signaling molecules that play a role in regulating lipid metabolism, glucose metabolism,
and energy metabolism, exhibiting hormone-like functions (4). Moreover, bile acids play
a crucial role in the intestinal barrier. Different bile acids have varying effects on intestinal
epithelial cells. Lithocholic acid (LCA) and deoxycholic acid (DCA) may promote epithelial
renewal by inducing programmed cell death, while ursodeoxycholic acid (UDCA) may
protect epithelial cells (5–7). The role of BAs is also crucial in inflammatory bowel diseases
(IBDs). Research has shown that patients with Crohn’s disease have a smaller bile acid pool,
and the ratio of glycine to taurine complexes significantly increases. The decrease in bile
acid pool size is related to disease activity (8). The deficiency of secondary BAs produced
by gut microbiota can promote intestinal inflammation, while DCA and LCA can alleviate
inflammation in mouse colitis models (9).

Given the high expression levels of bile acid receptors and the gut’s critical role
in preventing pathogen invasion, the significance of BAs in the gut garners increasing
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attention from researchers (10). This review aims to elucidate the
functions of bile acid metabolism and its intricate relationship
with the intestinal barrier, detailing the regulatory mechanisms
by which BAs and their primary receptors, FXR and TGR5,
influence the mechanical, mucosal, microbial, and immune barriers
of the intestine.

2 BAs metabolism

In the liver, BAs are synthesized from cholesterol through
the action of at least 17 enzymes (11, 12). There are two
primary pathways for BA synthesis: the classical (neutral) pathway
and the alternative (acidic) pathway. The classical pathway is
facilitated by cholesterol 7 α-hydroxylase (CYP7A1), resulting
in the production of cholic acid (CA) and chenodeoxycholic
acid (CDCA). Conversely, the alternative pathway is mediated
by sterol 27-hydroxylase (CYP27A1), which exclusively produces
CDCA. The BAs generated through these pathways are referred
to as primary BAs (13). In the liver, primary BAs can
conjugate with glycine or taurine at the C-24 position to form
conjugated BAs (14).

Bile acids synthesized in the liver are secreted into the bile
duct and stored in the gallbladder, facilitated by the bile salt export
pump (BSEP) and the phosphatidylcholine transporter (ABCB4).
Upon food intake, cholecystokinin released from the duodenum
triggers gallbladder contraction, leading to the release of bile into
the intestine (15–17). As BAs traverse the intestine, a small fraction
of unbound BAs is reabsorbed through passive diffusion, while the
majority is actively absorbed via the apical sodium-dependent bile
acid transporter (ASBT) in the distal ileum, subsequently entering
the liver through the portal vein (13, 18). The reabsorbed and
primary BAs undergo further processing in the liver before being
secreted back into the gallbladder and re-entering the intestine,
thereby establishing the enterohepatic circulation of BAs.

A portion of the BAs that are not absorbed is converted into
secondary BAs through microbial action in the distal ileum and
colon. For instance, microbe with bile salt hydrolase (BSH) activity
deconjugate CA and CDCA, yielding unconjugated primary BAs,
which are then transformed into secondary BAs via microbial 7-
dehydroxylation (19, 20). Deoxycholic acid (DCA), derived from
CA, is reabsorbed and returned to the liver from the colon, while
lithocholic acid (LCA), produced from CDCA, poses a health
risk; only a small amount of LCA is transported to the liver for
detoxification through sulfation before entering the bile, with the
majority excreted in feces (21).

The bile acid pool contains approximately 3 g of BAs, which
circulate 6–15 times daily, with about 0.2–0.5 g excreted in feces
(22). This loss of BAs is compensated by the de novo synthesis,
ensuring the stability of the bile acid pool (23). Furthermore, the
excretion of BAs in feces serves as a primary mechanism for the
body to eliminate cholesterol (24).

3 BA receptors

Bile acid receptors can be classified into two main types:
nuclear receptors and membrane receptors. The nuclear receptors

encompass FXR (25, 26), vitamin D receptor (VDR) (27), pregnane
X receptor (PXR) (28), and constitutive androstane receptor (CAR)
(29). In contrast, the membrane receptors include the G protein-
coupled receptor 1 (TGR5) (7) and sphingosine 1-phosphate
receptor 2 (S1PR2) (30). Among these, the nuclear receptor
FXR and the membrane receptor TGR5 are the most thoroughly
investigated receptors to date.

3.1 The nuclear receptor FXR

The nuclear receptor FXR was the first bile acid receptor to
be identified (25) and is predominantly expressed in tissues that
participate in the hepatic-intestinal circulation of BAs (12). FXR
can be activated by BAs to exert its biological effects, although
its activation potential varies among different BAs. Hydrophilic
BAs, such as UDCA does not activate FXR and Muricholic acids
(MCA) are known to antagonize FXR, whereas hydrophobic BAs
activate FXR in the following order: CDCA > LCA = DCA > CA
(31, 32). Upon activation, FXR regulates the expression of
various genes either as monomers or in heterodimeric complexes
by binding to the retinoic acid X receptor (RXR) on DNA
(33, 34). FXR serves as a sensor for intracellular bile acid levels
and plays a crucial role in maintaining bile acid homeostasis
(Figure 1).

In the intestine, BAs enter intestinal cells through the
action of the apical sodium-dependent bile acid transporter
(ASBT) and subsequently bind to the ileal bile acid binding
protein (IBABP), facilitating their transport from the apical
surface to the basolateral membrane. With the assistance of the
organic solute transporter (OST) and organic anion transporting
polypeptides (OATP), BAs then enter the portal vein and
are transported to the liver. In the liver, they bind to the
fibroblast growth factor receptor 4 (FGFR4) and β Klotho
(KLB), leading to the downregulation of the rate-limiting
enzyme CYP7A1 in the classical pathway of the extracellular
signal regulated kinase (ERK), thereby inhibiting bile acid
synthesis (35).

In liver cells, BAs stimulate FXR, which induces the expression
of the small hetero-dimer partner (SHP) and inhibits the expression
of the key enzyme CYP8B1 (sterol 12α-hydroxylase) involved
in bile acid synthesis, thus regulating bile acid metabolism by
modulating genes associated with bile acid secretion (36). The
activation of FXR can also improve liver disease. In patients
with non-alcoholic fatty liver disease (NAFLD) or in mouse
models, treatment with FXR agonist obeticholic acid (OCA)
produced a series of related liver effects, reducing triglycerides
(TAGs) and inflammation, and alleviating steatohepatitis and
liver fibrosis (37). FXR also influences molecules related to
bile acid transport, with IBABP exhibiting a high affinity for
BAs. In intestinal epithelial cells, FXR can regulate bile acid
homeostasis by modulating the IBABP gene (38). Additionally,
FXR is implicated in intestinal immune regulation and the
maintenance of intestinal barrier function (39, 40). Activation of
FXR has been shown to mitigate inflammation in animal models
of inflammatory bowel disease (IBD), alleviate colitis symptoms,
protect the intestinal epithelial barrier, and reduce the loss of goblet
cells (41).
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FIGURE 1

The role of farnesoid X receptor (FXR) signal in bile acid regulation. Bile acids (Bas) are synthesized from cholesterol via both classical and alternative
pathways. The classical pathway is regulated by the key enzyme CYP7A1, whereas the alternative pathway is facilitated by CYP27A1. The primary BAs
produced are stored in the gallbladder. Upon ingestion of food, the gallbladder contracts, releasing BAs into the intestine. These BAs are then
absorbed in the distal ileum and transported back to the liver through the portal vein. Within liver cells, BAs activate FXR receptors, which in turn
promote the expression of small hetero-dimer partner (SHP), resulting in the inhibition of CYP8A1. Additionally, BAs that enter intestinal cells activate
FXR, leading to the secretion of FGF15/19, which subsequently travels to the liver via the portal vein to inhibit CYP7A1, thereby reducing bile acid
synthesis. NTCP, sodium taurocholate co-transporting polypeptide; FGF, fibroblast growth factor; ERK; extracellular signal-regulated kinases.

3.2 The membrane receptor TGR5

G protein-coupled bile acid receptor 1 is a significant bile
acid membrane receptor that is predominantly expressed in the
gallbladder, ileum, and colon (42–44). In the liver, TGR5 regulates
microcirculation, inflammation, regeneration, bile secretion and
proliferation, as well as gallbladder filling (45). TGR5 has also
been identified as a negative regulator of liver inflammation.
Mice lacking TGR5 are more susceptible to liver injury after
intraperitoneal injection of lipopolysaccharide, leading to increased
levels of inflammatory cytokines and enhanced liver cell apoptosis
(46). The potency of BAs in activating TGR5 follows the hierarchy:
LCA > DCA > CDCA > CA (47). Upon binding with BAs, TGR5
triggers the release of a complex comprising G proteins—αs, β,
and γ. This interaction facilitates the exchange of GDP for GTP
within the G protein complex, resulting in the dissociation of the
complex and the formation of G protein - αs and β - γ dimers.
The G protein - αs subunit activates adenylate cyclase, which in
turn promotes the synthesis of cyclic adenosine monophosphate
(cAMP) and the activation of protein kinase A (PKA). This
cascade initiates downstream signaling pathways, while cAMP
production also influences energy and glucose metabolism (48).
BAs regulate metabolic processes differently across various tissue
types (Figure 2). For instance, the elevation of cAMP levels
in brown adipocytes, induced by bile acid treatment, enhances
the activity and oxygen consumption of type 2 iodothyronine
deiodinase (D2), thereby contributing to the regulation of energy

homeostasis (49). Additionally, glucagon-like peptide-1 (GLP-1)
can lower blood glucose levels, and BAs in the intestine stimulate
GLP-1 secretion from intestinal endo-crine cells via TGR5, thus
impacting glucose metabolism (50). Furthermore, TGR5 activation
in pancreatic beta cells promotes insulin secretion through the G-
αs/cAMP/Ca2+ signaling pathway (51). TGR5 also plays a crucial
role in maintaining intestinal barrier function; in intestinal cells,
TGR5 activation by BAs stimulates myosin light chain kinase
(MLCK) signaling, thereby enhancing intestinal barrier protection
(52) (Figure 2). Moreover, TGR5 is involved in the regulation of bile
acid metabolism, as it modulates the expression of cholesterol 12α-
hydroxylase (CYP8B1), a key enzyme in bile acid synthesis, leading
to a reduction in the proportion of 12α-hydroxy BAs in the bile acid
pool (53).

4 The role of BAs in the intestinal
barrier

4.1 Mechanical barriers

The intestinal epithelium consists of a single layer of columnar
cells approximately 20 µm thick, and the epithelial layer not only
comprises intestinal epithelial cells but also includes secretory
cells such as goblet cells, Paneth cells, and intestinal endocrine
cells (54). Within the intact epithelial layer, tight junctions (TJs)
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FIGURE 2

Signal transduction of TGR5 in different organizations. In brown adipose tissue, TGR5 activation facilitates the conversion of thyroid hormone T4 to
T3 by inducing type 2 deiodinase, thereby enhancing energy metabolism. In intestinal endocrine cells, TGR5 activation triggers the activation of
protein kinase A (PKA), which subsequently promotes the secretion of glucagon-like peptide-1 (GLP-1). In pancreatic beta cells, TGR5 activation
results in elevated levels of intracellular cyclic adenosine monophosphate (cAMP) and Ca2+, leading to an increase in insulin secretion. Additionally,
in intestinal epithelial cells, TGR5 activation stimulates the MLCK signaling pathway, contributing to epithelial protection. TGR5, G protein-coupled
bile acid receptor 1.

and adherens junctions (AJs) serve as critical cellular connections
that contribute to the mechanical barrier of the intestine (55,
56). TJs are intercellular connections located at the apical region
of cell contact, playing a vital role in determining epithelial
permeability and regulating paracellular transport pathways (57).
They are essential connections between epithelial cells, formed
by proteins such as claudins, occludin, and junctional adhesion
molecules (JAMs), which effectively prevent the invasion of
intestinal bacteria and toxins (54). Alterations in the expression,
post-translational modifications, localization, or activity of tight
junction proteins or their regulatory factors can influence the
permeability to larger molecules (58). Damage to epithelial cells
disrupts the intestinal barrier, resulting in a loss of barrier
function and allowing substances from the intestinal lumen
to penetrate the submucosal layer (54). AJs, located on the
lateral membranes of epithelial cells beneath the TJs, primarily
function to maintain intercellular contact, cell polarity, motility,
and proliferation (56). The structure of adherens junctions
mainly consists of transmembrane glycoproteins from the classical
cadherin superfamily (such as E-cadherin) and members of
the catenin family (including p120 catenin, β-catenin, and α-
catenin), which collectively regulate the formation, maintenance,
and functionality of these connections (59). Additionally, adherens
junctions provide mechanical strength to adjacent epithelial
cells (60).

Bile acids and their receptors are intricately linked to the
mechanical barrier function of the intestine (Figure 3). Research
indicates that BAs can enhance epithelial regeneration by activating
the membrane receptor TGR5 in intestinal stem cells (ISCs).
It has been demonstrated that the release of endogenous BAs
in the intestinal lumen is sufficient to coordinate the renewal

and proliferation of ISCs (7). Chenodeoxycholic acid (CDCA)
has been shown to promote the proliferation of piglet jejunal
epithelial cells (IPEC-J2), accelerate cell cycle progression in the
S and G2/M phases, improve mitochondrial function, reduce
intracellular reactive oxygen species (ROS) production in IPEC-
J2 cells (61), thereby exerting a beneficial effect on these
cells and protecting intestinal epithelial barrier function from
lipopolysaccharide-induced damage via the FXR-MLCK pathway
(62). In vitro, studies have revealed that CDCA, deoxycholic acid
(DCA), and cholic acid (CA) can induce a transient reduction in
transepithelial resistance in Caco-2 cells and modulate intestinal
permeability by promoting the self-phosphorylation of epidermal
growth factor (EGF) receptors, dephosphorylation of occludin,
and rearrangement of tight junctions (63). Lithocholic acid
(LCA), on the other hand, can downregulate the expression
of tight junction proteins and genes in IPEC-J2 cells (64)
and induce apoptosis in IPEC-J2 cells by activating CD95
clusters and caspase 8 (65), suggesting a detrimental effect
of LCA on the intestinal barrier (66). The receptors TGR5
and FXR for BAs have also been identified as crucial in the
regulation of intestinal barrier function. Tauroursodeoxycholic
acid (TUDCA) has been shown to ameliorate epithelial barrier
damage induced by Escherichia coli in IPEC-J2 cells through
TGR5 activation (52) and to reverse the decrease in mRNA
expression of ZO-1 (zonula occludens 1), JAM, occludin, and
claudin-4 in the mouse intestine (66). FXR in the ileum
regulates Angiopoietins 1, Inducible Nitric Oxide Synthase, and
Interleukin-18, ensuring adequate intestinal protection during
periods of heightened microbial exposure while preventing
excessive protein production that could lead to inflammation and
intestinal diseases (40).

Frontiers in Medicine 04 frontiersin.org

https://doi.org/10.3389/fmed.2025.1607899
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1607899 July 2, 2025 Time: 19:14 # 5

Song et al. 10.3389/fmed.2025.1607899

FIGURE 3

Bile acids (Bas) and their receptors are intricately linked to the mechanical barrier function of the intestine. Bile acids can promote epithelial
regeneration by activating the membrane receptor G protein-coupled bile acid receptor 1 (TGR5) in intestinal stem cells (ISCs), chenodeoxycholic
acid (CDCA) can protect intestinal epithelial barrier function through the farnesoid X receptor (FXR)-myosin light chain kinase (MLCK) pathway.
Lithocholic acid (LCA) can downregulate the expression of tight junction proteins and genes in IPEC-J2.

4.2 Mucosal barrier

The intestinal epithelium is covered by a mucus layer
secreted by goblet cells, which comprises water, phospholipids,
mucins (MUC), secreted immunoglobulin A (IgA), antimicrobial
peptides, and various defense factors (54). This mucus layer
plays a crucial role in preventing the adhesion and invasion
of microorganisms and harmful substances, shielding epithelial
cells from physical abrasion, and facilitating epithelial renewal
and differentiation (67, 68). The mucus layer is structured
into two distinct layers: an inner mucus layer that is tightly
bound to the epithelial cells, creating a barrier that prevents
bacterial penetration and maintains a sterile environment at
the epithelial surface, and an outer mucus layer that is more
loosely associated and provides a habitat for gut microbiota (69,
70). Notably, the inner mucus layer in the small intestine is
thinner than that in the large intestine, likely to optimize nutrient
absorption (71). Mucin, the primary component of the mucus
layer, is essential for protecting the intestine from microbial
infections (72). The human mucin family consists of 24 members
(MUC1 to MUC24), categorized into secreted mucins and
transmembrane mucins. Transmembrane mucins include MUC1,
MUC3A/B, MUC4, MUC13, MUC15-17, MUC20, and MUC21,
while secreted mucins encompass MUC2, MUC5AC/B, MUC6,
MUC7, and MUC19 (73). Impairments in mucin production
can compromise intestinal barrier function and contribute to the
development of intestinal-related diseases, such as inflammatory

bowel disease (IBD), irritable bowel syndrome (IBS), and
cancer (56).

The mucus produced by goblet cells, particularly the mucin
component, is crucial for protecting the intestinal mucosa
(74, 75). The secretion of mucus is regulated by endoplasmic
reticulum stress and autophagy. TUDCA has been shown to
alleviate endoplasmic reticulum stress, stimulate the secretion of
mucus from goblet cells, increase the thickness of mucus layers,
and bolster the protective function of chemical barriers (76).
Chenodeoxycholic acid (CDCA) activates FXR in normal rat
gastric epithelial cells in a dose-dependent manner, leading to an
upregulation of MUC2 protein expression and an enhancement
of the chemical barrier (77). Research indicates that BAs can
activate the FXR/nuclear transcription factor-κB (NF-κB) signaling
pathway, which contributes to the promotion of MUC2 expression
(78). Conversely, BAs can also compromise chemical barriers; for
instance, deoxycholic acid (DCA) induces endoplasmic reticulum
stress in the intestinal mucosa in vitro and exerts toxic effects
on goblet cells, resulting in damage and a diminished protective
capacity of chemical barriers (79). Additionally, bile acid receptors
are significant in maintaining chemical barriers. Evidence suggests
that the knockout or inhibition of the bile acid re-ceptor FXR leads
to a reduction in MUC2 levels in mouse intestinal organoids, but
the application of the FXR agonist GW4064 to activate FXR in mice
has been found to mitigate radiation Ninduced intestinal damage
(80). However, the specific knockout of FXR in the mouse liver
appears to enhance colonic mucosal barrier function (81).
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4.3 Microbial barriers

The gut microbial community comprises bacteria, fungi,
viruses, archaea, and protozoa, with bacteria constituting over
70% of this population (82, 83). The majority of gut bacteria
belong to two primary phyla: Bacteroidetes and Firmicutes (84).
These intestinal bacteria play a crucial role in enhancing the
host’s digestive efficiency by breaking down dietary polysaccharides
into absorbable compounds, such as short-chain fatty acids
(85). Additionally, they provide protection against pathogenic
infections. Firstly, pathogenic bacteria face competition for
nutrients from the gut microbiota, which restricts their ability
to colonize the gut (86, 87). Secondly, the gut microbiota can
stimulate the host’s immune response, thereby preventing pathogen
invasion. For instance, the immune response triggered by symbiotic
bacteria activating epithelial Toll-like receptors (TLRs) limits
the proliferation of Salmonella typhimurium serotypes (88). In
sterile mice, a reduced proliferation rate of intestinal epithelial
cells, shorter crypt-villus length, and diminished angiogenesis
have been observed; however, short-term supplementation with
specific bacteria has demonstrated a proliferative effect in
these mice, suggesting that a normal microbiota can stimulate
cryptosystem cell activity, thereby influencing the proliferation
rates in the colon and small intestine (89). Furthermore, the
microbiota contributes to the integrity of the epithelial barrier.
For example, butyrate produced by intestinal bacteria promotes
wound healing by enhancing oxygen utilization, boosting anaerobic
conditions, and activating compensatory hypoxia inducible factors
(HIF), ultimately improving barrier function (90). Additionally,
deoxycholic acid (DCA) generated by bacteria can facilitate
mucosal wound healing by modulating local Prostaglandin E2
levels (91).

Primary BAs are transformed into secondary BAs by intestinal
microorganisms. While these microorganisms metabolize BAs, the
BAs simultaneously influence the gut microbiota (92). CA can
inhibit bacterial growth by causing membrane damage. As the
concentration of CA increases, the internal pH level of the bacteria
gradually decreases, ultimately leading to the complete dissipation
of both pH and transmembrane potential. Furthermore, potassium
ion leakage was observed when the CA concentration exceeded
2 mM, and an increase in the leakage of other cellular components
was noted when the CA concentration surpassed 4 mM (93).
Additionally, bile acid salts that penetrate bacterial cells may inflict
damage on bacterial nucleic acids, triggering SOS responses and
causing oxidative damage to DNA, thereby hindering bacterial
reproduction (94, 95). The antibacterial efficacy of various BAs
differs, with bound BAs exhibiting lower antibacterial activity
compared to their unbound counter-parts (96). This discrepancy
may arise from the ability of unbound BAs to passively diffuse
across membranes, resulting in intracellular toxicity, whereas
bound BAs are fully ionized at physiological pH and only exert
toxicity when specific transport proteins facilitate their entry
into the cell (97). Furthermore, bacterial tolerance to BAs varies
among species. The distinct structural characteristics of cell walls
in Gram-negative bacteria allow them to exclude antibiotics and
other antibacterial agents, potentially resulting in greater resistance
to BAs (98). In contrast, Gram-positive bacteria tend to be
more susceptible to bile action (97). For instance, Gram-negative

bacteria such as Salmonella and Escherichia coli can thrive in the
gallbladder, where bile concentrations are extremely high (99),
while the growth of Lactobacillus acidophilus, a Gram-positive
bacterium, is significantly inhibited in the presence of BAs (100).

4.4 Immune barrier

The mucosa associated lymphoid tissue (MALT) located in the
intestinal lamina propria represents the largest immune organ in
the human body, playing a pivotal role in the intestinal immune
response (101). MALT is primarily divided into two components:
the induction site and the effector site. The induction site comprises
Peyer’s patches (PP), mesenteric lymph nodes (MLN), and isolated
lymphoid follicles (ILF), which are crucial for the initial activation
and differentiation of immune cells (102). The effector sites include
the intestinal lamina propria and epithelium, which are essential
for maintaining the integrity of immune cells and barriers (103).
Immune cells are categorized into innate immune cells (such
as innate lymphocytes, dendritic cells (DCs), macrophages, and
natural killer cells) and adaptive immune cells (including B and T
cells) (104). DCs and macrophages play a key role in recognizing
antigens and presenting them to lymph nodes, thereby facilitating
the generation of specific T and B cells. These specific T and B cells
subsequently migrate back to the mucosal lamina propria to act as
effector cells or to persist as memory cells (105). T cells are involved
in cellular immunity, while immunoglobulin A (IgA) secreted by B
cells serves as the primary antibody in the intestine, predominantly
in the form of Secretory Immunoglobulin A (SIgA). SIgA
functions by obstructing the entry of antigens, microorganisms,
and exogenous proteins at the intestinal surface (102). Typically,
SIgA is produced in response to microbial stimulation (103) and is
present throughout the entire intestine (106). Upon re-infection,
the titer of IgA antibodies rises significantly more rapidly and
remains elevated for an extended duration, thereby enhancing the
body’s ability to combat infections (102).

Bile acids play a crucial role in regulating intestinal mucosal
homeostasis and the inflammatory response through various
receptors, including FXR and TGR5, along with their associated
signaling pathways (107). Studies have demonstrated that
treatment with INT-747, an FXR agonist, in mice with colitis
results in a reduction of pro-inflammatory cytokines such as
Interleukin-1 beta (IL-1β) and Interleukin-6 (IL-6), as well as
chemo-kines like C-C motif ligand 2 (41). Activation of FXR
inhibits NF-κB activity by preventing the clearance of nuclear
helper receptors at the binding sites for tumor necrosis factor
(TNF) and IL-1β (108). In vitro studies indicate that FXR activation
can enhance the release of proinflammatory cytokines, while
Caco-2 cells treated with FXR antagonists show a significant
decrease in the secretion of IL-6 and TNF (109). In vivo, FXR
activation has been associated with reduced levels of TNF in
models of dextran sulfate sodium (DSS) colitis (110). Furthermore,
the knockout of the FXR receptor alleviates intestinal barrier
dysfunction induced by lipopolysaccharide (LPS) damage and
mitigates inflammatory injury. This protective effect is attributed
to the decreased production of inflammatory cytokines, which aids
in maintaining the integrity of tight junctions (111). Additionally,
BAs can promote the differentiation of monocytes into DCs
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that secrete low levels of IL-12 and TNF-α via the TGR5-
cAMP pathway (112), while also inhibiting the activation of the
NOD-like receptor thermal protein domain associated protein
3 (NLRP3) inflammasome through the TGR5-cAMP-PKA axis
(113), underscoring the significant role of BAs in modulating
inflammatory responses. Research has found that the levels of pro-
inflammatory cytokines (IL-1 β and TNF α) in the colon of low
birth weight (LBW) animals are elevated and UDCA is significantly
reduced. However, after supplementing UDCA, UDCA can induce
M2 polarization of macrophages, inhibit NF - κ B, and exert anti-
inflammatory effects in the intestine (114). BAs can also regulate
the differentiation of T lymphocytes, which to some extent affects
the homeostasis of the intestinal immune barrier. T helper cells
expressing interleukin-17A (Th17 cells) help resist extracellular
pathogens, while secondary BAs isodeoxycholic acid (isoDCA) can
inhibit Th17 cell differentiation by suppressing ROR γ t (retinal
acid receptor related nuclear receptor γ t), which may be closely
related to IBD (115).

In general, the intestine serves not only as a crucial digestive
organ but also functions as a barrier that separates the luminal
contents from the body’s internal environment through the
intestinal mucosa. Acting as a physical, biochemical, and immune
barrier, it engages with the external environment to safeguard the
internal milieu from harmful substances. While certain BAs may
exert detrimental effects on the gut, they are vital for preserving
the integrity of the gut barrier. BAs play a significant role in cell
proliferation and apoptosis, regulate both mucosal and mechanical
barriers, inhibit the growth of specific harmful bacteria, and are
involved in the immune response within the gut.

5 Conclusion

Since the identification of the bile acid receptor FXR, there has
been a growing interest in the role of BAs as signaling molecules
that influence cell growth and immune responses. The interaction
between BAs and their key receptors, FXR and TGR5, along with
the intestinal barrier, is crucial for maintaining intestinal barrier
integrity. This article reviews the functions of bile acid metabolism
and the intestinal barrier, detailing the regulatory mechanisms by
which BAs and their primary receptors, FXR and TGR5, influence
the mechanical, mucosal, microbial, and immune barriers of the
intestine. This underscores the significant role of BAs and their
receptors in preserving intestinal barrier homeostasis. Nonetheless,
further investigation is needed to enhance our understanding of the
intricate relationship between BAs and the intestinal barrier, clarify
their potential mechanisms of action, and identify associated risks,
ultimately aiming to develop more effective treatment strategies for
intestinal diseases.
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