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Background: Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease 
marked by excessive fibrous tissue accumulation in the lung interstitium, leading 
to a gradual deterioration of respiratory function and significantly impairing 
patients’ quality of life. Despite advances in understanding its etiology and 
pathogenesis, the exact mechanisms remain unclear, underscoring the need for 
novel biomarkers and therapeutic targets.

Methods: We analyzed five publicly available datasets from the Gene 
Expression Omnibus (GEO), specifically “GSE15197,” “GSE53845,” “GSE135065,” 
“GSE185691,” and “GSE195770,” to identify gene expression changes associated 
with IPF. Data were annotated and normalized to minimize batch effects and 
technical variability. Principal Component Analysis (PCA) verified preprocessing 
efficacy. Differentially expressed genes (DEGs) were identified using linear 
modeling. Core DEGs were selected via integrative analysis across datasets.

Results: Our analysis revealed DEGs that are substantially linked to crucial 
biological processes such as extracellular matrix organization and immune 
response regulation. Integrative analysis of five GEO datasets identified CXCL14, 
MMP7, and MDK as core differentially expressed genes in the final predictive 
model. Using Least Absolute Shrinkage and Selection Operator (LASSO) 
regression and Random Forest, we  constructed a logistic regression model 
with robust predictive performance, achieving an AUC of 0.92  in the training 
cohort and 0.89 in the validation cohort, with sensitivity of 88% and specificity 
of 85%. The Shapley Additive Explanations (SHAP) method identified CXCL14 
(mean SHAP value = 0.38) as the most influential feature, followed by MMP7 
and MDK. Functional enrichment analyses highlighted significant enrichment 
of TGF-β signaling, extracellular matrix organization, and chemokine signaling 
pathways. Immune infiltration analysis revealed positive correlations between 
CXCL14 expression and alveolar macrophage/activated fibroblast populations, 
while SHAP interaction analysis identified synergistic effects between CXCL14 
and TGF-β1 in driving fibrosis.

Conclusion: These findings substantiate the hypothesis that IPF pathogenesis 
is closely linked to extracellular matrix remodeling and immune dysregulation. 
This suggests that future investigations should delve deeper into the practical 
applications of identified biomarkers in the early diagnosis and management of 
IPF. Furthermore, the machine learning-based predictive model demonstrates 
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strong clinical potential and merits further validation in prospective trials to 
assess its utility and therapeutic implications in real-world settings.
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idiopathic pulmonary fibrosis, gene expression, machine learning, immune cell 
infiltration, Shapley additive explanations

1 Introduction

Idiopathic Pulmonary Fibrosis (IPF) represents a progressive, fatal 
interstitial lung disorder characterized by aberrant pulmonary tissue 
fibrogenesis and irreversible decline in respiratory function, with a 
median survival duration of merely 3–5 years (1). Despite the clinical 
approval of tyrosine kinase inhibitors (e.g., Nintedanib) and 
antifibrotic agents (e.g., Pirfenidone), substantial interindividual 
variability in therapeutic responses persists: approximately 30% of 
patients exhibit rapid disease progression post-pharmacotherapy, 
while treatment discontinuation rates due to adverse events reach 
15–30% (2). Such heterogeneity in treatment outcomes underscores 
the dynamically complex and incompletely characterized molecular 
mechanisms of IPF. Current investigations predominantly focus on 
single-biomarker approaches (e.g., MMP7, surfactant protein D), yet 
their predictive utility demonstrates marked inconsistency across 
independent cohorts, thereby impeding the development of 
personalized treatment algorithms (3). Of particular note, emerging 
evidence has implicated CXCL14 (C-X-C chemokine ligand 14) in 
both fibrogenic pathways and immune dysregulation in IPF; however, 
its mechanistic roles and predictive value in clinical contexts remain 
poorly understood. Consequently, the systematic identification of 
multidimensional molecular signatures capable of accurately 
predicting treatment responses and the elucidation of their underlying 
mechanisms constitute critical scientific imperatives for improving 
IPF prognosis.

In recent years, research on the heterogeneity of IPF has achieved 
some breakthroughs: genomic studies have identified gene mutations 
such as Telomerase mutations (TERT) (4) and Mucin 5B (MUC5B) 
(5) as being associated with disease risk, proteomic studies have found 
that CXCL13 and CCL18 are related to the rate of decline in lung 
function (6), and single-cell sequencing techniques have revealed the 
central role of abnormally activated fibroblast subgroups in the fibrosis 
process (7). However, there are three key deficiencies in the existing 
achievements: firstly, most studies remain at the level of describing 
correlations and lack the verification of the causal relationship 
between biomarkers and treatment response; secondly, traditional 
statistical methods are difficult to integrate the non-linear interactions 
between high-dimensional omics data (such as transcriptomics, 
methylomics, and immunogenomics) and clinical parameters, leading 
to insufficient generalization capability of predictive models (8); what 
is more prominent is that although existing machine learning models 
can improve prediction accuracy, their “black box” nature hinders the 
interpretation of biological significance - for example, the Gradient 
Boosting Tree (XGBoost) model can predict the risk of treatment 
failure, but cannot answer which immune cell subtypes or signaling 
pathways drive resistance (9, 10). In addition, the reprogramming 
mechanism of immune cells in the IPF microenvironment has been 
long neglected: recent studies suggest that regulatory T cells (Treg) 
(11) and macrophage polarization (12) may affect drug response, but 

these findings have not yet been translated into operational predictive 
indicators. Notably, while CXCL14 upregulation has been documented 
in IPF-derived lung fibroblasts, its role in immune modulation and 
potential as a prognostic biomarker remain systematically 
uncharacterized. These bottlenecks collectively hinder the 
development of precision medicine strategies for IPF (13).

The present study employs an integrative approach combining 
multi-omics data analysis, machine learning-based feature selection, 
and SHAP (Shapley Additive Explanations) interpretability analysis to 
systematically identify key molecular features and evaluate their utility 
in IPF personalized medicine. Specifically, this investigation aims to 
address the following knowledge gaps: (1) validate CXCL14 as a 
pivotal immune-related biomarker through SHAP-driven feature 
importance analysis; (2) decipher the mechanistic associations 
between CXCL14 expression and immune cell infiltration (e.g., Treg 
and macrophage polarization); and (3) develop an interpretable 
machine learning framework for predicting IPF progression based on 
CXCL14 and associated molecular signatures. To achieve these 
objectives, five datasets from the Gene Expression Omnibus (GEO) 
were subjected to rigorous preprocessing, including data 
normalization, batch effect correction via ComBat, and principal 
component analysis (PCA) to ensure inter-dataset consistency. 
Differential gene expression analysis (DEA) was subsequently 
performed to identify IPF-associated transcripts, which were further 
refined using LASSO (Least Absolute Shrinkage and Selection 
Operator) regression and random forest (RF) models to derive a 
robust set of core feature genes. SHAP analysis was employed to 
quantify the contribution of individual gene features to model 
predictions, thereby mitigating the interpretational limitations of 
traditional machine learning. Complementary immune infiltration 
analysis (CIBERSORT) and pathway enrichment analyses (GSEA, 
GSVA, KEGG) were conducted to characterize the functional roles of 
identified molecular features within the IPF microenvironment. By 
integrating mechanistic and predictive analyses, this study not only 
establishes a high-precision, interpretable model for IPF treatment 
response prediction but also positions CXCL14 as a novel therapeutic 
target by delineating its dual roles in fibrogenesis and 
immune dysregulation.

2 Methods

2.1 Dataset acquisition and preprocessing

This study utilized five publicly available datasets from the 
Gene Expression Omnibus database (GEO),1 including 

1 https://www.ncbi.nlm.nih.gov/geo/
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GSE15197, GSE53845, GSE135065, GSE185691, and GSE195770. 
These datasets encompassed transcriptomic profiles from lung 
tissue and immune cells derived from patients with IPF and 
normal controls. For improved clarity, key characteristics of each 
dataset were summarized in Table 1. “GSE15197” (8 IPF and 13 
normal lung tissues) (14): Sample source: Lung tissues from 
patients at the Mayo Clinic and normal donors; Tissue type: 
Formalin-fixed paraffin-embedded (FFPE) lung biopsies; Disease 
stage: Mixed stages (early to advanced IPF); Sequencing platform: 
Affymetrix Human Genome U133 Plus 2.0 Array. “GSE53845” 
(40 IPF and 8 normal lung tissues) (15): Sample source: Lung 
tissues from the University of Michigan IPF cohort; Tissue type: 
Fresh-frozen lung parenchyma; Disease stage: Advanced IPF 
(confirmed by high-resolution computed tomography); 
Sequencing platform: Illumina HumanHT-12 v4 Expression 
BeadChip. “GSE135065” (9 IPF and 9 normal lung tissues) (16) 
Sample source: Bronchoalveolar lavage (BAL) fluid cells from IPF 
patients and healthy controls; Tissue type: Immune cells isolated 
from BAL fluid; Disease stage: Early-stage IPF (predominantly 
non-honeycombing fibrosis); Sequencing platform: RNA-seq 
(Illumina HiSeq 2,500, paired-end 100 bp). “GSE185691” (6 IPF 
and 8 normal lung tissues) (17) Sample source: Lung tissues from 
the Idiopathic Pulmonary Fibrosis Clinical Research Network 
(IPF-CRN); Tissue type: Laser-capture microdissected alveolar 
epithelial cells; Disease stage: Moderate IPF with mixed fibrosis 
and inflammation; Sequencing platform: Affymetrix Clariom S 
Human Array. “GSE195770” (4 IPF and 4 normal lung tissues) 
(18) Sample source: Lung fibroblasts derived from patient-
derived explant cultures; Tissue type: Primary lung fibroblast 
cells; Disease stage: End-stage IPF (post-lung transplantation 
samples); Sequencing platform: RNA-seq (Illumina 
NovaSeq 6,000, 150 bp paired-end). These datasets include gene 
expression data relevant to IPF. The data processing steps are as 
follows: Data Annotation: The raw data were annotated using 
appropriate annotation files to ensure consistency between gene 
identifiers and gene names. This was performed using the 
biomaRt package. Data Normalization: Gene expression data 
were normalized using the normalizeBetweenArrays function 
from the limma package to eliminate batch effects and technical 
biases. Batch Effect Correction: To further address batch effects, 
we applied the ComBat method from the SVA package for batch 
effect correction, using “GSE135065” (16) as the validation 

dataset. PCA: PCA was conducted on the normalized data to 
assess the overall structure and verify the removal of batch 
effects. PCA plots were used to visualize the differences 
between datasets.

2.2 Differential gene expression analysis

Differential gene expression was performed using the limma 
package (19), which calculates gene expression differences between 
different groups (IPF group vs. normal control group) through linear 
modeling. Genes were considered significantly differentially expressed 
with a false discovery rate (FDR) < 0.05 and |logFC| > 1.

2.3 Functional enrichment analysis

Gene Ontology (GO) Enrichment (20): GO enrichment analysis 
was performed on the differentially expressed genes using the 
ClusterProfiler package (21), focusing on biological processes, 
molecular functions, and cellular components.

Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway 
Analysis (20): KEGG pathway enrichment analysis was also conducted 
using the ClusterProfiler package (22)to identify key pathways 
associated with IPF.

2.4 Nomogram construction

LASSO Regression (23): LASSO regression was applied to the 
differentially expressed genes to select features that most significantly 
predict IPF. Cross-validation was used to determine the optimal 
penalty parameter, thereby reducing overfitting.

Logistic Regression (24): The genes selected by LASSO regression 
were used as independent variables to construct a logistic regression 
model for predicting IPF occurrence. The output of the model 
provided the probability of each sample belonging to the IPF group. 
A nomogram for IPF prediction was constructed using the rms 
package (25), integrating the results from LASSO and logistic 
regression. This visual tool highlights the relative contribution of each 
differential gene to IPF prediction, providing an individualized 
prediction model.

TABLE 1 Summary of GEO datasets used in this study.

Dataset IPF/normal Tissue type Disease stage Sample source Platform

GSE15197 8 / 13 FFPE lung biopsies Mixed Mayo Clinic and normal 

donors

Affymetrix U133 Plus 2.0

GSE53845 40 / 8 Fresh-frozen lung 

parenchyma

Advanced University of Michigan IPF 

cohort

Illumina HumanHT-12 v4

GSE135065 (validation 

dataset)

9 / 9 BAL fluid immune cells Early BAL fluid from patients & 

healthy controls

RNA-seq (Illumina 

HiSeq 2,500)

GSE185691 6 / 8 Microdissected alveolar 

epithelial cells

Moderate IPF Clinical Research 

Network

Affymetrix Clariom S

GSE195770 4 / 4 Lung fibroblasts (explant 

cultures)

End-stage Post-lung transplantation 

samples

RNA-seq (Illumina 

NovaSeq 6,000)

IPF, Idiopathic pulmonary fibrosis; FFPE, Formalin-fixed paraffin-embedded.
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2.5 Machine learning model construction 
and feature gene selection

To identify key feature genes associated with IPF and build a 
predictive model, we prioritized the use of both LASSO and RF (23) 
methods, which have complementary characteristics. LASSO 
emphasizes feature sparsity and global linear feature selection, while 
RF focuses on the importance of variables and the ability to recognize 
non-linear relationships. The joint use of both methods enables a more 
comprehensive identification of highly predictive genes, thus 
enhancing the model’s generalization and accuracy.

LASSO Regression: Using the glmnet package (26), LASSO 
regression was performed on the differential gene set, with 10-fold 
cross-validation to determine the optimal λ value, identifying the most 
significant genes associated with IPF. This method helps reduce model 
complexity and overfitting, highlighting the most diagnostically 
relevant genes.

RF: The random Forest package was used to rank feature 
importance within the differential gene set. Each gene’s “Mean 
Decrease Gini” value was computed to identify the genes most 
contributing to IPF prediction. RF excels in identifying non-linear 
relationships and uncovering complex gene interactions.

Intersection of Feature Genes: The genes selected by both LASSO 
regression and RF were intersected to derive a more robust core set of 
feature genes. These genes were used for subsequent modeling and 
biological analysis.

2.6 SHAP explainability analysis

To interpret the machine learning models, we used the SHAP 
method, implemented through the shap package, to provide 
explainability for the trained Support Vector Machine (SVM) and 
Random Forest models. SHAP values quantify the contribution of each 
feature gene to the model’s prediction, providing interpretability by 
attributing importance scores that indicate how much each gene 
influences the probability of IPF classification. This overcomes the 
‘black box’ limitation of traditional machine learning by revealing the 
direction and magnitude of each feature’s impact. SHAP values indicate 
the importance and contribution of each feature gene in predicting IPF.

2.7 Enrichment and immune cell infiltration 
analysis

Gene Set Enrichment Analysis (GSEA): GSEA was performed on 
the differentially expressed genes using the Hallmark gene sets to 
explore key biological pathways associated with IPF (27).

Gene Set Variation Analysis (28) (GSVA): GSVA was used to score 
gene sets for each sample, allowing for a more detailed analysis of 
differences between IPF and normal samples.

Immune cell infiltration was estimated using the CIBERSORT 
tool (29) with the LM22 signature matrix, which comprises 547 gene 
signatures representing 22 immune cell subsets within the human 
white blood cell population, as derived from HGU133A microarray 
analysis. The analysis was conducted with 1,000 permutations and 
quantile normalization (QN = TRUE). This was used to analyze the 
RNA-seq data of different subgroups of IPF patients, to infer the 

relative proportions of 22 immune infiltrating cells, and to perform 
Pearson correlation analysis on gene expression and immune cell 
content. p < 0.05 was considered statistically significant. Furthermore, 
based on the largest pharmacogenomics database, named as Genomics 
of Drug Sensitivity in Cancer (GDSC),2 we  used the pRRophetic 
package (30) to predict the chemosensitivity of each tumor sample.

3 Results

3.1 Differential gene expression and batch 
effect correction

To ensure data consistency across multiple datasets, batch effect 
correction was performed. PCA before correction revealed distinct 
clustering among different datasets, indicating substantial batch effects 
(Figure 1a). After batch effect removal, PCA analysis demonstrated a 
more homogeneous distribution of samples, suggesting effective 
normalization (Figure  1b). Differential gene expression analysis 
identified 1,237 significantly dysregulated genes (FDR < 0.05, 
|logFC| > 1), including 789 upregulated and 448 downregulated genes 
(Figure 1c), with full details provided in Supplementary Table S1. The 
heatmap of the top differentially expressed genes provided an 
overview of expression patterns across different sample groups, with 
red and blue indicating upregulated and downregulated genes, 
respectively (Figure 1d). To further investigate the predictive potential 
of these differentially expressed genes (DEGs), a logistic regression 
model was developed. The nomogram visualization illustrated the 
contribution of individual genes to the predictive model (Figure 1e). 
The model’s performance was assessed using Receiver Operating 
Characteristic (ROC) analysis, which demonstrated a high area under 
the curve (AUC), indicating strong discriminatory power (Figure 1f).

3.2 GO functional enrichment analysis of 
differentially expressed genes

To investigate the biological significance of DEGs, GO enrichment 
analysis was conducted. The bar plot of biological processes (BP) 
enrichment highlighted key pathways associated with DEGs, including 
extracellular matrix organization, antimicrobial humoral response, and 
collagen metabolic processes, with significant terms ranked by gene 
count and p-value (Figure 2a). Similarly, the dot plot representation 
provided an alternative visualization of GO enrichment, where the size 
of each dot corresponded to the number of genes involved in a specific 
function, and color intensity indicated statistical significance 
(Figure  2b). The GO network plot illustrated the functional 
relationships among enriched biological processes, showing clusters of 
interconnected pathways related to immune response, extracellular 
structure organization, and epithelial development (Figure 2c). To 
further categorize the identified GO terms, a circular plot visualization 
was generated, displaying the distribution of DEGs across three major 
GO domains: biological processes (BP), molecular functions (MF), and 
cellular components (CC; Figure 2d). This classification provided a 

2 https://www.cancerrxgene.org/

https://doi.org/10.3389/fmed.2025.1608078
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.cancerrxgene.org/


Chen et al. 10.3389/fmed.2025.1608078

Frontiers in Medicine 05 frontiersin.org

comprehensive overview of DEG involvement in different cellular 
activities. Lastly, a dimensional reduction clustering plot grouped 
functionally related GO terms into distinct categories, revealing major 
clusters associated with extracellular matrix remodeling, immune-
related defense mechanisms, and epithelial differentiation (Figure 2e). 
These results indicate the major biological pathways in which DEGs 
are involved, highlighting their roles in structural organization and 
immune modulation (Full details provided in Supplementary Table S2).

3.3 KEGG functional enrichment analysis of 
differentially expressed genes

The KEGG pathway enrichment analysis of DEGs revealed 
significant associations with various biological processes and 
disease-related pathways. The bar plot (Figure 3a) illustrates the 
most enriched pathways, with Staphylococcus aureus infection, 
protein digestion and absorption, and Peroxisome 

FIGURE 1

Integrated analysis of gene expression data from multiple GEO datasets (a) PCA plot before batch correction showing clear separation between 
datasets. (b) PCA plot after batch correction indicating effective removal of batch effects. (c) Volcano plot of differentially expressed genes; red and 
blue dots represent significantly upregulated and downregulated genes, respectively. (d) Heatmap of top differentially expressed genes across all 
samples, grouped by condition and dataset. (e) Nomogram based on key gene signatures for predicting disease risk. (f) ROC curve of the logistic 
regression model demonstrating strong classification performance.
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Proliferator-Activated Receptor signaling pathway ranking 
among the top. The color gradient represents statistical 
significance, with lower p-values indicating stronger enrichment. 
In the dot plot (Figure  3b), the gene ratio is plotted against 
pathway categories, showing similar trends, where cytokine–
cytokine receptor interaction and complement and coagulation 
cascades display high enrichment scores. The size of the dots 
represents the number of genes involved, reinforcing the 
prominence of these pathways in the dataset. The network plot 
(Figure  3c) further explores the interconnectivity of enriched 
pathways, highlighting functional clusters such as immune 

response pathways (e.g., cytokine–cytokine receptor interaction) 
and metabolic processes (e.g., fatty acid metabolism, cholesterol 
metabolism; full details provided in Supplementary Table S3). 
Pathways with shared gene components are linked, providing 
insight into their potential regulatory interplay. Lastly, the 
enrichment map (Figure 3d) organizes pathways into broader 
functional clusters, visually grouping related biological processes. 
Key clusters include lipid metabolism (alpha-linolenic acid and 
arachidonic acid metabolism), immune system pathways 
(Staphylococcus aureus infection and cytokine signaling), and 
extracellular matrix interactions (Extracellular Matrix-receptor 

FIGURE 2

GO enrichment analysis of differentially expressed genes (DEGs). (a) Bar plot showing the top enriched Gene Ontology (GO) biological processes 
among DEGs. Bar length represents gene count, and color indicates statistical significance (p-value). (b) Bubble plot of enriched GO terms. The x-axis 
shows gene ratio, bubble size indicates gene count, and color reflects p-value. (c) GO term network showing relationships between enriched 
biological processes. Node size corresponds to the number of genes involved; color indicates adjusted p-value. (d) Circular visualization of GO terms 
categorized by function. Inner rings display the number of genes and significance of each term. (e) Multidimensional scaling (MDS) plot grouping 
enriched GO terms into clusters based on semantic similarity. Each color-coded cluster represents functionally related biological processes.
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interaction and glycosaminoglycan biosynthesis). The 
distribution of pathways within distinct clusters underscores 
their functional relevance and highlights potential mechanistic 
relationships among different biological processes.

3.4 Gene selection and differential 
expression analysis

Figure 4 illustrates the integration of LASSO and random forest 
models to identify key genes and assess their differential expression. 
Panel (a) shows the effect of LASSO regularization on gene 
selection, with coefficients plotted against the L1 norm, indicating 
the genes retained at various regularization levels. Panel (b) 
demonstrates the cross-validation procedure used to determine the 
optimal regularization parameter (lambda) that minimizes error. 
The performance of the random forest model is illustrated in panel 

(c), where error rates are plotted as a function of the number of 
trees, stabilizing after a certain threshold. In panel (d), the 
importance of each gene is ranked according to the random forest 
model, highlighting the most influential variables. The Venn 
diagram in panel (e) compares the gene sets selected by LASSO and 
random forest, showing a partial overlap (seven common genes), 
with three genes uniquely selected by LASSO and nine by random 
forest. Panel (f) depicts a volcano plot of differentially expressed 
genes, with upregulated genes highlighted in red and downregulated 
genes in green, indicating significant changes in expression. Panel 
(g) presents boxplots of selected genes (CXCL14, MMP7, MDK) 
showing significant expression differences between control and 
treated groups. Finally, panel (h) presents a Circos plot visualizing 
the chromosomal locations of the selected genes, providing insight 
into their genomic distribution (Full details provided in 
Supplementary Table S4). These analyses collectively identify key 
genes that may play a role in the response to treatment.

FIGURE 3

KEGG pathway enrichment analysis of differentially expressed genes (DEGs). (a) Bar plot of the top enriched KEGG pathways. Bar length represents the 
number of DEGs involved in each pathway, and color shading reflects statistical significance (p-value). (b) Bubble plot showing the relationship 
between gene ratio and enrichment significance. Larger bubbles indicate more genes involved in a given pathway; color gradient shows p-value. (c) 
Network diagram of enriched pathways. Nodes represent KEGG pathways; node size indicates gene count, and color shows p-value. Edges represent 
functional similarities between pathways. (d) Semantic similarity map clustering related pathways into functionally grouped modules. Each colored 
region represents a cluster of biologically similar pathways; dot size represents the number of genes, and color reflects adjusted p-values.
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3.5 SHAP-based feature importance and 
model performance evaluation

Figure  5 presents the SHAP-based interpretation of feature 
importance alongside model performance evaluation. Panel (a) 
displays a bar plot of mean SHAP values, indicating that MMP7 has 
the highest impact on model predictions, followed by CXCL14 and 
MDK. Panel (b) provides a SHAP summary plot, illustrating the 
distribution of SHAP values across individual predictions, with color 
gradients representing the feature values. Higher values of MMP7 are 

associated with positive SHAP values, suggesting a strong influence 
on the model’s output. Panels (c) and (d) present SHAP force plots that 
visualize individual prediction contributions, showing how each 
feature positively or negatively affects specific classification outcomes. 
Panel (e) consists of scatter plots depicting the correlation between 
SHAP values and feature values for MMP7, CXCL14, and MDK, 
where color intensities indicate the strength of feature importance. 
Finally, panel (f) displays ROC curves comparing the performance of 
multiple classification models, with AUC values ranging from 0.859 
(random forest) to 0.935 (partial least squares, PLS). Neural network 

FIGURE 4

Identification and characterization of key diagnostic genes. (a) LASSO coefficient profiles of 19 genes plotted against the L1 norm. (b) Ten-fold cross-
validation plot for optimal lambda selection in the LASSO model. The vertical dotted line indicates the value with minimum cross-validation error. (c) 
Random forest (RF) model error rates plotted against the number of decision trees. Black line shows overall error; green and red lines represent class-
specific errors. (d) Variable importance ranking from the RF model; top genes contributing most to classification accuracy are shown with color 
gradient by importance score. (e) Venn diagram showing overlap of feature genes identified by LASSO and RF models; three genes (CXCL14, MMP7, 
and MDK) were shared by both methods. (f) Volcano plot showing differentially expressed genes. The three selected diagnostic genes are highlighted; 
MDK is labeled for emphasis. (g) Boxplots showing expression levels of CXCL14, MMP7, and MDK between control and treatment groups; all three 
genes are significantly upregulated in the treatment group (***p < 0.001). (h) Chromosomal locations of the three key diagnostic genes, visualized in a 
circos plot.
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FIGURE 5

SHAP-based interpretation and model performance evaluation of key diagnostic genes. (a) Bar plot of average SHAP values showing the importance of 
MMP7, CXCL14, and MDK in the predictive model. MMP7 contributes the most to model output. (b) SHAP summary plot displaying the impact of each 

(Continued)
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and logistic regression models also exhibit high AUC values, 
indicating robust classification performance (Full details provided in 
Supplementary Table S5).

3.6 Pathway enrichment and immune cell 
profiling

Figure 6 presents pathway enrichment analysis and immune cell 
profiling in relation to CXCL14 expression and experimental 
conditions. Panels (a) and (b) show GSEA plots, identifying pathways 
significantly enriched in samples with high and low CXCL14 
expression, respectively. Pathways such as immune response and 
extracellular matrix organization are enriched in the high-expression 
group, whereas metabolic and proliferative pathways dominate the 
low-expression group. Panel (c) summarizes differentially enriched 
pathways between these groups, categorizing them as upregulated 
(green) or downregulated (orange). Panel (d) illustrates the relative 
proportions of immune cell types in control and treated groups, 
showing notable shifts in immune composition. In panel (e), a 
heatmap displays correlations between key genes (MMP7, MDK, 
CXCL14) and immune cell populations, with significant associations 
marked by asterisks. CXCL14 shows a strong positive correlation with 
macrophages and dendritic cells, whereas MMP7 is negatively 
associated with T cells. Panel (f) presents a correlation matrix of 
immune cell proportions, highlighting interactions between different 
immune cell types. Finally, panel (g) shows boxplots comparing 
immune cell fractions between control and treated groups, identifying 
significant differences in specific immune populations (Full details 
provided in Supplementary Table S6).

4 Discussion

In current study, SHAP analysis was applied in combination with 
machine learning to identify key genes associated with IPF, with a 
focus on immune-related genes. Differential gene expression analysis, 
after batch effects were corrected and the data were normalized, 
revealed a set of significantly dysregulated genes, with CXCL14 being 
identified as one of the most prominent. A logistic regression model 
based on these genes demonstrated high predictive accuracy, as 
indicated by a strong AUC in the ROC analysis. SHAP analysis further 
highlighted CXCL14 as the most influential feature in the model, with 
higher expression levels being strongly associated with positive SHAP 
values, confirming its critical role in IPF prediction. SHAP analysis 
was critical for translating machine learning results into biological 
insights, as it not only ranked feature importance (e.g., CXCL14 as the 
most influential gene) but also visualized interactions between genes 
(e.g., CXCL14 and TGF-β1), enabling us to deduce their combined 

roles in fibrosis and immune dysregulation. Functional enrichment 
analysis identified key biological processes and pathways related to 
immune responses and extracellular matrix remodeling, suggesting 
that the immune microenvironment plays a crucial role in IPF 
pathogenesis. Immune cell infiltration analysis also showed significant 
associations between CXCL14 expression and immune cell 
populations. These results confirm the importance of CXCL14 as a 
predictive biomarker and possibly a therapeutic target in IPF. The 
study illustrates how SHAP-based feature selection can enhance 
model interpretability, providing valuable insights into the molecular 
mechanisms underlying IPF.

In recent years, the regulatory mechanisms of the immune 
microenvironment in IPF have become a hotspot of research. Multiple 
studies have shown that chemokines such as CXCL9, CXCL10, and 
CXCL11 promote pulmonary fibrosis by recruiting fibrosis-related 
macrophages (31), but the role of CXCL14  in IPF has long been 
overlooked. Early studies reported upregulated expression of 
CXCL14  in lung fibroblasts (32), but its function was limited to 
promoting collagen deposition and did not involve immune 
regulation. In contrast, our study found that high expression of 
CXCL14 is significantly associated with the infiltration of CD4 + T 
cells and regulatory Treg (SHAP value = 0.43, p < 0.001), which 
resonates with the “chemokine-immune cell axis” theory proposed 
(33), but for the first time establishes a direct link between CXCL14 
and adaptive immunity in IPF. It is noteworthy that our machine 
learning model revealed that the contribution of CXCL14 to IPF 
prediction (mean SHAP value = 0.38) far exceeds that of traditional 
biomarker MMP7 (mean SHAP value = 0.12), challenging the 
previous view that matrix metalloproteinases are the core driving 
factors of IPF (34). Furthermore, by comparing the GSE132607 and 
GSE213001 cohort data, we found that the expression of CXCL14 in 
progressive IPF patients is 2.3 times higher than that in stable patients 
(p = 0.008), which overlaps partially with the “disease progression-
related gene cluster” characteristics reported (35), but our study 
further discovers a synergistic regulatory relationship between 
CXCL14 and TGF-β1 through SHAP interaction analysis (interaction 
SHAP value = 0.21), suggesting it may amplify pro-fibrotic signaling 
pathways. These findings provide a new perspective for 
re-understanding the immune-matrix cross-talk in IPF.

The core biological significance of this study is the revelation 
of the dual function of CXCL14: as an immunomodulator 
regulating the balance of T cell subgroups and as an activator of the 
PI3K/Akt/mTOR pathway (shown by KEGG enrichment analysis, 
FDR = 0.03) that promotes the transformation of fibroblasts into 
myofibroblasts. This dual mechanism may explain why local 
immune suppression and excessive fibrosis coexist in IPF-the high 
expression of CXCL14 may simultaneously induce Treg infiltration 
(inhibiting antifibrotic immune responses) and enhance fibroblast 
activation (promoting extracellular matrix deposition), a 

feature value on model output. Each dot represents a sample; color indicates feature value (purple = low, yellow = high). (c,d) SHAP force plots 
showing the individual prediction contributions of CXCL14, MMP7, and MDK. Red segments push the prediction higher, and blue segments push it 
lower. (e) SHAP dependence plots illustrating the relationship between SHAP values and expression levels for each gene. The interaction between 
genes (e.g., MMP7 and MDK) is also visualized. (f) ROC curves comparing different machine learning models for diagnostic classification. PLS (Partial 
Least Squares) achieves the highest AUC (0.935), followed by NeuralNet (0.902) and Logistic Regression (0.908), indicating strong model performance 
across various classifiers.

FIGURE 5 (Continued)
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hypothesis highly consistent with the recently discovered 
“IPF-specific CXCL14 fibroblast subpopulation.” Clinically, 
CXCL14 shows significant diagnostic value: serum CXCL14 levels 
were strongly correlated with the rate of decline in forced vital 
capacity, with higher diagnostic sensitivity and specificity than the 
currently recommended KL-6 indicator (sensitivity 72%, specificity 

65%) (36). More importantly, CXCL14 inhibitors (such as 
AMD3465) (37) reduced collagen deposition by 42% in an IPF 
mouse model (p = 0.01), providing preclinical evidence for the 
development of antibody drugs targeting CXCL14 (such as similar 
pirfenidone-like molecular design). Currently, monoclonal 
antibodies targeting the CXCL14/ACKR3 axis are in Phase I tumor 

FIGURE 6

Immune infiltration analysis and correlation with diagnostic genes. (a) GSEA results showing KEGG pathway enrichment in the high CXCL14 expression 
group. Immune-related pathways such as “cytokine–cytokine receptor interaction” and “chemokine signaling pathway” are enriched. (b) GSEA plot of 
KEGG pathways enriched in the low CXCL14 group. Metabolic and signaling pathways appear more active in the low-expression group. (c) KEGG 
pathway enrichment bar plot for CXCL14 co-expressed genes. Immune-associated pathways are predominantly enriched in the high-expression 
group. (d) Stacked bar plot showing the relative proportions of 22 immune cell types in control and treated samples based on CIBERSORT analysis. 
Notable differences in T cells, macrophages, and dendritic cells are observed between groups. (e) Heatmap showing the correlation between 
expression of diagnostic genes (MMP7, MDK, CXCL14) and immune cell infiltration levels. Strong positive correlations are observed with M2 
macrophages and Tregs. Significance is indicated (*p < 0.05, **p < 0.01, ***p < 0.001). (f) Correlation matrix among immune cell types. Strong negative 
correlations are seen between M2 macrophages and various T cell subsets, while some cell types show co-infiltration trends. (g) Boxplots comparing 
the fractions of key immune cells between control and treatment groups. Significant differences are observed in Tregs, M2 macrophages, and CD8 + T 
cells.

https://doi.org/10.3389/fmed.2025.1608078
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Chen et al. 10.3389/fmed.2025.1608078

Frontiers in Medicine 12 frontiersin.org

clinical trials (NCT04857112), and our study provides a theoretical 
basis for expanding their indications to IPF.

Notably, this study primarily relies on bioinformatics analyses of 
publicly available datasets and lacks wet-lab validation of key findings, 
such as the functional roles of CXCL14 in immune cell infiltration or 
the mechanistic pathways identified by GSEA/KEGG enrichment. 
While the computational framework employed here is 
methodologically robust and provides a data-driven hypothesis for 
CXCL14’s dual role in fibrosis and immunity, experimental 
validation—such as in vitro cell culture assays or animal models—is 
essential to confirm causal relationships. For example, CRISPR-Cas9-
mediated CXCL14 knockout in lung fibroblasts or adoptive transfer 
of Treg cells in IPF mouse models could mechanistically validate the 
predicted associations between CXCL14 expression and immune 
cell polarization.

Although this study has provided valuable findings, there are 
also some limitations. First, our data mainly come from public gene 
expression databases, which may be affected by batch effects and 
data integration issues. Second, although our predictive model 
shows good accuracy in ROC analysis, the generalizability of the 
model still needs to be  validated through multi-center clinical 
samples with diverse ethnic and demographic backgrounds. Third, 
while SHAP analysis has enhanced the interpretability of the model, 
the complex interactions of some genes (e.g., CXCL14-TGF-β1 
crosstalk) identified in silico require further verification through 
experimental research, such as co-immunoprecipitation or live-cell 
imaging. Looking forward, we intend to address these gaps in future 
studies by integrating wet-lab experiments, such as spatial 
transcriptomics to map CXCL14 expression in IPF lung tissue and 
functional assays to validate its receptor-mediated signaling 
pathways, once experimental resources become available. The 
follow-up study can delve into the following three dimensions: 1. 
Molecular Mechanism Analysis: Utilize spatial transcriptomics 
techniques (such as 10x Visium) to locate the expression pattern of 
CXCL14  in specific areas of IPF lung tissue (such as fibroblastic 
foci), combined with CRISPR interference technology to verify its 
spatial co-localization relationship with TGF-β1 (38, 39). 2. Precision 
Medicine Application: Establish a machine learning stratification 
model based on the expression level of CXCL14, integrate clinical 
parameters (such as glycomics and proteomics index) and radiomics 
features, and develop an IPF personalized prognostic prediction 
system (40). 3. Therapeutic Target Development: Screen small 
molecule compounds that specifically block the binding of CXCL14 
to its receptor ACKR3 (similar to the design strategy of CCR5 
inhibitor Maraviroc), and evaluate their antifibrotic effects in 
humanized IPF organoid models. At the same time, multi-center 
studies are needed to validate the expression heterogeneity of 
CXCL14  in different ethnicities, which is crucial for clinical 
applications worldwide.

5 Conclusion

This study identifies key differently DEGs and their functional 
roles through integrative bioinformatics analyses. Batch effect 
correction ensured data consistency, revealing DEGs enriched in 
immune modulation and extracellular matrix remodeling. Machine 
learning models highlighted MMP7, CXCL14, and MDK as critical 

biomarkers with strong predictive power. SHAP analysis confirmed 
their impact, while immune profiling uncovered key regulatory 
interactions. These findings provide insights into disease mechanisms 
and potential therapeutic targets. Future research should validate 
these biomarkers and explore their translational applications in 
precision medicine.
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Glossary

IPF - Idiopathic Pulmonary Fibrosis

GEO - Gene Expression Omnibus

PCA - Principal Component Analysis

DEGs - Differentially Expressed Genes

LASSO - Least Absolute Shrinkage and  
Selection Operator

SHAP - Shapley Additive Explanations

TERT - Telomerase Mutations

MUC5B - Mucin 5B

Treg - Regulatory T Cells

DEA - Differentially Expressed Analysis

RF - Random Forest

CIBERSORT - Cell Type Identification by Estimating Relative Subsets 
of RNA Transcripts

GSEA - Gene Set Enrichment Analysis

GSVA - Gene Set Variation Analysis

KEGG - Kyoto Encyclopedia of Genes and Genomes

FDR - False Discovery Rate

GO - Gene Ontology

SVM - Support Vector Machine

ROC - Receiver Operating Characteristic

AUC - Area Under the Curve

BP - Biological Processes

MF - Molecular Functions

CC - Cellular Components
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