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Background: TP53 mutations play a critical role in the clinical management 
and prognostic evaluation of gynecologic malignancies such as cervical, 
endometrial, and ovarian cancers. With the advancement of radiomics and deep 
learning technologies, noninvasive AI models based on medical imaging have 
become important tools for assessing TP53 mutation status.

Methods: This study retrospectively analyzed 259 patients with cervical, 
endometrial, or ovarian cancer who underwent PET/CT before treatment. 
Radiomics features from tumors and brown adipose tissue (BAT) were extracted, 
and a Transformer-based model was developed to predict TP53 mutation by 
integrating imaging and clinical data. The model was trained with five-fold 
cross-validation, and clustering analysis was performed on deep features to 
explore their correlation with TP53 status.

Results: Radiomic features from tumor CT images, tumor PET images, brown 
adipose tissue CT images, and brown adipose tissue PET images were all found 
to be associated with TP53 mutation status in gynecological tumors. On the test 
set, the accuracy of the tumor CT radiomic model was 0.7931, the tumor PET 
radiomic model achieved an accuracy of 0.8276, the brown adipose tissue CT 
radiomic model had an accuracy of 0.7241, and the brown adipose tissue PET 
radiomic model reached an accuracy of 0.7931. The combined model achieved 
an accuracy of 0.8620 on the test set, and after automatic annotation using 
nn-UNet, the combined model’s accuracy was 0.8000. Unsupervised clustering 
of the deep features extracted by the combined model showed that the image 
clustering patterns were significantly correlated with TP53 mutation status 
(p = 0.001, p < 0.05), indicating that our model successfully captured TP53-
related features that exist across different cancer types.

Conclusion: This study demonstrates that radiomic features from tumor and 
brown adipose tissue CT and PET images are closely associated with TP53 
mutation status in gynecological tumors. This study constructed a cross-cancer 
TP53 model. The combined model constructed based on multi-modal imaging 
effectively captures TP53-related imaging phenotypes across different cancer 
types, and these phenotypic patterns show a significant correlation with TP53 
mutation status.
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1 Introduction

Cervical, endometrial, and ovarian cancers are the three major 
malignancies of the female reproductive system, contributing to an 
estimated 5 million deaths globally each year (1). Cervical cancer 
accounts for approximately 3.1% of new cancer cases, while 
endometrial cancer constitutes 2.2%, and ovarian cancer makes 
up 1.6%. TP53, a tumor suppressor protein, acts as a key safeguard 
mechanism against cancer by inhibiting cell division and responding 
to various stresses. Therefore, TP53 tumor suppressor gene mutations 
frequently occur in human cancers (2). In cervical cancer, TP53 
mutations can be attributed to HPV infection, rendering individuals 
susceptible to the disease (3). TP53 mutations in endometrial cancer 
aid in identifying specific, high-risk tumor genotypes/phenotypes. In 
endometrial cancer, the CNH subgroup includes all uterine serous 
carcinomas and approximately 25% of high-grade endometrial cancer, 
which exhibits TP53 pathogenic mutations. Besides its diagnostic role, 
TP53 serves as a predictive factor in chemotherapy (4). In high-grade 
ovarian cancer, TP53 mutations are widespread (5), and TP53 
inactivation assessment can predict the intrinsic and acquired 
resistance to taxane-based drugs (6). Despite differences in the 
epidemiology, genetic risk, and tumor microenvironment of various 
cancers, TP53 mutations play essential roles in these three types 
of tumors.

TP53 mutation status in gynecologic cancers can be  highly 
accurately detected using p53 immunohistochemistry (IHC) (7). 
However, as a highly specific diagnostic method, IHC requires additional 
procedures, increasing the workload for pathologists. Currently, 
18F-FDG is the most commonly used radiotracer for PET/CT (Positron 
emission tomography/computed tomography) imaging of malignant 
tumors, with a primary focus on glucose metabolism within tissues. 
PET/CT offers advantages in initial staging and response assessment in 
cancer patients by combining functional and anatomical information 
(8). The diagnostic value of 18F-FDG PET/CT has been confirmed in 
various gynecologic tumors and has also been validated for assessing 
tumor responses to tumor markers and predicting patient responses to 
treatment (9–11). Researches suggests that there may be a highly similar 
growth pattern associated with TP53 mutations in different types of 
tumors in medical images from various modalities (12–14).

PET/CT not only provides imaging information of the tumor itself 
but also reflects relevant features of brown adipose tissue (15). Brown 
adipose tissue is a mitochondria-rich fat tissue whose main function is 
to regulate body temperature through non-shivering thermogenesis. It 
is abundant in newborns and, although present in smaller amounts in 
adults, is mainly distributed in areas such as the neck and supraclavicular 
region (16). As a metabolism-related biomarker, brown adipose tissue 
can predict weight loss and the risk of cancer cachexia in tumor patients 
(17). Moreover, the presence of brown adipose tissue and the browning 
of white adipose tissue exert certain anti-cancer effects by regulating 
tumor glycolytic metabolism (18). Studies have also shown that brown 
adipose tissue is closely associated with tumor mutation status and can 
serve as an independent risk factor to predict recurrence and mortality 
in tumor patients (19, 20). These findings suggest that brown adipose 
tissue holds broad application prospects in tumor-related research.

In the medical field, artificial intelligence methods have been 
extremely widely used (21). Medical images including pathology, 
pathological images, and radiology images are processed by artificial 
intelligence methods (22, 23). At present, multi-modal medical images 
based on gynecological tumors can predict the benign and malignant 
tumors, gene mutations, lymph node metastasis status, chemotherapy 
treatment response, patient prognosis and other types of medical 
information (24). Some of these techniques are already in practice. For 
example, deep learning-based classification of cells on cervical smears 
has been applied in medical practice to improve the efficiency of 
tumor screening (25–27).

This study extracted radiomic features from tumor regions and 
brown adipose tissue regions, analyzed their correlation with TP53 
mutation status, and evaluated the distribution differences of these 
features among three major gynecological tumors—endometrial 
cancer, cervical cancer, and ovarian cancer. Based on this, we compared 
the radiomic features of tumor regions and brown adipose tissue 
regions under two modalities, PET and CT, and established four deep 
learning models to predict TP53 mutation status in these three tumors. 
Subsequently, a combined model was developed to predict TP53 
mutation status. We  further extracted the high-dimensional deep 
learning features from this model for clustering analysis.

2 Materials and methods

Our institutional review board has approved the current study 
(Shengjing Ethics Committee, 2023PS1013K). The written informed 
consent was waived for the retrospective cohorts.

2.1 Retrospective cohort

We conducted a retrieval of patients who visited Shengjing 
Hospital, China Medical University, from January 2016 to May 2023. 
As shown in Figure 1, we included patients according to the following 
criteria: (a) The patient underwent a PET/CT examination within 
2 weeks of initial admission and received a biopsy or surgery to 
pathologically confirm any of primary cervical, endometrial, or ovarian 
cancer following the imaging examination; (b) Patients had not received 
any treatment before the PET/CT; and (c) Patients were over 18 years 
old and had no developmental abnormalities. Our study adhered to the 
following exclusion criteria; (d) Patients with a history of gynecological 
diseases; and (e) Patients with secondary tumors or a history of other 
tumors. As a result, this study included a total of 259 patients.

For privacy protection, we de-identified the data, retaining only 
images and relevant imaging information.

2.2 Pathology processing and TP53 
assessment

Pathological specimens were obtained from the enrolled patients. 
Pathological specimens were prepared into H&E stained slides by 
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standard procedure and photographed. All images were re-evaluated 
by pathologists to ensure that the central area of the images contained 
clearly identifiable typical tumor tissue. On this basis, the TP53 
mutation status was determined using IHC. Paraffin-embedded 
sections were subjected to IHC staining, observed, and photographed 
under a microscope. The standard IHC SP method was used for 
susceptibility gene expression detection, and slides were examined by 
pathologists. Observations with staining greater than 5% were 
diagnosed as having a TP53 mutation. In addition, we also collected 
patients’ tumor staging, lymph node metastasis status, and 
pathological grading.

2.3 Radiomics and cross-modality tumor 
segmentation pipeline

Before 18F-fluorodeoxyglucose (18F-FDG) PET/CT scanning, all 
patients fasted for ≥6 h and had blood glucose levels of 
≤7 mmol/L. They were injected with 3.70–5.55 MBq/kg 18F-FDG in 
the resting state. After 60 min, 18F-FDG PET/CT scanning was 
performed on a Discovery PET/CT 690 scanner (GE Healthcare, 
Waukesha, WI, USA) while the patients were lying on the patient bed. 
The scan ranged from the calvarium to the middle thigh (120 s/bed). 
The slice thickness, tube voltage, and tube current for CT scans were 
3.75 mm, 120–140 kvp, and 80 mA, respectively.

The image annotation was manually performed based on PET 
images using 3D Slicer by three radiologists with over 5 years of 
experience. The region of interest (ROI) was defined as the tumor 

area. In cases of disagreement among the radiologists, the final 
annotation was determined through consensus. Since PET and CT 
images were acquired on the same plane, the PET images were 
resampled to match the resolution of the CT images and then cropped 
to 512 × 512 pixels centered on the image. Both CT and PET images 
were normalized, as shown in Figure 2.

Radiomic features were separately extracted from tumor images 
of CT and PET, yielding a total of 1,781 features. All features were 
automatically extracted based on regions of interest (ROI) using the 
PyRadiomics tool. Feature extraction covered the original images as 
well as various filtered images, including square transformation 
(Square), square root transformation (SquareRoot), logarithmic 
transformation (Logarithm), exponential transformation 
(Exponential), Laplacian of Gaussian filtering (LoG), wavelet 
transform (Wavelet), 3D local binary pattern (LBP3D), and gradient 
images (Gradient). The final extracted features comprised 456 gray 
level co-occurrence matrix (GLCM) features, 342 first-order statistics 
features, 304 gray level run length matrix (GLRLM) features, 304 gray 
level size zone matrix (GLSZM) features, 266 gray level dependence 
matrix (GLDM) features, 95 neighboring gray tone difference matrix 
(NGTDM) features, and 14 shape-based features, which were used to 
quantitatively characterize the tumor imaging phenotypes from 
multiple dimensions.

To enhance the clinical usability of the diagnostic system, 
we  developed a cross-modality gynecologic tumor segmentation 
model based on the annotated ROIs. We employed the nnU-Net 
framework for training (28). This framework is an adaptive 
benchmark segmentation method that automatically configures 

FIGURE 1

Inclusion and exclusion criteria workflow for patient data selection in cervical, endometrial, and ovarian cancers.
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network architecture, preprocessing, training, and post-processing 
pipelines according to the characteristics of the dataset. We selected 
the 3D U-Net full resolution model structure and trained it for 100 
epochs. During training, the model weights with the best validation 
Dice score were saved for each fold. At the testing stage, nnU-Net 
automatically enabled sliding window inference and incorporated 
test-time augmentation (TTA) to improve prediction stability. The 
final results were obtained by ensemble prediction using the five-
fold models.

2.4 Identification and radiomics feature 
extraction of brown adipose tissue

We detected brown adipose tissue (BAT) activated under normal 
temperature conditions on PET/CT images. Regions with a 
standardized uptake value (SUV) greater than 1.5 were selected from 
the PET images, and combined with CT images, areas with CT values 
between −190 HU and −10 HU were identified as brown adipose 
tissue and annotated accordingly. Radiomics features were extracted 
separately from the BAT regions on both CT and PET images, 
yielding a total of 342 features. All features were automatically 
extracted based on regions of interest (ROIs) using the PyRadiomics 
tool. Feature extraction covered the original images and various 
filtered images, including square, square root, logarithm, exponential 
transforms, Laplacian of Gaussian (LoG), wavelet transform, 3D local 
binary pattern (LBP3D), and gradient images. For brown adipose 

tissue, only first-order statistical features were extracted to quantify 
the basic imaging properties of the fat regions through simple and 
intuitive pixel intensity distribution metrics, such as mean gray level, 
intensity range, and dispersion. This approach reflects the overall 
density and uniformity of the adipose tissue, facilitating the 
assessment of metabolic or structural differences, while avoiding the 
complexity and computational burden associated with higher-order 
radiomics features.

2.5 Deep learning-based TP53 
classification model

As shown in Figure 3, in this study, we designed and implemented 
a multimodal feature modeling framework based on the Transformer 
architecture to predict the TP53 gene mutation status in three types 
of gynecologic tumors: cervical cancer, ovarian cancer, and 
endometrial cancer. The dataset was split into training and testing 
sets at a ratio of 9:1 to ensure the independence of model training 
and evaluation. During the training phase, five-fold cross-validation 
was further applied within the training set to optimize the model’s 
hyperparameters and assess its stability and generalization capability. 
In the cross-validation process, each fold’s model was trained on the 
remaining four folds and validated on the current fold, and based on 
this, the performance was compared on the test set. This approach 
fully leverages the limited sample size, improving the model’s 
adaptability and robustness in real-world applications. We modeled 

FIGURE 2

A sample consisted of the patient’s PET cross-sectional image containing the ROI. The first, second, and third rows represent samples from 
endometrial cancer, ovarian cancer, and cervical cancer, respectively. The first column shows the patient’s HE-stained pathological image, the second 
column displays the p53 immunohistochemistry stained image, the third column exhibits the cross-sectional CT image containing the tumor, the 
fourth column presents the cross-sectional PET image containing the tumor, and the fifth column indicates the ROIs annotated on the PET image (The 
red region marked by the blue arrow).
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radiomics features from tumor CT images, tumor PET images, as 
well as CT and PET radiomics features of brown adipose tissue to 
evaluate their predictive power for TP53 mutation. Furthermore, for 
the combined model, we  integrated pathological information 
reflecting patients’ biological characteristics, such as lymph node 
metastasis, tumor grading, and staging. By jointly inputting these 
heterogeneous multimodal data into the Transformer encoder, the 
model can thoroughly explore the latent relationships among 
different modalities, enhancing its ability to discriminate TP53 
mutation status.

2.6 Feature clustering analysis

Based on the well-trained deep learning model, we extracted deep 
learning feature vectors from all samples. Hierarchical clustering was 
employed for clustering patient feature vectors (29). We  used the 
agglomerative clustering method. We  evaluated the clustering 
performance of the model using the Davies-Bouldin Index (DBI) to 
determine the optimal number of clusters and, consequently, the 

clustering pattern of image features (30). Given the characteristics of 
agglomerative clustering and for correlation analysis, we limited the 
number of clusters to a range of 2–9.

2.7 Statistical analysis

We evaluated the accuracy of the deep learning model for 
predicting TP53 mutation status. Additionally, we computed specific 
performance metrics, including Precision, Specificity, Sensitivity 
(Recall), and F1-score.

Statistical analysis was carried out using SPSS 26.0 software. 
Parametric data following a normal distribution were analyzed using 
t-tests or analysis of variance. Non-normally distributed data were tested 
using the Kruskal-Wallis H test. Group data were analyzed using the 
chi-square test. Pearson correlation analysis was used as well. Inter-
group pairwise comparisons were performed using the Mann–Whitney 
U rank-sum test. A significance level of p < 0.05 was considered 
statistically significant. We separately assessed the correlations between 
TP53 mutation status and clustering, as well as cancer type and clustering.

FIGURE 3

The flowchart illustrates the experimental design of this study.
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3 Results

3.1 Baseline characteristics of patients

A total of 259 Endometrial Cancer, Ovarian Cancer and 
Cervical Cancer patients were included in this study, with their 
baseline characteristics, including age, type of cancer, TP53 
mutations, BMI, Lymph node metastasis, tumor grade, as shown 
in Table 1.

PET/CT images of different TP53 states in the three kind of 
tumors are shown in Figure 4.

3.2 Correlation analysis between radiomics 
features and TP53 status

We first performed differential analysis of radiomics features 
between TP53-negative and TP53-positive patients, calculating the 
statistical significance (p-values) and effect sizes for each feature. As 
shown in panels a–i of Figure 5, to explore the differences in the 
association between radiomics features and TP53 mutation status 
across different tumor types, we  conducted feature differential 
analyses separately in patients with cervical cancer, ovarian cancer, 
and endometrial cancer. Volcano plots were used to visualize the 
statistical significance (p-values) and fold changes of each radiomic 
feature under different TP53 statuses for each tumor type, 
facilitating comparison of their performance differences across 
tumor types.

The results showed that although TP53-related radiomics features 
varied to some extent among the three tumor types, as shown in 
panels m–p of Figure 5, when cervical cancer, ovarian cancer, and 
endometrial cancer data were integrated for unified analysis, 
significant differences in tumor structural features (CT radiomics 
features) and metabolic features (PET radiomics features) were still 
observed between the TP53-negative and TP53-positive groups. 
Additionally, the structural features (CT features) and metabolic 
features (PET features) of patients’ brown adipose tissue were also 
closely associated with TP53 mutation status.

3.3 Model performance evaluation

For comparison, we  constructed four models based on four 
different data sources: CT-based radiomic features of tumors, 
PET-based radiomic features of tumors, CT-based radiomic features 
of brown adipose tissue, and PET-based radiomic features of brown 
adipose tissue. Each model was evaluated using five-fold cross-
validation. Subsequently, we incorporated all four types of features 
along with pathological features into a unified model. Additionally, 
we applied our custom tumor annotation using a segmentation model 
based on nn-UNet and conducted further testing on this basis.

3.3.1 Model based on tumor radiomic features
As shown in Figure 6, the models based on tumor data exhibited 

inconsistent performance across the five-fold cross-validation, both 
for CT-based and PET-based models. The model based on CT 
radiomic features achieved an accuracy of 0.7600 on the validation set, 
with a precision of 0.8000, recall of 0.6667, and F1-score of 0.7273. On 
the test set, it achieved an accuracy of 0.7931, precision of 0.8462, 
recall of 0.7333, and F1-score of 0.7857. In contrast, the model based 
on PET radiomic features performed better on the validation set, with 
an accuracy of 0.7800, precision of 0.7667, recall of 0.8519, and 
F1-score of 0.8070. It also demonstrated superior performance on the 
test set, with an accuracy of 0.8276, precision of 0.8462, recall of 
0.7857, and F1-score of 0.8148. Overall, the model constructed using 
PET radiomic features outperformed the CT-based model in terms of 
classification performance, particularly in recall and F1-score, 
indicating a better capability in identifying positive samples.

3.3.2 Models based on brown adipose tissue 
radiomic features

As shown in Figure 7, the models based on brown adipose tissue 
data demonstrated greater stability across the five-fold cross-validation 
compared to models built on tumor features, for both CT-based and 
PET-based models. The CT radiomic feature model achieved an 
accuracy of 0.7059, precision of 0.8182, recall of 0.6207, and F1-score 
of 0.7059 on the validation set; on the test set, the accuracy was 0.7241, 
with both precision and recall at 0.7333, and an F1-score of 0.7333. In 

TABLE 1  Clinical information of the samples.

Endometrial cancer Ovarian cancer Cervical cancer

FIGO stage

I 83 2 57

II 15 1 21

III 11 29 14

IV 4 12 0

Indeterminate 7 1 2

Age 55 (50, 60.25) 55 (50, 62) 53.5 (46, 59)

BMI 24.80 (23.05, 27.55) 23.51 (21.23, 26.18) 22.66 (21.00, 24.79)

Lymph node metastasis
Positive 10 20 15

Negative 110 25 79

Tumor grade

Well-differentiated 19 1 20

Moderately differentiated 30 0 62

Poorly differentiated 71 44 12
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contrast, the PET radiomic feature model performed better on the 
validation set, with an accuracy of 0.8040, precision of 0.8095, recall 
of 0.7391, and F1-score of 0.7727; on the test set, it achieved an 
accuracy of 0.7931, precision of 0.8333, recall of 0.7143, and F1-score 
of 0.7692. Overall, the model constructed using PET radiomic features 
outperformed the CT model across all evaluation metrics, particularly 
showing clear advantages in accuracy and F1-score on the validation 
set, indicating better overall performance and stability in classification 
tasks based on brown adipose tissue features.

3.3.3 Evaluation of the combined model
As shown in Figure  8, the model based on tumor data 

demonstrated relatively consistent performance across the five folds 
of cross-validation. The model’s training and validation losses closely 
tracked each other, indicating near-synchronous fitting. On the 
validation set, the model achieved an accuracy of 0.8800, with 
Precision, Recall, and F1-score all at 0.8929, demonstrating consistent 
and excellent classification performance. On the test set, the model 
attained an accuracy of 0.8620, Precision of 0.8235, Recall of 0.9333, 
and F1-score of 0.8750, indicating that while maintaining high 
accuracy, the model also has strong recognition ability, particularly 
excelling in recall and effectively identifying positive samples. Overall, 
the model shows good generalization ability and robust 
classification performance.

Building on this, we  employed nn-UNet for automatic tumor 
annotation and then tested the classification model. The model 
achieved an accuracy of 0.8000, Precision of 0.7885, Recall of 0.8200, 
and F1-score of 0.8040 on the test set. The model’s performance under 
automatic annotation was similar to that with manual annotation. 
Although slightly lower in Recall and F1-score, it maintained a good 
balance between precision and recall. In summary, the model with 

nn-UNet automatic annotations still exhibits good classification 
capability and strong robustness while maintaining high accuracy.

3.4 Feature clustering and analysis

After applying t-SNE dimensionality reduction to the features 
extracted by the deep learning classification model, we performed 
unsupervised clustering analysis, as shown in Figure 9a. When the 
number of clusters was set to three, the Davies-Bouldin Index (DBI) 
reached its minimum and was significantly lower than that for other 
cluster numbers, indicating the presence of three image patterns 
related to TP53. The t-SNE reduced clustering results of these patterns 
are shown in Figures 9b, c. Correlation analysis revealed a significant 
association between the image clustering patterns and TP53 mutation 
status (p = 0.001, p < 0.05), demonstrating that our model effectively 
captured TP53-related features across cancer types. As shown in 
Figure 9d, the clustering results after t-SNE reduction were nearly 
identical to those before reduction, further indicating that the deep 
features extracted by the model already had strong discriminative 
ability in the original feature space. Figure 9e shows that a considerable 
number of these deep features are directly related to TP53 
mutation status.

4 Discussion

TP53 mutations are prevalent in gynecological tumors and have a 
significant impact on patient prognosis (31). Studies have shown that 
in gynecological tumors, TP53 mutation status can be predicted using 
data from various modalities (32, 33). In this study, we demonstrated 

FIGURE 4

PET/CT images of endometrial cancer, cervical cancer, ovarian cancer in different TP53 states. The red region indicated by the blue arrow represents 
the annotated ROIs.
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the correlation between TP53 mutation status and tumor-related CT 
and PET features, as well as brown adipose tissue-related CT and PET 
features in patients with gynecological tumors. Based on this, 
we predicted TP53 status separately using tumor CT features, tumor 
PET features, brown adipose tissue CT features, and brown adipose 
tissue PET features, finding that models based on PET features 
performed better. Subsequently, we developed a combined prediction 
model and proposed a fast delineation method based on nnU-Net, 
both achieving good results on the test set. Finally, we analyzed the 
deep features extracted by the combined model, further confirming 
that our model successfully captured cross-modal TP53 
imaging features.

Our study demonstrates a significant association between TP53 
mutation status and various radiomic features, which is evident 
across different tumor types. Although there is some heterogeneity 
in how radiomic features respond to TP53 mutations in cervical, 
ovarian, and endometrial cancers, integrative analysis revealed a 
shared imaging feature pattern across these cancer types. This unified 
pattern likely reflects TP53’s role as a key tumor suppressor gene 
regulating common biological processes—such as cell cycle control, 

DNA repair, and metabolic reprogramming—across different 
gynecological tumors, thereby manifesting as recognizable imaging 
features in structural and metabolic scans (34). Brown adipose tissue 
(BAT) is recognized for its critical role in metabolism and has shown 
potential when combined with deep learning approaches (35, 36). 
BAT has been linked to tumor mutation characteristics and is 
considered directly related to tumor activity (37–39). In our study, 
we  found that CT and PET features of brown adipose tissue in 
patients are also significantly associated with TP53 mutation status. 
Previous studies have shown that browning of subcutaneous adipose 
tissue can contribute to weight loss and cancer-associated cachexia. 
Additionally, thermogenic adipocytes locally activated within the 
tumor microenvironment may accelerate cancer progression by 
supplying energy and potentially inducing chemotherapy resistance 
(40). Our findings suggest that the impact of TP53 mutations may 
extend beyond the local tumor tissue. Given the central role of brown 
adipose tissue in energy metabolism and thermoregulation, TP53 
mutations might systemically influence the metabolic function and 
status of adipose tissue, leaving distinctive metabolic signatures at the 
fat tissue level.

FIGURE 5

Volcano plots of radiomic features based on tumor images and brown adipose tissue (BAT) in relation to TP53. (a) CT-based radiomic features of 
tumors in ovarian cancer patients; (b) PET-based radiomic features of tumors in ovarian cancer patients; (c) CT-based radiomic features of BAT in 
ovarian cancer patients; (d) PET-based radiomic features of BAT in ovarian cancer patients; (e) CT-based radiomic features of tumors in endometrial 
cancer patients; (f) PET-based radiomic features of tumors in endometrial cancer patients; (g) CT-based radiomic features of BAT in endometrial 
cancer patients; (h) PET-based radiomic features of BAT in endometrial cancer patients; (i) CT-based radiomic features of tumors in cervical cancer 
patients; (j) PET-based radiomic features of tumors in cervical cancer patients; (k) CT-based radiomic features of BAT in cervical cancer patients; (l) 
PET-based radiomic features of BAT in cervical cancer patients; (m) CT-based radiomic features of tumors in all three cancer types; (n) PET-based 
radiomic features of tumors in all three cancer types; (o) CT-based radiomic features of BAT in all three cancer types; (p) PET-based radiomic features 
of BAT in all three cancer types.
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In this study, the model built on tumor PET radiomic features 
outperformed the CT-based model in accuracy, recall, and F1-score, 
demonstrating the superiority of PET imaging in reflecting tumor 
TP53 characteristics. Similarly, for brown adipose tissue radiomic 
features, the PET model showed more stable and overall better 

classification performance than the CT model, especially exhibiting 
outstanding accuracy and F1-score on the validation set. This indicates 
that metabolic information of brown adipose tissue is more important 
than its structural information for TP53-related features. The 
multimodal fusion model combining tumor and brown adipose tissue 

FIGURE 6

Five-fold cross-validation results of classification models based on tumor radiomic features. (A–E) Show the training and validation loss curves, as well 
as the confusion matrices on the validation sets, for each fold of the CT-based radiomic model. (F–J) Show the training and validation loss curves for 
each fold of the PET-based radiomic models, as well as the corresponding confusion matrices on the validation sets.
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imaging features with pathological features further improved 
classification accuracy and robustness, showing consistently high 
performance on both validation and test sets. Notably, it achieved 
excellent recall, enabling more effective identification of positive 
samples and demonstrating strong generalization capability. After 

tumor annotation using an nn-UNet–based automatic segmentation 
model, the classification model’s performance was slightly lower than 
that with manual annotation but with a small gap. It also maintained 
a good balance between accuracy, precision, and recall, proving that 
automatic segmentation is feasible and stable for practical use, offering 

FIGURE 7

Shows the five-fold cross-validation results of classification models based on brown adipose tissue radiomic features. (A–E) Present the training and 
validation loss curves for each of the five folds of the CT-based radiomic models, along with the confusion matrices on the validation sets. (F–G) Show 
the training and validation loss curves for each fold of the PET-based radiomic models, as well as the corresponding confusion matrices on the 
validation sets.
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a fast alternative that does not require specialized medical 
imaging expertise.

The purpose of our study is not only to establish a model for 
tumor microenvironment recognition but also to extract features 
using a deep learning model and cluster them to reveal their 
correlation with cancer types. We  hypothesize that a specific 
microenvironmental state, potentially characterized by multi-modal 
medical imaging biomarkers extracted through deep learning, can 
detect the same gene mutation across different tumor types. Recent 
studies have demonstrated the potential of radiogenomics in 
predicting the mutation status of genes like PD-1 and TP53 based on 
CT images and molecular markers (41). In previous artificial 
intelligence research, it is a mainstream practice to use single-modal 
data, which is conducive to building a more stable expert model (42, 
43). However, these studies did not indicate whether specific gene 
mutations exhibit identical image features across different tumors. In 
this study, unsupervised clustering of features extracted by the deep 
learning classification model revealed that when the number of 
clusters was set to three, the Davies-Bouldin Index (DBI) reached its 
minimum value, significantly outperforming other cluster counts. 
This suggests the presence of three distinct imaging patterns closely 
associated with TP53 mutation status. Visualization via t-SNE 
dimensionality reduction showed clear clustering results, with 
clustering performance before and after dimensionality reduction 
being nearly identical, indicating that the deep features extracted by 
the model already possess strong discriminative ability in the high-
dimensional space. This finding was further validated by correlation 
analysis, which demonstrated a significant association between the 
imaging cluster patterns and TP53 mutation status (p = 0.001), 

indicating that the model successfully captured TP53-related features 
common across different cancer types. Additionally, among the 
extracted deep features, many were directly related to TP53 
mutations, suggesting these features have strong biological 
significance and potential clinical value. This research reveals greater 
potential for deep learning to accurately depict the tumor 
microenvironment and underscores the universality of the concept 
of genomics (44).

Our study has several limitations. First, this study is a single-
center study; constructing a more robust classification model requires 
the inclusion of a larger population cohort and multiple centers. 
Second, PET/CT in our center was not used for screening but rather 
based on patients’ economic status and disease stage, the patients 
included in this study had more advanced tumor stages and poorer 
grades (45). Third, in tumor-related medical image research, 
pathological images are one of the most important research data 
types (46, 47). Predicting tumor gene mutations based on pathological 
images has been proven feasible (48). This study only utilized 
pathology-related features due to the complexity of standardizing 
pathological images, which may require the incorporation of 
additional generative networks (49, 50). Besides that, WSI technology 
can provide more comprehensive pathological information of 
tumors, which is helpful to improve the feature extraction capabilities 
of the model (51). For endometrial cancer, researchers predicted the 
molecular subtypes of endometrial cancer from hematoxylin and 
eosin-stained whole-slide images with an area under the curve of 
0.874 (95% CI, 0.856–0.893) (52). While that study was successful, 
whole-slide images are difficult to prepare, costly, and challenging to 
apply clinically (53). To ensure the robustness of the features 

FIGURE 8

Five-fold cross-validation results of the classification model based on tumor imaging radiomic features, brown adipose tissue imaging radiomic 
features, and pathological features. (A–E) Show the training and validation loss curves for each of the five folds.
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extracted in this study, we selected a fixed set of radiomic features as 
input, which to some extent limits the model’s ability to directly 
extract features from images. Meanwhile, although the features 
extracted by the deep learning model have been shown to 
be  associated with TP53 characteristics, their relationship with 
intuitive radiological descriptors has yet to be  established. 
Considering that the first-order features of brown adipose tissue 
contain relatively clear and interpretable information, this study did 
not extract higher-order texture or spatial features. The stability of 
such advanced features still needs to be validated in a larger cohort. 
Therefore, future attention should be focused on explaining neural 
networks to obtain more explainable diagnostic information (54). 
Meanwhile, the multimodal feature fusion method used in this 
study—direct concatenation of feature vectors—still has room for 
improvement (55). In addition, there is still a lack of public databases 
based on gynecological tumors, and we will continue to work on 
this (56).

5 Conclusion

This study confirms that radiomic features derived from CT and 
PET images of tumors and brown adipose tissue are closely associated 
with TP53 mutation status in gynecological tumors. By constructing 
multiple Transformer-based deep learning models and integrating 
them into a multi-modal combined model, we achieved high accuracy 

in predicting TP53 mutations and successfully captured cross-cancer 
imaging phenotypes significantly associated with TP53 status. The 
proposed cross-cancer TP53 prediction model offers a promising 
noninvasive tool for tumor molecular subtyping, with potential 
applications in personalized treatment planning, early risk 
stratification, and selection of targeted therapeutic strategies. This 
study highlights the potential of deep radiomics in bridging medical 
imaging and genomics, promoting the application of precision 
medicine in gynecological oncology.
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