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Objective: To investigate the difference of black blood (DB) and bright blood 
(BB) T2* techniques at 1.5 T and 3 T in the assessment of myocardial iron load in 
patients with thalassemia (TM).

Methods: As a retrospective study. CMRtools software was used to measure 
myocardial T2* in 359 patients with moderate (60 g/L < Hemoglobin<90 g/L) 
or severe (Hemoglobin<60 g/L) thalassemia. A truncation method was used 
to remove signal values that deviated from the fitted curve. T2* (DBx-T2*, 
BBx-T2*) containing all (eight echoes) signals (DB8-T2*, BB8-T2*) and the 
optimal signal (coefficient of determination R2 > 0.95) were recorded. The 
difference, correlation and consistency of T2* measured by different methods 
were compared.

Results: There was no significant difference (p > 0.05) in myocardial T2* 
measured by different methods (1.5 T, 3 T), and all of them were highly 
positively correlated (p < 0.05, rs > 0.9). Bland–Altman analysis showed that 
(1.5 T) DB8-T2* and DBx-T2*, DBx-T2* and BBx-T2* had good consistency 
(p > 0.05). (3 T) DB8-T2* and DBx-T2* had good consistency (p > 0.05). There 
were proportional differences in T2* values measured by the other methods 
(p < 0.05), and none of them could be considered to have good consistency.

Conclusion: DB CMR T2* and BB CMR T2* can be  interchangeable in the 
assessment of myocardial iron load in TM patients. However, DB CMR T2* is 
more stable and reliable.
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1 Introduction

Thalassemia (TM) is a anemia caused by globin chain synthesis disorder caused by 
mutations in the globin gene (1). Due to ineffective erythropoiesis leading to varying degrees 
of anemia, the vast majority of severe TM patients inevitably require long-term transfusion 
therapy (2). Long-term transfusion therapy will lead to myocardial iron overload in patients, 
which will cause a series of adverse cardiovascular events, such as malignant arrhythmia, acute 
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cardiac function damage, myocardial fibrosis, etc., and eventually 
progress to heart failure, which is one of the main causes of death in 
patients with severe TM (3). Patients with myocardial iron overload 
need timely iron chelation therapy, whether it is the assessment of iron 
load before iron chelation or the efficacy evaluation after iron 
chelation. There is a need for an early, accurate and stable method to 
assess myocardial iron load and prompt intervention. Chemical 
measurement of iron concentration after endocardial biopsy can 
accurately determine the patch concentration at the biopsy site, but it 
is a traumatic examination, the iron deposition in the heart is not 
uniform, and the endocardial iron content cannot fully represent the 
myocardial iron content, so it is difficult to widely apply endocardial 
biopsy in clinical practice (4, 5).

T2* technique based on MRI gradient echo (GRE) imaging 
sequences has been established as a non-invasive standard method for 
quantifying organ iron load (6–10). By measuring T2* of the 
corresponding organ, clinical non-invasive assessment of organ iron 
load can be  achieved. Cardiac magnetic resonance (CMR)T2* 
technology, as a non-invasive and convenient method to quantify 
myocardial iron content, has high sensitivity, and plays an important 
role in assessing the myocardial iron load and the risk of cardiac 
complications, and also in the regular follow-up. It has become an 
important nursing standard for patients with myocardial iron overload 
disease worldwide (11–13). Bright blood (BB) and dark blood (DB) 
techniques are commonly used in CMR examination (14, 15). BB 
CMR can be divided into flow-dependent and non-flow-dependent 
techniques according to the different flow-dependent characteristics, 
which is beneficial to the display of lumen morphology. DB CMR can 
display high signal on the arterial wall by inhibiting the blood pool 
signal, which can highlight the myocardial structure, morphology and 
signal, and then carry out clearer observation and analysis (16).

Is there any difference between DB CMR and BB CMR in the 
assessment of myocardial T2* measurement (myocardial iron load), 
and which technique has higher stability and reliability in the 
assessment of myocardial iron load? The aim of this study is to analyze 
the images at different magnetic fields (1.5/3 T) with DB and BB CMR 
T2* in TM patients, and to compare the quantitative assessment of 
myocardial iron deposition between DB and BB CMR T2* in 
TM patients.

2 Materials and methods

2.1 General information

The data of 869 patients with moderate 
(60 g/L < Hemoglobin<90 g/L) or severe (Hemoglobin<60 g/L) 
thalassemia who underwent cardiac iron quantification on MRI in 
Liuzhou Workers Hospital, the First Affiliated Hospital of Guangxi 
Medical University, and Guangxi Medical University Tumor Hospital 
from January 2011 to December 2022 were consecutively selected and 
retrospectively analyzed. Inclusion criteria: (1) thalassemia was 
confirmed by genetic diagnosis; (2) DB and BB T2* MRI were 
performed to quantify cardiac iron. Exclusion criteria: (1) Large image 
artifacts; (2) complicated with other heart diseases. A total of 359 
patients (we have de-identified all patient details) were enrolled in the 
study, including 245 males and 114 females. The age of patients ranged 
from 4 to 63 years, with a median age of 18 years. This study was 

conducted in accordance with the Helsinki Declaration of 1975 as 
revised in 2024 and approved by the Ethics Committee of Liuzhou 
Worker’s Hospital, Liuzhou (No. LW2023039. Nov. 07, 2023) and the 
Ethics Committee of the First Affiliated Hospital of Guangxi Medical 
University, Nanning (No. 2023-E548-01. Oct. 09, 2023). The reporting 
of this study conforms to STROBE guidelines (17).

2.2 MR image acquisition

359 patients underwent Siemens 1.5 T MRI scanner (Magnetom 
Avanto Fit and Altea, Siemens Healthcare, Erlangen, Germany) and 
Philips 1.5 T MRI scanner (Achiva, Philips Medical Systems, Best, 
Netherlands). Before the MRI examination, the patient was repeatedly 
trained in inhalation, exhalation, and apnea; the patient was asked to 
calm down and hold his/her breath at the end of the expiration during 
the scan. Firstly, the chest cross-sectional localization scanning was 
performed with Turbo FLASH sequence to locate the cross-sectional 
image; the left ventricular long-axis image parallel to the ventricular 
septum was obtained, after which the left ventricular short-axis image 
perpendicular to the ventricular septum was obtained. Then, the 
long-and short-axis images of the left ventricle parallel and 
perpendicular to the ventricular septum were located, and a single-
breath-hold cine sequence was scanned to obtain continuous left 
ventricular short-axis cine images from the left atrial ventricular 
junction to the apex of the heart. The left ventricular outflow tract cine 
images were obtained by locating the aortic plane perpendicular to the 
short axis of the left ventricle and the long axis of the left ventricle 
parallel to the ventricular septum. The papillary muscle in the middle 
of the left ventricular septum was scanned by multi-echo gradient-
echo (GRE) sequence to obtain images based on which the cardiac 
T2* values were measured quantitatively. BB T2* sequence scanning 
parameters: flip angle (FA): 20°, matrix (MA): 224 × 112, repetition 
time (TR): 138.00 ms, echo time (TE): 2.97–21.68 ms, respectively 
2.97, 5.54, 8.23, 10.92, 13.61, 16.30, 18.99, 21.68 ms, field of view 
(FOV): The slice thickness was 10.0 mm, and the slice spacing was 
2.0 mm. DB T2* sequence scanning parameters: FA: 20°, MA: 
224 × 112, TR: 268.00 ms, TE: 1.84 to 20.55 ms, respectively 1.84 ms, 
4.41 ms, 7.10 ms, 9.79 ms, 12.48 ms, 15.17 ms, 17.86 ms, 20.55 ms, 
FOV: The slice thickness was 10.0 mm, and the slice spacing 
was 2.0 mm.

106 patients were simultaneously scanned with a Siemens 3 T 
MRI scanner (Verio, Siemens Healthcare, Erlangen, Germany). 
Parameters: BB T2* sequence scanning parameters: FA: 20°, MA: 
256 × 128, TR:138.00 ms, TE: 2.97–21.68 ms, respectively 2.97, 5.54, 
8.23, 10.92, 13.61, 16.30, 18.99, 21.68 ms, FOV: The slice thickness was 
10.0 mm, and the slice spacing was 2.0 mm. DB T2* sequence 
scanning parameters: FA: 20°, MA: 256 × 128, TR: 268.00 ms, TE: 1.84 
to 20.55 ms, respectively 1.84 ms, 4.41 ms, 7.10 ms, 9.79 ms, 12.48 ms, 
15.17 ms, 17.86 ms, 20.55 ms, FOV: The slice thickness was 10.0 mm, 
and the slice spacing was 2.0 mm.

2.3 Image analysis

The MRI Data of all patients were processed by CMRtools 
(CMRtools/Thalassemia Tools 2014, Cardiovascular Imaging 
Solutions, London, United Kingdom) software. Region of interest 
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(ROI) was delineated along the endocardium and epicardium at the 
mid-septal level in the short axis plane of the heart. The software 
automatically calculated the T2* when the full signal was preserved, 
which was denotedas DB8-T2* and BB8-T2*. In order to compare the 
stability of the measurement results of different sequences, this study 
used the “truncation method” to remove the noise signal (7, 8, 18), 
and recorded the T2* (denoted as DBx-T2*, BBx-T2*, “x” represents 
the number of signals remaining after the truncation) and the 
corresponding R2 when the coefficient of determination (R2) > 0.95 
(Figure 1).

DBx-T2* and BBx-T2* of the 20 patients (Selection by random 
number method) were measured simultaneously by two radiologists 
(observer A and observer B) with more than 5 years of experience in 
cardiac MRI diagnosis to evaluate the inter-observer agreement of 
measurement results. The DBx-T2* and BBx-T2* values of the 20 
patients were measured again by observer A after an interval of 1 week 
to evaluate the consistency of observer’s measurement results. In the 

case of consistent agreement between observer measurements, the 
remaining patient data were measured by observer A and observer B.

2.4 Statistical analysis

SPSS 26.0 software was used for statistical analysis. Kolmogorov–
Smirnov test was used to evaluate whether the measurement data were 
normal distribution. Normal distribution data were expressed as mean 
± standard deviation (x̅ ± s), and paired t test was used to compare the 
differences between groups. Pearson correlation was used to analyze 
the correlation between groups. Non-normal distribution data and 
ranked data were described by Median (M), InterQuartile Range 
(IQR), maximum and minimum value, and Friedman rank sum test 
was used to compare the differences between groups. Spearman rank 
correlation was used to analyze the correlation between groups. Count 
data were expressed as frequency. Intraclass correlation coefficient 

FIGURE 1

β-TM patient, male, 11 years old, (a–c) are DB8-T2*, BB8-T2* and BBx-T2* measured by DB CMR T2* technique, respectively. (a) Shows that the 8 
echoes of DB sequence were well fitted to a curve, DB8-T2* = 15.14 ms, R2 = 0.999; (b) Shows that the 8 echoes of BB sequence could not fit the 
curve well, BB8-T2* = 10.85 ms, R2 = 0.9752; (c) Shows the T2*, BBx-T2* = 15.88 ms, R2 = 0.9926 fitted by the three echoes of the BB sequence after 
the “truncation” method. To some extent, DB CMR is more stable than BB CMR in quantifying myocardial iron load.
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(ICC) was used to evaluate the consistency of T2* measured twice by 
the same observer and T2* measured by different observers (two-way 
random was selected for “model” and absolute consistency was 
selected for “type”). MedCalc® statistical software was used to plot the 
Bland–Altman plots of T2* measured by different methods, and the 
consistency was analyzed. In this study, p < 0.05 was considered 
statistically significant.

3 Results

3.1 Intra-observer and inter-observer 
consistency analysis

The DB8-T2* and BB8-T2* measured by observer A and observer 
B at the same time were highly consistent: ICCDB = 0.999, 
95%CI = 0.998 ~ 1, p < 0.0001; ICCBB = 0.997, 95%CI = 0.992 ~ 0.999, 
p < 0.0001. DB8-T2* and BB8-T2* measured by observer A were 
highly consistent: ICCDB = 0.999, 95%CI = 0.998 ~ 1, p < 0.0001; 
ICCBB = 0.999, 95%CI = 0.998 ~ 1, p < 0.0001.

3.2 Statistical descriptive indicators of 
measurement results of different methods

The myocardial T2* and R2 values measured by different methods 
did not conform to the normal distribution (p < 0.05). The 
corresponding statistical descriptive indicators are shown in Table 1. 
By observing and analyzing the statistical indexes of 8 echo and 
truncated echo R2 values of the same sequence, it was found that 
1.5/3 T-BB8-R2 had large fluctuations, and its minimum to maximum 
values were 0.7533 ~ 1 and 0.5763 ~ 0.9999, respectively, while the 
corresponding 1.5/3 T-DB8-R2 showed a relatively stable fitting. 

Preliminary results show that DB sequence can quantify the 
myocardial iron load of TM patients more stably without truncation 
of deviation signal, and it is not prone to more deviation signal.

3.3 Differences and correlation analysis of 
measurement results of different methods

1.5 T group: 1.5 T-DB8-T2*, 1.5 T-DBX-T2*, BB8-T2* and 
BBx-T2* had no significant statistical difference (p = 0.575 > 0.05). 
DB8-T2* was highly correlated with DBx-T2* and BB8-T2* (p < 0.0001, 
rs = 0.999, 0.972) (Figure 2). There was a strong correlation between 
DBx-T2* and BBx-T2* (p < 0.0001, rs = 0.9974). There was a strong 
correlation between BB8-T2* and BBx-T2* (p < 0.0001, rs = 0.973). 3 T 
group: DB8-T2*, DBx-T2*, BB8-T2* and BBx-T2* had no significant 
statistical difference (p = 0.764 > 0.05). DB8-T2* was highly correlated 
with DBx-T2* and BB8-T2* (p < 0.0001, rs = 0.9944, 0.9635). There was 
a strong correlation between DBx-T2* and BBx-T2* (p < 0.0001, 
rs = 0.9922). There was a strong correlation between BB8-T2* and 
BBx-T2* (p < 0.0001, rs = 0.9671). The preliminary results showed that 
there was no significant difference between DB sequence and BB 
sequence in the quantification of myocardial iron load in TM patients, 
that is, DB sequence and BB sequence may replace each other in the 
quantification of myocardial iron load to a certain extent.

3.4 Bland–Altman consistency analysis of 
measurement results of different methods

1.5 T group: The Bland–Altman analysis between DB8-T2* and 
DBx-T2*, DBx-T2* and BBx-T2* were not statistically significant 
(p = 0.7926, 0.5281) (Figures 3a,b). There was no significant difference 
in proportion (the overall intercept and slope of the Bland–Altman 

TABLE 1 Statistical descriptive indicators of myocardial T2* and R2 values of thalassemia patients in each group.

Group Case (N) Median (M) Quartile P25% Quartile P75% Minimum to 
maximum

1.5 T-DB8-T2*(ms) 359 19.12 11.82 29.76 4.61 ~ 48.12

1.5 T-DBx-T2*(ms) 359 19.26 11.61 29.71 4.61 ~ 48.23

1.5 T-BB8-T2*(ms) 359 18.57 11.40 30.07 3.61 ~ 52.38

1.5 T-BBx-T2*(ms) 359 19.49 11.31 29.53 3.44 ~ 47.92

1.5 T-DB8-R2 359 0.9984 0.9965 0.9993 0.9611 ~ 0.9999

1.5 T-DBx-R2 359 0.9990 0.9972 0.9997 0.9710 ~ 1

1.5 T-BB8-R2 359 0.9917 0.9819 0.9970 0.7533 ~ 1

1.5 T-BBx-R2 359 0.9986 0.9960 0.9997 0.9628 ~ 1

3 T-DB8-T2*(ms) 106 9.885 6.1725 14.925 3.14 ~ 37.18

3 T-DBx-T2*(ms) 106 10.175 6.03 15.3175 2.90 ~ 37.02

3 T-BB8-T2*(ms) 106 10.195 6.57 14.725 3.20 ~ 37.12

3 T-BBx-T2*(ms) 106 10.01 5.4725 15.3475 3.18 ~ 37.02

3 T-DB8-R2 106 0.9974 0.9937 0.9992 0.982 ~ 1

3 T-DBx-R2 106 0.9995 0.997775 0.9999 0.977 ~ 1

3 T-BB8-R2 106 0.9865 0.95925 0.99565 0.5763 ~ 0.9999

3 T-BBx-R2 106 0.99885 0.9967 0.9997 0.9563 ~ 1
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regression equation were not significantly different from 0) (Table 2). 
Bland–Altman analysis between BB8-T2* and BBx-T2*, DB8-T2* and 
BB8-T2* were statistically significant (p = 0.0307, 0.021) 
(Figures 3c,d), and there were differences in proportion (Table 2). The 
results showed that DB8-T2* and DBx-T2*, DBx-T2* and BBx-T2* 
had good consistency, but it could not be considered that BB8-T2* and 
BBx-T2*, DB8-T2* and BB8-T2* had good consistency. At the same 
time, it also shows that DB technology is more stable than BB 
technology in quantifying myocardial T2*, that is, it is not susceptible 
to the influence of deviation signal.

3 T group: There was no significant difference in Bland–Altman 
analysis between DB8-T2* and DBx-T2*, DBx-T2* and BBx-T2*, 
BB8-T2* and BBx-T2*, DB8-T2* and BB8-T2* (p = 0.4197, 0.627, 
0.9969, 0.851) (Figures 3e,f), but only between DB8-T2* and DBx-T2* 
there was no proportional difference (Table 2). The results indicate 
that DB8-T2* and DBx-T2* have good consistency, but it cannot 
be considered that DBx-T2* and BBx-T2*, BB8-T2* and BB8-T2* have 
good consistency. At the same time, it also shows that DB technology 
is more stable than BB technology in quantifying myocardial T2*, that 
is, it is not susceptible to the influence of deviation signal.

4 Discussion

In this study, myocardial T2* measured by DB CMR T2* and BB 
CRI T2* using different measurement methods was compared to 

investigate the difference of DB and BB T2* techniques at 1.5 T and 
3 T in the assessment of myocardial iron load in patients with TM. The 
result indicated DB CMR T2* and BB CMR T2* can be interchangeable 
in the assessment of myocardial iron load in TM patients. Nevertheless, 
DB CMR T2* exhibits greater stability and reliability.

Single-breath-hold multi-echo BB CMR T2* technology can 
complete the acquisition of cardiac images in a single breath-hold, 
which has the characteristics of short scanning time and good 
reproducibility, and is widely used (19–27). However, the contrast 
between myocardium and blood pool in bright-blood technique is not 
high, which may affect the measurement accuracy. Subsequently, 
He et al. (27) developed the single-breath hold multi-echo DB CMR 
T2* technique by using the double-inversion prepulse technique, 
which could better define the boundary between the myocardium and 
the blood pool and improve the measurement accuracy.

The results showed that although there was no significant 
difference between DB CMR T2* and BB CMR T2*, there was a high 
positive linear correlation. This indicates that the two techniques may 
substitute for each other in the quantification of myocardial T2* to 
some extent, which is consistent with Khater and Ou et al. (20, 21), 
who stated that, the use of a blood suppression prepulse black blood 
technique had little effect on the calculated cardiac R2*/T2*.

However, when we performed the deep consistency analysis, it 
was found that the consistency of different methods was not the same. 
As can be seen from the results section, only DB8-T2* and DBx-T2* 
maintained good consistency in both 1.5 T and 3 T groups 

FIGURE 2

Scatter plots of myocardial T2* quantified by different methods (a vs. b, X axis corresponds to a, Y axis corresponds to b).
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(Bland–Altman analysis showed no statistical difference, and there 
was no proportional difference), which proved that DB technique was 
more stable and reliable than BB technique in assessing myocardial 
iron load. This is similar to the findings of Liguori et al. (22). The 1.5 T 

similar results were reported by Smith et  al. (23), who found a 
significant coefficient improvement (three folds) in intra and inter-
observer variability with better inter-study reproducibility for BB T2* 
imaging compared to the conventional white blood sequence. In 

FIGURE 3

Bland–Altman plots of T2* measured by different methods (a–d for 1.5 T group, e–h for 3 T group).

TABLE 2 Bland–Altman agreement analysis of the results measured by different methods.

Comparison 
group

Cases (N) 95%CI number 
of cases (N) [%]

Regression 
equation

Equation population 
intercept 95%CI (P)

Equation population 
slope 95%CI (P)

1.5 T-DB8/DBx-T2* 359 13 (4.46%) y = 0.05418–0.002844x −0.03827 ~ 0.1466 (p = 0.2499) −0.006748 ~ 0.001059 

(p = 0.1527)

1.5 T-DBx/BBx-T2* 359 18 (5.01%) y = 0.08393–0.0051x −0.07487 ~ 0.2427 (p = 0.2993) −0.01180 ~ 0.001596 

(p = 0.1351)

1.5 T-BB8/BBx-T2* 359 9 (2.5%) y = −0.7687 + 0.05165x −1.3973 ~ −0.1400 (p = 0.0167) 0.02543 ~ 0.07787 (p = 0.0001)

1.5 T-DB8/BB8-T2* 359 13 (3.62%) y = 0.9105–0.05974x 0.2719 ~ 1.5490 (p = 0.0053) −0.08641 ~ −0.03307 

(P < 0.0001)

3 T-DB8/DBx-T2* 106 6 (5.66%) y = 0.01201–0.005140x −0.2160 ~ 0.2400 (p = 0.917) −0.02333 ~ 0.01305 

(p = 0.5764)

3 T-DBx/BBx-T2* 106 6 (5.66%) y = 0.2938–0.02663x 0.006545 ~ 0.5811 (p = 0.0451) −0.04942 ~ −0.003831 

(p = 0.0225)

3 T-BB8/BBx-T2* 106 6 (5.66%) y = 0.9504–0.08342x 0.3177 ~ 1.5831 (p = 0.0036) −0.1340 ~ −0.03288 

(p = 0.0014)

3 T-DB8/BB8-T2* 106 5 (4.72%) y = −0.6386 + 0.05127x −1.2742 ~ −0.00308 (p = 0.0489) 0.0002305 ~ 0.1023 (p = 0.049)
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addition, our results partly indicate to some extent the imaging at 
1.5 T is preferable as 3 T is less precise in patients with severe iron 
overload, which is similar with Meloni and Storey et al. (24, 25) who 
suggest that the iron-dependent component of R2* scales linearly with 
field strength over a wide range of tissue iron concentrations. The 
incidence of susceptibility artifacts may, however, also increase with 
field strength. The fact that 3-T MRI is not so reliable in very heavily 
loaded patients is important but provided it shows severe iron loading, 
it would indicate that the patients need to have intensive chelation and 
subsequently the testing would be more reliable once the patients have 
reduced that loading.

DB technology has better stability and reliability in quantitative 
assessment of myocardial iron load, and the reasons are as follows: (1) 
With BB technique, the blood pool is hyperintense, and the boundary 
between the myocardium with normal or mild iron deposition and 
the blood pool is blurred. It is difficult to define the myocardial 
boundary when delineating the region of interest, which may lead to 
inaccurate T2* measurement. Moreover, the blood pool shadow with 
high signal caused by cardiac motion and blood flow can 
be  superimposed on the septal myocardium, forming blood pool 
artifact. At this time, the measurement error of T2* may also 
be  aggravated by blood pool artifact (14, 15). (2) DB technique 
suppresses the blood pool signal by using the double inversion 
recovery prepulse technique to make the blood pool appear as no/low 
signal: a presaturation pulse is applied before the blood flow enters the 
imaging volume to presaturate the blood flow. When the RF pulse is 
applied when it flows into the imaging volume, since the longitudinal 
magnetization vector of the pre-saturated blood flow is very small, it 
almost does not produce MR Signal, so the blood flow shows low 
signal, while the surrounding tissue shows high signal, resulting in 
contrast (22). (3) Single breath-hold multi-echo GRE-T2* sequence 
cardiac imaging with DB technology, because the blood flow in the 
ventricular cavity is low signal, while the myocardial tissue without or 
with mild iron deposition is high signal, resulting in contrast to set off 
the ventricular septum, which is easy to manually draw the 
endocardial and epicardial boundaries, and facilitate accurate 
measurement of myocardial T2* (14, 15, 22). (4) In addition, due to 
the suppression of the blood pool signal by DB technology, there are 
fewer artifacts caused by the blood pool on the acquired images, 
which further improves the consistency of the measurement results, 
which may also be the main reason why DB technology is more stable 
in quantifying myocardial T2*.

The limitations of this study are as follows: (1) There is no 
actual myocardial iron concentration as the “gold standard” to 
evaluate the accuracy of different methods for quantifying 
myocardial iron load. However, due to its invasiveness, it is very 
challenging to collect myocardial iron concentration in every 
patient by cardiac biopsy technique. (2) Using DB and BB CMR, 
only the transverse axial papillary muscle level of the middle 
interventricular septum was used to assess the myocardial iron load 
in TM patients, and T2* values of each segment were not measured 
and compared according to the standard of the American Heart 
Association (AHA). However, in this study, based on the data of 
359 patients from multiple centers, the comparison between the full 
signal and the cut-off signal of the same sequence, the comparison 
between different sequences, and the further investigation at 3 T 
field strength CMR are highly reliable. (3) When ROI was 
delineated by different methods, although the measurement results 

within and between observers were highly consistent, artificial 
measurement errors were inevitable. At present, the methods based 
on artificial intelligence (AI) image registration have gradually 
matured. Perhaps in the future, the ROI registration of AI can 
be relied upon to enhance the repeatability between the center and 
the observer and reduce errors. (4) In this manuscript, T2* 
measurements were performed at the mid-septal segment of the 
myocardium, which is a common and practical approach. However, 
full-segment analysis based on the AHA 17-segment model is 
increasingly recommended to capture spatial heterogeneity in 
myocardial iron distribution. (5) The study focuses solely on T2* 
imaging. However, native T1 mapping and extracellular volume 
fraction (ECV) are increasingly recognized as useful, 
complementary tools for tissue characterization, especially in 
differentiating iron overload from fibrosis. Theses may be  the 
direction of future research.

5 Conclusion

DB CMR T2* technique and BB CMR T2* technique could 
replace each other in the quantification of myocardial iron load within 
a certain range of cardiac iron content. However, DB CMR T2* is 
more stable and reliable than BB CMR T2* in assessing myocardial 
iron load in TM patients. DB CMR T2* technique is recommended 
for the assessment of myocardial iron load in TM patients, especially 
when using 3 T MR Scanners. BB CMR T2* technique should not 
be used as the first choice for the assessment of myocardial iron load, 
especially when using 3 T MR Scanners.
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