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Background: Orofacial clefts (OFCs) are congenital craniofacial malformation 
caused by embryonic developmental abnormalities, characterized by 
incomplete fusion of the upper lip and/or palate, leading to feeding difficulties, 
speech impairments, and other functional challenges. OFCs represent the 
most prevalent congenital malformations of oral and maxillofacial region. 
We aim to characterize disease burden of OFCs across regions and countries, 
analyze temporal trends from 1990 to 2021, examine relationship with 
Socio-demographic Index (SDI), explore gender disparities and predict future 
epidemiological patterns.

Methods: Utilizing GBD 2021 database for 204 countries/regions, we analyzed 
age-standardized metrics including disability-adjusted life years (DALYs), 
prevalence, mortality, incidence, using tools like DisMod-MR 2.1 for Bayesian 
meta-regression. SDI, calculated from educational attainment, per capita 
income, and fertility rates (range 0–1), stratified nations into quintiles. Statistical 
analyses included SDI-burden correlations and future projections using Bayesian 
age-period-cohort (BAPC) modeling, implemented through R software.

Results: In 2021, there are a total of 4124006.8 cases of OFCs worldwide, with 
an age-standardized prevalence rate (ASPR) of 53.4 per 100,000 (95% UI: 43–
64). The age-standardized incidence rate (ASIR) was 3.0 per 100,000 (95% UI: 
2.2–3.9), while age-standardized deaths rate (ASDR) of 0 per 100,000 (95% UI: 
0–0.1). Additionally, age-standardized DALYs rate was 5.8 per 100,000 (95% UI: 
3.5–9.8). Regionally, low- to middle-SDI regions demonstrated the highest ASPR 
and ASIR, whereas low-SDI areas showed the most severe ASDR and DALYs rate. 
In contrast, high-SDI regions consistently exhibited the lowest burden across all 
metrics. At the subregional level, South Asia recorded the greatest ASPR, while 
Central Asia had the peak ASIR. Oceania displayed the highest ASDR and DALYs 
rate. Country-specific analysis identified Palestine with the maximum ASPR, 
Kazakhstan with the highest ASIR, Papua New Guinea with the greatest ASDR, 
and Afghanistan with the most elevated DALYs rate.

Conclusion: The global OFCs burden demonstrated consistent decline from 
1990–2021, with persistent male predominance. Regional disparities correlate 
strongly with SDI, particularly affecting Central Asia, South Asia, and Africa 
populations.
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Introduction

Orofacial clefts (OFCs) is the most prevalent congenital 
maxillofacial malformation (1), which with both genetic and 
environmental etiological factors implicated in their 
pathogenesis. The embryological basis of OFCs formation occurs 
during critical facial morphogenesis (weeks 4–12 of gestation) 
(2), when pathogenic genetic variations in multiple genes disrupt 
essential signaling pathways such as BMP, TGF-β, and WNT, 
affecting facial development during this stage and causing the 
occurrence of OFCs. In addition, advanced maternal age or early 
pregnancy with viral infections, consanguinity, ionizing 
radiation, and environmental pollutants, deficiencies in folate 
and vitamins, use of antiepileptic drugs and steroids, maternal 
metabolic disorders, endocrine abnormalities, parental 
occupational pesticide exposure, lifestyle factors can increase the 
likelihood of OFCs (3–12).

OFCs are clinically categorized into two primary subtypes: 
syndromic forms (co-occurring with additional congenital 
defects such as cardiac or limb abnormalities) and non-syndromic 
isolated cases. The treatment of OFCs involves primary lip/palate 
repair, secondary alveolar bone grafting, orthodontic 
intervention, orthognathic surgery, respiratory and pronunciation 
training, otolaryngology treatment, which requires collaboration 
among disciplinary teams (such as oral and maxillofacial surgery, 
orthodontics, speech therapists, etc.) (13) and treatment 
protocols must be  carefully staged according to the patient’s 
developmental stage. A complete treatment requires substantial 
financial resources and prolonged treatment duration (14).

At the physiological level, patients with OFCs frequently 
experience oral dysfunction, including impaired sucking ability 
leading to feeding difficulties, cleft palate leading to coughing 
and otitis media risks, speech impairments affecting 
approximately 70% of cases. Psychologically, patients are prone 
to developing feelings of inferiority due to differences in 
appearance, while long-term psychological stress may predispose 
patients to anxiety, depression and other mood disorders. 
Research further indicates that patients with OFCs have lower 
average academic achievement, particularly those with cleft 
palate (15–17). Additionally, the condition imposes 
socioeconomic constraints by limiting career options (e.g., 
broadcasting, flight attendant, etc.) and barriers to professional 
advancement (18).

Previous studies have found that the disease burden of OFCs 
is related to subject characteristics, such as gender, region, social 
development level (2, 19), but there is a lack of comprehensive 
and specific description and analysis. This study analyzes data 
from GBD database with the aim of obtaining a detailed, 
quantitative, comprehensive understanding of the disease burden 
of OFCs, and making predictions on its development trend at the 
global level. We hope to provide some reference for reducing the 
disease burden in different regions.

Method

Data sources

Data is sourced from GBD database (2021), which is a global 
health research platform supported by Institute for Health Metrics and 
Evaluation (IHME) at the University of Washington, and jointly 
maintained by World Health Organization (WHO), the World Bank, 
and other institutions. It covers the health data of 204 nations and 
territories worldwide since 1990, quantifies 87 risk factors and 371 
diseases, meanwhile providing standardized indicators such as age 
standardized rate (ASR) multi-dimensionally classified such as age, 
gender, and year. The GBD 2021 study applies complex statistical 
models such as MR-BRT, DisMod MR 2.1, CODEm, etc. to adjust the 
collected data from around the world to reduce its heterogeneity. 
We  obtained processed data (prevalence, incidence, deaths, and 
DALYs) for all regions and countries from the GBD 2021 study for 
secondary analysis.

SDI

SDI serves as a composite metric for assessing regional 
socioeconomic development status. This index, ranging from 0 
(minimal development) to 1 (optimal development), is derived from 
three weighted components: gross domestic product per capita, 
educational attainment (measured by average schooling years), and 
fertility rates. Based on their SDI scores, geographical units were 
stratified into five distinct development tiers (high, high-middle, 
middle, low-middle, low). The focus of this study is on relation 
between SDI values and various disease burden indicators.

Statistical analyses

Disease burden metrics selected for this study comprise four 
principal indicators: “Prevalence,” “Incidence,” “Deaths” and “DALYs.” 
ASR adjusts crude rate (including incidence rate and mortality) by 
applying a standardized population distribution. This methodological 
approach effectively eliminates potential biases arising from 
differences in population age distributions between regions or across 
time periods. The ASR per 100,000 individual is computed according 

to equation below: =
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×100,000 (ai: the ith age category’s 

rate in specific age range; w: corresponding ith age group’s population 
size within reference population; A: total count of group). From GBD 
database, age-standardized death rate (ASDR), age-standardized 
prevalence rate (ASPR), age-standardized DALYs rate, and 
age-standardized incidence rate (ASIR).

https://doi.org/10.3389/fmed.2025.1609700
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wang et al. 10.3389/fmed.2025.1609700

Frontiers in Medicine 03 frontiersin.org

The temporal trends of ASR were quantified with estimated 
annual percentage change (EAPC). The computational approach 
involves fitting the model: ln(yt) = α + βt + ϵ (yt is the natural 
logarithm of ASR; α is the intercept; β captures the temporal slope 
coefficient; ϵ accounts for random variation). The EAPC value is 
subsequently calculated as 100 × [exp(β)−1]. Linear regression model 
is applied for calculation on 95% confidence interval (CI) of EAPC. If 
the lower bounds of EAPC with its entire 95%CI are both positive, it 
indicates a significant upward trend in ASR. On the contrary, if the 
upper bounds of EAPC and its 95%CI are both negative, it reflects a 
significant downward trend in ASR. If both conditions are not met, 
the ASR is defined as stable.

We conducted correlation analysis on the disease burden (ASPR, 
ASIR, age-standardized DALYs rate, ASDR) and SDI values of all 
regions and countries, which were performed in R version 4.4.2. 
We use “cor.test” function from “stats” R package to carry out Pearson 
correlation analysis. All tests were two-sided with a significance level 
set at p < 0.05. In addition, we conducted statistical analysis on the 
disease burden of different genders worldwide using “tbl_summary” 
function from “gtsummary” R package.

BAPC

The Bayesian age–period–cohort (BAPC) model is an analysis 
tool based on the Bayesian statistical framework, mainly used to 
decompose the age, period, and queue effects of disease burden over 
time, and predict future trends. The statistical principle is based on 
Bayesian inference, using Markov Chain Monte Carlo (MCMC) or 
Integrated Nested Laplace Approximation (INLA) algorithms to 
handle data loss and uncertainty, while introducing prior knowledge 
to enhance the robustness of small sample data. Compared to 
traditional models, its advantages lie in the comprehensive analytical 
ability of multidimensional time effects, robust handling of data 
sparsity and measurement errors, and flexible integration of 
multidimensional data. In this study, we applied disease burden data 
from GBD 2021 and demographic forecast data from the IHME, using 
the “BAPC” R package to predict the trend of disease burden changes 
at the global level.

Result

Global level

Global prevalence of OFCs reached 4,124,006.8 cases (95%UI: 
3,318,692.5–5,026,199.6) in 2021, representing a 40.3% increase from 
1990 (2,937,706.5 cases, 95% UI: 2,389,357.8–3,535,593.7). Despite 
this substantial growth in case number, ASPR in 2021 remained nearly 
unchanged at 53.4 per 100,000 (95% UI: 43–65), comparable to the 
1990 ASPR of 53.5 (95% UI: 43.4–64.5). EAPC of ASPR was −0.04 
(95% CI: −0.05 to −0.02) (Table 1; Figure 1). Global incidence of 
OFCs in 2021 was 183,302.4 cases (95%UI: 135,255.4–241,690.8), 
marking a 24.79% decrease from 1990. ASIR declined from 3.8 per 
100,000 (95% UI: 2.8–4.8) in 1990 to 3.0 per 100,000 (95% UI: 2.2–3.9) 
in 2021. EAPC for ASIR was −0.89 (95% CI: −0.94 to −0.83), 
suggesting a persisting downward trend in incidence (Table  1; 
Figure 1). OFCs-related deaths were estimated at 1,718.6 cases (95% 

UI: 484.8–4,409.5) in 2021, reflecting an 86.09% reduction compared 
to 1990, with an EAPC of −6.17 (95% CI: −6.24 to −6.11) (Table 1; 
Figure 1). Global DALYs attributed to OFCs reached 408,775.3 (95% 
UI: 252,320.1–671,119.9) in 2021, showing a 68.32% decrease from 
1990. The age-standardized DALYs rate stood at 5.8 per 100,000 (95% 
UI: 3.5–9.8), with an EAPC of −4.13 (95% CI: −4.28 to −3.98) 
(Table 1; Figure 1).

Regional level

From the perspective of social development level, OFCs burden 
worldwide shows notable regional differences, and the disease burden 
indicators vary greatly among different SDI regions. The ASPR in 
low-middle SDI regions represented to be the highest, of 76.3 per 
100,000 (95% UI: 60.7–93.6), and regions with high SDI reported the 
lowest, of 33.6 per 100,000 (95% UI: 27–40.6). The EAPC of the two 
regions is similar, with the former being −0.23 (95% CI: −0.29 to 
−0.16) and the latter being −0.23 (95% CI: −0.25 to −0.22). ASPR 
dropped in all regions, with the middle-high SDI region showing the 
most notable drop, showing EAPC of −0.46 (95% CI: −0.52 to −0.39). 
ASPR has decreased from 40.4 per 100,000 (95% UI: 32.9–48.3) in 
1990 to 36.2 per 100,000 (95% UI: 29.6–43.5) in 2021, indicating more 
significant progress in the prevention and treatment of OFCs in these 
regions compared to other areas. The EAPC of the low SDI region is 
−0.29 (95% CI: −0.32 to −0.26), and its ASPR has decreased from 68.9 
per 100,000 (95% UI: 55–83.8) in 1990 to 62.8 per 100,000 (95% UI: 
50.5–76.8). The EAPC within middle-SDI region is −0.07 (95% CI: 
−0.1 to 0.04), which is almost the same as the ASPR in 1990 and 2021 
(Table 1; Figure 1).

ASIR also shows regional differences. High SDI regions exhibited 
the lowest ASIR at 2.5 per 100,000 (95% UI: 1.8–3.2), and middle-low 
SDI regions showed the highest at 3.3 per 100,000 (95% UI: 2.5–4.4). 
The analysis of the ASIR reveals notable trends. The EAPC in the high-
middle SDI regions is the highest, reaching −1.53 (95% CI: −1.59 to 
−1.47), while other regions exhibit a more uniform EAPC of around 
−0.85 (Table 1; Figure 1). The ASDR in low SDI areas is the highest, 
reaching 0.1 per 100,000 (95% UI: 0–0.2), whereas other regions are 
nearly at zero. Similarly, the EAPC for high-middle SDI areas is the 
highest, at −11.62 (95% CI: −12.12 to −11.11) (Table 1; Figure 1). The 
age-standardized DALYs rate further revealed regional differences. 
Low SDI regions have the highest DALYs rate at 8.6 per 100,000 (95% 
UI: 3.9–21.7), while high SDI regions have the lowest at 2.2 per 
100,000 (95% UI: 1.4–3.4). Notably, high-middle SDI regions show the 
most significant decrease in age-standardized DALYs rate, with an 
EAPC of −8.17 (95% CI: −8.57 to −7.76) (Table 1; Figure 1).

Global data demonstrate a substantial 31-year decline (1990–
2021) in OFCs disease burden, primarily attributable to advancements 
in medical technology and socioeconomic development. High-middle 
SDI regions exhibited particularly notable progress, reflecting 
accelerated improvement in therapeutic and preventive capability 
once society reaches this developmental threshold. Indicators of 
disease burden in high-SDI regions maintained the lowest level over 
three decades, due to their well-established superior healthcare 
infrastructure and social conditions since 1990. Conversely, the 
paradoxically lower prevalence and incidence rates observed in 
low-SDI regions are likely attributable to severe underreporting 
primarily driven by neonatal mortality among untreated cases and 
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TABLE 1 Trends in global and regional impact of OFCs: disability-adjusted life years, mortality, incidence, and prevalence (1990–2021).

Location 1990 2021 EAPC_95%CI

Number ASR Number ASR

Prevalence

Global

2937706.5 (2389357.8–

3535593.7) 53.5 (43.4–64.5)

4124006.8 (3318692.5–

5026199.6) 53.4 (43–65) −0.04 (−0.05 to −0.02)

High SDI

290059.3 (236919.9–

349,088) 34.5 (28.3–41.3)

343810.2 (275876.4–

419985.2) 33.6 (27–40.6) −0.23 (−0.29 to −0.16)

High-middle SDI

421007.6 (343062.6–

503601.7) 40.4 (32.9–48.3)

436311.1 (356149.1–

530335.5) 36.2 (29.6–43.5) −0.46 (−0.52 to −0.39)

Middle SDI

865024.7 (699926–

1041409.4) 49 (39.6–59.1)

1148111.4 (927870.2–

1,400,797) 48.4 (39.2–58.8) −0.07 (−0.1 to −0.04)

Low-middle SDI

991,187 (790214.7–

1209512.2) 81.7 (64.6–99.9)

1470278.2 (1169396.5–

1805705.6) 76.3 (60.7–93.6) −0.23 (−0.25 to −0.22)

Low SDI

368724.4 (296834.5–

446,755) 68.9 (55–83.8)

722,909 (583611.3–

879494.8) 62.8 (50.5–76.8) −0.29 (−0.32 to −0.26)

Andean Latin America 17211.4 (13884.4–20618.5) 42.7 (34.3–51.6) 33534.4 (27121.2–40,759) 51.1 (41.4–62) 0.6 (0.54 to 0.65)

Australasia 6162.6 (5215.5–7250.8) 31.6 (26.8–37) 8317.2 (6674.3–10154.6) 28.6 (22.9–34.6) −0.28 (−0.31 to −0.24)

Caribbean 11081.1 (8958.3–13239.6) 30.7 (24.7–36.9) 21561.2 (17052.5–26,692) 46.2 (36.6–57) 1.63 (1.54 to 1.72)

Central Asia 66348.4 (53898.9–78498.1) 91.7 (74.3–109.5) 76835.2 (62046.7–92647.7) 80 (64.6–96.4) −0.45 (−0.51 to −0.39)

Central Europe 41791.8 (34048.2–49369.6) 34.9 (28.4–41) 30463.8 (24477.3–36896.1) 28.4 (23–34.2) −0.62 (−0.66 to −0.58)

Central Latin America 80082.1 (65637–95633.8) 46 (37.8–55.5) 96,757 (78596.3–117245.7) 39.1 (31.9–47.3) −0.52 (−0.55 to −0.48)

Central Sub-Saharan Africa 24064.8 (19126.8–29127.3) 39.4 (31–48) 55173.7 (44008.9–68507.1) 38.3 (30.6–47.8) −0.03 (−0.06 to 0.01)

East Asia

462829.9 (373116.8–

559914.1) 38.2 (30.8–46.2)

429540.6 (347839.7–

519201.4) 31.1 (25.5–37.1) −0.86 (−1.02 to −0.71)

Eastern Europe 69926.1 (56139.6–85059.8) 32 (25.7–38.8) 52,313 (41814.6–64112.7) 26.8 (21.5–32.6) −0.57 (−0.58 to −0.55)

Eastern Sub-Saharan Africa

110129.2 (88036–

132914.8) 52.5 (41.4–64)

221976.3 (179210.7–

271859.5) 49.7 (39.8–61.3) −0.18 (−0.23 to −0.14)

High-income Asia Pacific 91322.8 (74154.6–109,942) 55.9 (45.3–67)

90815.2 (71751.2–

111736.4) 52.9 (42.3–64.6) −0.22 (−0.24 to −0.2)

High-income North 

America 52229.1 (39822–66060.5) 19.2 (14.6–24.3) 68252.3 (52114.7–86705.8) 19.7 (15.1–24.9) −0.5 (−0.81 to −0.19)

North Africa and Middle 

East

317508.8 (256926.6–

380861.3) 89.4 (72–107.5)

532165.9 (425774.6–

646873.5) 85.2 (68.2–103.5) −0.11 (−0.15 to −0.08)

Oceania 1764.8 (1396.1–2158.5) 25.7 (20.3–31.6) 4786.2 (3804.6–5947.7) 33.4 (26.3–41.5) 0.82 (0.78 to 0.86)

South Asia

1134885.4 (893798–

1388417.5) 100.2 (78.7–123.2)

1633290.6 (1295458.2–

2022505.8) 89.1 (70.7–110.1) −0.42 (−0.44 to −0.4)

Southeast Asia

137134.4 (110284.9–

165525.5) 28.5 (23–34.6)

294296.5 (238649.7–

359900.3) 43 (34.9–52.4) 1.32 (1.24 to 1.4)

Southern Latin America 13501.2 (10784–16292.9) 27.1 (21.7–32.7) 16307.1 (12730.3–19984.6) 25.4 (20–31) −0.23 (−0.36 to −0.1)

Southern Sub-Saharan 

Africa 33516.9 (26947.1–40948.2) 61.1 (48.9–75) 46724.7 (37840.3–57921.6) 58.1 (47.1–71.8) −0.15 (−0.18 to −0.12)

Tropical Latin America 45985.2 (37322.9–55399.5) 29.7 (24.1–35.8) 53196.6 (43518.5–63293.2) 24.1 (19.8–28.7) −0.64 (−0.82 to −0.47)

Western Europe

110914.7 (92933.7–

130198.3) 30.8 (25.8–35.8)

106619.5 (86208.2–

128179.7) 26.6 (21.6–31.6) −0.61 (−0.68 to −0.55)

Western Sub-Saharan 

Africa

109315.9 (87287.1–

132892.3) 51.6 (41.1–63.4)

251079.8 (202129.3–

306333.6) 48.2 (38.5–59.2) −0.16 (−0.2 to −0.12)

Incidence

(Continued)
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TABLE 1 (Continued)

Location 1990 2021 EAPC_95%CI

Number ASR Number ASR

Global

243735.5 (179582.3–

309986.2) 3.8 (2.8–4.8)

183302.4 (135255.4–

241690.8) 3 (2.2–3.9) −0.89 (−0.94 to −0.83)

High SDI 19184.2 (14943.5–23,686) 3.2 (2.5–3.9) 12250.7 (8958.3–15793.5) 2.5 (1.8–3.2) −0.84 (−0.89 to −0.78)

High-middle SDI 35467.7 (27356.6–44190.3) 4 (3.1–5) 14891.1 (10856.4–19103.2) 2.6 (1.9–3.4) −1.53 (−1.59 to −1.47)

Middle SDI 70,155 (52194.6–89621.5) 3.5 (2.6–4.5) 41628.6 (30595.4–54118.8) 2.7 (2–3.5) −0.83 (−0.89 to −0.77)

Low-middle SDI

77840.5 (55680.3–

103242.8) 4.2 (3–5.6) 61922.3 (45962.8–82936.3) 3.3 (2.5–4.4) −0.86 (−0.92 to −0.81)

Low SDI 40949.9 (28498.5–53784.9) 3.9 (2.7–5.1) 52492.5 (37730.8–70330.4) 3 (2.2–4.1) −0.8 (−0.86 to −0.73)

Andean Latin America 2389.1 (1779.9–3030.2) 4.2 (3.2–5.4) 2073 (1528.4–2708.1) 3.5 (2.6–4.6) −0.86 (−0.95 to −0.77)

Australasia 523.9 (476.5–581.8) 3.4 (3.1–3.8) 446 (310.4–596.5) 2.6 (1.8–3.5) −0.69 (−0.91 to −0.47)

Caribbean 930.2 (637.9–1,240) 2.2 (1.5–2.9) 836.3 (589.8–1178.5) 2.2 (1.5–3.1) 0.28 (0.16 to 0.41)

Central Asia 7838.8 (5676.3–9950.7) 8.3 (6–10.5) 5026.9 (3489.7–6802.2) 5.1 (3.6–6.9) −1.75 (−1.83 to −1.67)

Central Europe 2950.7 (2260.7–3684.6) 3.6 (2.7–4.5) 1199.3 (846.9–1582.1) 2.4 (1.7–3.1) −1.2 (−1.29 to −1.11)

Central Latin America 9706.6 (7405.6–12225.3) 4.1 (3.1–5.1) 4740.3 (3408.8–6221.5) 2.5 (1.8–3.3) −1.25 (−1.35 to −1.14)

Central Sub-Saharan Africa 3733.3 (2516.1–4946.6) 3 (2–4) 4471.9 (3198.6–6112.9) 2.1 (1.5–2.9) −1.27 (−1.33 to −1.21)

East Asia 43150.1 (32544.5–53678.5) 3.8 (2.8–4.7) 12,651 (9475.1–16014.8) 2.3 (1.7–2.9) −1.72 (−1.92 to −1.52)

Eastern Europe 3774.3 (2719.4–4815.6) 2.6 (1.9–3.4) 1586.6 (1121.2–2126.9) 1.8 (1.3–2.5) −1.19 (−1.26 to −1.13)

Eastern Sub-Saharan Africa 15197.8 (10377.7–20,427) 3.5 (2.4–4.7) 18546.2 (13042.2–25,247) 2.8 (2–3.8) −0.66 (−0.8 to −0.52)

High-income Asia Pacific 5042.6 (3779.5–6350.1) 5.3 (4–6.7) 2180.6 (1421.8–2947.3) 3.8 (2.5–5.2) −1.14 (−1.19 to −1.09)

High-income North 

America

3937.7 (2830.5–5155.4) 1.8 (1.3–2.3) 3367.6 (2357.8–4455.8) 1.7 (1.2–2.3) 0.01 (−0.09 to 0.12)

North Africa and Middle 

East

25886.2 (18883.2–33252.8) 4.9 (3.6–6.3) 18033.9 (13630.9–23855.2) 3.2 (2.4–4.2) −1.44 (−1.52 to −1.37)

Oceania 138.4 (93.4–197.2) 1.3 (0.9–1.8) 299 (211.2–431.2) 1.5 (1–2.1) 0.38 (0.3 to 0.46)

South Asia 74558.2 (53276.1–

102626.7)

4.5 (3.2–6.2) 57043.1 (41548.6–77685.2) 3.8 (2.7–5.1) −0.77 (−0.82 to −0.72)

Southeast Asia 13065.7 (9327–17114.9) 2.2 (1.6–2.9) 14629.7 (10515.7–19032.5) 2.7 (1.9–3.5) 0.67 (0.62 to 0.73)

Southern Latin America 1444.9 (1080.2–1872.5) 2.8 (2.1–3.7) 764.4 (519.4–1013.9) 2.1 (1.4–2.7) −1.08 (−1.47 to −0.69)

Southern Sub-Saharan 

Africa

2960.6 (2068.9–4,011) 3.8 (2.7–5.2) 2587.4 (1853.9–3470.3) 3.3 (2.4–4.4) −0.41 (−0.47 to −0.35)

Tropical Latin America 3782.9 (2986.2–4683.2) 2.3 (1.9–2.9) 3344.2 (2530–4235.2) 2 (1.5–2.6) −0.18 (−0.3 to −0.05)

Western Europe 7394.4 (6172.4–8535.2) 3.3 (2.8–3.8) 4963.5 (3699.8–6228.8) 2.5 (1.9–3.2) −0.9 (−0.95 to −0.85)

Western Sub-Saharan 

Africa

15329.2 (10349.3–20589.2) 3.6 (2.4–4.8) 24511.6 (17346.4–33092.8) 2.9 (2–3.9) −0.61 (−0.68 to −0.53)

Deaths

Global 12353.8 (4489.9–22,917) 0.2 (0.1–0.4) 1718.6 (484.8–4409.5) 0 (0–0.1) −6.17 (−6.24 to −6.11)

High SDI 140.1 (53.3–265.1) 0 (0–0) 6.6 (3.1–11.4) 0 (0–0) −8.59 (−8.81 to −8.37)

High-middle SDI 2818.1 (1099.6–5607.2) 0.3 (0.1–0.6) 57.2 (30.9–90.8) 0 (0–0) −11.62 (−12.12 to −11.11)

Middle SDI 5,193 (2311.3–8942.5) 0.3 (0.1–0.4) 238.3 (141.5–360.4) 0 (0–0) −9.04 (−9.21 to −8.86)

Low-middle SDI 2952.8 (850.8–7563.3) 0.2 (0–0.4) 496.7 (176.9–1068.9) 0 (0–0.1) −5.45 (−5.63 to −5.28)

Low SDI 1243.7 (102.7–4732.9) 0.1 (0–0.5) 917.2 (110.9–3315.9) 0.1 (0–0.2) −2.1 (−2.36 to −1.85)

Andean Latin America 182.6 (87.2–307.8) 0.3 (0.2–0.6) 12.6 (7.1–20.1) 0 (0–0) −8.73 (−9.03 to −8.43)

Australasia 0.3 (0.2–0.5) 0 (0–0) 0.2 (0–0.5) 0 (0–0) −3.93 (−9.13 to 1.56)

Caribbean 20.5 (5.1–53) 0 (0–0.1) 8.1 (1.7–20.1) 0 (0–0.1) −2.45 (−2.56 to −2.34)

(Continued)
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TABLE 1 (Continued)

Location 1990 2021 EAPC_95%CI

Number ASR Number ASR

Central Asia 27.2 (14.8–51) 0 (0–0.1) 9.6 (5.7–16.6) 0 (0–0) −4.15 (−4.93 to −3.37)

Central Europe 19.1 (12.2–29.1) 0 (0–0) 0.3 (0.1–0.6) 0 (0–0) −11.81 (−12.75 to −10.86)

Central Latin America 288.9 (171.3–369.1) 0.1 (0.1–0.2) 41.2 (24.2–60.2) 0 (0–0) −5.67 (−5.87 to −5.47)

Central Sub-Saharan Africa 80.9 (8–357.2) 0.1 (0–0.3) 58.5 (7.2–239.7) 0 (0–0.1) −2.33 (−2.9 to −1.76)

East Asia 5997.5 (1999–11610.8) 0.5 (0.2–1) 103 (52.1–169.7) 0 (0–0) −11.52 (−12.21 to −10.81)

Eastern Europe 29.8 (18.4–43.2) 0 (0–0) 2.1 (0.8–3.5) 0 (0–0) −7.48 (−8.21 to −6.75)

Eastern Sub-Saharan Africa 455 (44.4–2,137) 0.1 (0–0.5) 257 (26.7–1121.5) 0 (0–0.2) −2.84 (−3.05 to −2.63)

High-income Asia Pacific 16.6 (6–36.6) 0 (0–0) 0.1 (0–0.1) 0 (0–0) −16.54 (−17.79 to −15.26)

High-income North 

America

13.9 (10.3–16.4) 0 (0–0) 0.7 (0.3–1) 0 (0–0) −7.62 (−8.57 to −6.65)

North Africa and Middle 

East

1524.4 (517.8–3596.5) 0.3 (0.1–0.7) 288.2 (95.3–1051.9) 0 (0–0.2) −4.67 (−5.06 to −4.27)

Oceania 37.3 (6.4–101.6) 0.4 (0.1–1) 35.1 (6.4–90.6) 0.2 (0–0.4) −1.94 (−2.09 to −1.78)

South Asia 2080.2 (252.2–6408.8) 0.1 (0–0.4) 252 (41.7–862.6) 0 (0–0.1) −6.18 (−6.35 to −6.01)

Southeast Asia 975.2 (444.6–1913.4) 0.2 (0.1–0.3) 191.1 (82.8–363.2) 0 (0–0.1) −4.98 (−5.05 to −4.91)

Southern Latin America 4 (1.9–8.5) 0 (0–0) 0.8 (0.3–1.4) 0 (0–0) −5.09 (−5.99 to −4.18)

Southern Sub-Saharan 

Africa

62.2 (29.5–99.3) 0.1 (0–0.1) 36.2 (14.9–65.7) 0 (0–0.1) −1.06 (−1.41 to −0.71)

Tropical Latin America 161.1 (112.8–198.6) 0.1 (0.1–0.1) 17.9 (11.1–25.3) 0 (0–0) −6.17 (−6.65 to −5.68)

Western Europe 27.2 (19.9–33.1) 0 (0–0) 1.3 (0.6–2) 0 (0–0) −8.76 (−9.84 to −7.68)

Western Sub-Saharan 

Africa

350 (25.1–1981.4) 0.1 (0–0.5) 402.8 (45.7–1900.4) 0 (0–0.2) −1.32 (−1.56 to −1.07)

DALYs

Global 1290532.6 (590788.8–

2246406.8)

20.8 (9.7–35.8) 408775.3 (252320.1–

671119.9)

5.8 (3.5–9.8) −4.13 (−4.28 to −3.98)

High SDI 30744.8 (18908.9–44317.2) 4.3 (2.5–6.3) 22030.9 (13635.6–33496.9) 2.2 (1.4–3.4) −2.09 (−2.31 to −1.87)

High-middle SDI 279207.1 (124269.2–

527212.6)

31.1 (13.6–59.3) 32495.7 (21979.2–48008.9) 3.2 (2.2–4.5) −8.17 (−8.57 to −7.76)

Middle SDI 519928.6 (260467.9–

850007.8)

26.4 (13.4–42.9) 92289.2 (65013.8–

129542.5)

4.4 (3.1–6.1) −6 (−6.22 to −5.79)

Low-middle SDI 325981.7 (132397.4–

734145.2)

19.5 (8.7–42.2) 134879.5 (88416.2–

201658.2)

7.1 (4.6–10.6) −3.19 (−3.25 to −3.14)

Low SDI 134026.9 (30708.7–

446529.9)

15.2 (4.7–46.7) 126685.1 (49746.3–

344500.6)

8.6 (3.9–21.7) −1.47 (−1.64 to −1.31)

Andean Latin America 17436.4 (9006.3–28478.7) 32.3 (17.1–52) 3210.6 (2335.8–4508.4) 5.1 (3.7–7.1) −6.01 (−6.44 to −5.59)

Australasia 421 (270.9–627.5) 2.2 (1.4–3.3) 550.9 (348.8–839.2) 1.9 (1.2–2.9) −0.36 (−0.45 to −0.26)

Caribbean 2,540 (1079.4–5389.4) 6.2 (2.8–12.9) 2049.2 (1218–3,329) 4.7 (2.7–8) −0.66 (−0.75 to −0.56)

Central Asia 6537.1 (4575.6–9347.1) 8.2 (5.8–11.8) 5597.1 (3769.2–8351.8) 5.8 (3.9–8.6) −1.34 (−1.51 to −1.17)

Central Europe 4336.3 (3101.5–5967.2) 4.2 (3–5.8) 1941 (1198.8–2954.3) 1.8 (1.2–2.8) −2.66 (−2.82 to −2.5)

Central Latin America 30895.5 (19981.1–38687.1) 13.7 (9–17.1) 9694.7 (6999.8–13400.7) 4.4 (3.2–5.9) −3.8 (−3.98 to −3.63)

Central Sub-Saharan Africa 8727.1 (2202.8–33257.7) 8.5 (2.8–29.6) 8642.3 (3613.9–24278.8) 4.8 (2.2–12.1) −1.52 (−1.88 to −1.17)

East Asia 567452.8 (210661.3–

1071789.9)

49.3 (18.2–93.3) 36,372 (24862.6–52967.5) 3.6 (2.4–5.2) −9.41 (−9.93 to −8.88)

Eastern Europe 7,111 (4966.3–9801.3) 3.8 (2.6–5.3) 3537.9 (2200.8–5391.7) 1.9 (1.3–2.9) −2.64 (−2.83 to −2.45)

(Continued)
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systemic gaps in health surveillance systems (20). Despite incremental 
advancements in low- and low-middle SDI regions, OFCs continues 
to impose disproportionately heavy health burden in these areas.

From the perspective of geography, the top three regions with the 
highest ASPR in 2021 are South Asia, North Africa and Middle East, 
Central Asia, the values are, respectively, 89.1 per 100,000 (95% UI: 

70.7–110.1), 85.2 per 100,000 (95% UI: 68.2–103.5), and 80 per 
100,000 (95% UI: 64.6–96.4). In contrast, high-income North America 
had the lowest ASPR at 19.7 per 100,000 (95% UI: 15.1–24.9). ASPR 
in the Australasia and Europe are significantly lower than those in 
Asia and Africa. Almost all regions experience a decline in prevalence 
between 1990 and 2021, except for the four regions: Andean Latin 

TABLE 1 (Continued)

Location 1990 2021 EAPC_95%CI

Number ASR Number ASR

Eastern Sub-Saharan Africa 47522.3 (10182.3–

198395.6)

13.2 (3.8–50.4) 36,757 (14299.3–113,593) 6.6 (2.9–18.4) −1.94 (−2.07 to −1.81)

High-income Asia Pacific 7122.9 (4645.9–10,330) 5 (3.2–7.6) 5517.1 (3380.1–8453.6) 3.3 (2–5.1) −1.22 (−1.41 to −1.02)

High-income North 

America

4601.7 (3223.7–6497.1) 1.8 (1.3–2.5) 4438.1 (2676.2–6902.9) 1.3 (0.8–2) −1.53 (−1.89 to −1.16)

North Africa and Middle 

East

156136.9 (66577.3–

340261.1)

31.8 (14.5–67.4) 58524.5 (34890.2–

125071.9)

9.7 (5.7–21.2) −3.13 (−3.41 to −2.85)

Oceania 3455.6 (674.2–9259.6) 33.1 (6.9–87.9) 3446.5 (859–8439.7) 17.5 (4.8–42.2) −1.73 (−1.87 to −1.59)

South Asia 256415.1 (82364.5–

641525.1)

17.6 (6.6–41.4) 122621.6 (76631.1–

193338.1)

6.9 (4.2–11) −2.99 (−3.07 to −2.92)

Southeast Asia 96169.7 (48892.7–

181342.7)

16.7 (8.7–31.3) 35296.7 (23249.2–53115.9) 5.8 (3.7–9) −3.49 (−3.61 to −3.37)

Southern Latin America 1225.7 (822.3–1797.4) 2.4 (1.6–3.6) 1114.1 (711.8–1711.8) 1.8 (1.2–2.7) −1.07 (−1.16 to −0.98)

Southern Sub-Saharan 

Africa

7652.6 (4591.1–10780.2) 11 (6.9–15.2) 6,098 (3886.3–8970.3) 7.7 (4.9–11.4) −0.7 (−0.92 to −0.48)

Tropical Latin America 17356.4 (12612.5–21039.9) 10.8 (7.9–13.1) 4984.9 (3585.1–7008.7) 2.5 (1.8–3.4) −4.22 (−4.65 to −3.78)

Western Europe 9400.7 (6764.6–13053.4) 3 (2.2–4) 6841.7 (4201.1–10342.1) 1.7 (1.1–2.6) −1.57 (−1.82 to −1.32)

Western Sub-Saharan 

Africa

38015.8 (8145.1–184706.9) 10.9 (3.2–47.2) 51539.5 (18210.1–

184528.5)

7.3 (3–23.3) −0.92 (−1.09 to −0.75)

FIGURE 1

Trends in OFCs disability-adjusted life-years, OFCs prevalence, deaths, and incidence (1990–2021).
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America, East Asia, Caribbean, Southeast Asia, with EAPCs of 1.63 
(95% CI: 1.54 to 1.72), 1.32 (95% CI: 1.24 to 1.4), 0.82 (95% CI: 0.78 
to 0.86), and 0.6 (95% CI: 0.54 to 0.65), respectively (Table  1). 
Additionally, we conducted a correlation analysis between ASPR and 
SDI across varying areas, incorporating changes in SDI from 1990 to 
2021. The results are shown in Figure 2. We used distinct shapes and 
colors to represent different regions and plotted 21 lines based on their 
SDI changes over this period. The computation outputted negative 
relation between ASPR and SDI, with a correlation coefficient of −0.34 
(95% CI: −0.41 to −0.28) and p-value < 0.001 (Figure 2).

Despite the most significant decline in ASIR in Central Asia over 
the past 32 years, with an EAPC of −1.75 (95% CI: −1.83 to −1.67), 
its ASIR still ranks highest at 5.1 per 100,000 (95% UI: 3.6–6.9). South 
Asia and high-income Asia Pacific follows closely, with rates of 3.8 per 
100,000 (95% UI: 2.7–5.1) and 3.8 per 100,000 (95% UI: 2.5–5.2), 
respectively. The region with the lowest ASIR is Oceania, at 1.5 per 
100,000 (95% UI: 1.0–2.1). The regions with positive EAPC values 
include Southeast Asia Oceania, Caribbean, high-income North 
America, with values of 0.67 (95% CI: 0.62 to 0.73), 0.38 (95% CI: 0.3 
to 0.46), 0.28 (95% CI: 0.16 to 0.41), and 0.01 (95% CI: −0.09 to 0.12), 
respectively (Table 1). The correlation coefficient between SDI values 
and ASIR across different regions is −0.04 (95% CI: −0.12 to 0.03), 
with a p-value of 0.25, indicating no significant correlation (Figure 2).

Oceania has the highest ASDR at 0.2 per 100,000 (95% UI: 0–0.4), 
while in other regions the value is around zero. During the 32 years, 
ASDR has significantly decreased in all regions (Table  1). The 
correlation coefficient between SDI values and ASDR is −0.51 (95% 
CI: −0.57 to −0.45), with a p-value of<0.001, indicating a significant 
correlation (Figure 2).

The top three rates of age-standardized DALYs in 2021 are 
Oceania, North Africa and Middle East, Southern Sub-Saharan 
Africa, at 17.5 per 100,000 (95% UI: 4.8–42.2), 9.7 per 100,000 
(95% UI: 5.7–21.2), and 7.7 per 100,000 (95% UI: 4.9–11.4), 

respectively. High-income North America has the lowest rate at 
1.3 per 100,000 (95% UI: 0.8–2.0). Rates of age-standardized 
DALYs have dropped within all regions, with East Asia showing 
the most notable decline, at an EAPC of −9.41 (95% CI: −9.93 to 
−8.88) (Table 1). The SDI value of each region shows negative 
relation with rate of age-standardized DALYs, with a correlation 
coefficient of −0.55 (95% CI: −0.60 to −0.50), p-value < 0.001 
(Figure 2).

National level

In 2021, countries with the top three high ASPR were Palestine 
(147.15 per 100,000, 95% UI: 119.61–176.54), State of Qatar (140.47 
per 100,000, 95% UI: 111.24–173.15), and Islamic Republic of Pakistan 
(136.06 per 100,000, 95% UI: 107.62–169.11), all of which are in Asia. 
The country with the lowest ASPR is Canada (9.07 per 100,000, 95% 
UI: 7.15–11.05). Puerto Rico is the country with the most notable 
elevation in ASPR (EAPC: 2.05, 95% CI: 1.93 to 2.18), while Italy has 
the most notable decline in ASPR (EAPC: −1.36, 95% CI: −1.55 to 
−1.17) (Supplementary Table S1; Figure 3A). The fastest elevation in 
case number is in Qatar, with a 534.2% elevation in case number in 
2021, compared to 1990 (Figure 4A). We conducted several correlation 
analyses between these disease burden indicators and SDI values 
across different countries. Correlation coefficient between SDI and 
ASPR is −0.23, showing a negative correlation, with a 95% CI of −0.36 
to −0.10 and a p-value < 0.05 (Figure 5).

In terms of ASIR, the top-ranked countries are Kazakhstan (6.34 
per 100,000, 95% UI: 4.33–8.64), Mongolia (6.21 per 100,000, 95% UI: 
4.00–9.25), and Turkey (5.81 per 100,000, 95% UI: 4.09–7.76), all 
situated in Central Asia. Conversely, Canada has the lowest ASIR at 
0.83 per 100,000 (95% UI: 0.58–1.13). The ASIR of Taiwan (Province 
of China) has seen the most significant increase (EAPC: 2.95% CI: 

FIGURE 2

Association between SDI and disease burden indicators for OFCs in 21 regions.
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FIGURE 3

Worldwide health impact of OFCs among both genders across 204 nations and regions. (A) Prevalence rate. (B) Incidence rate. (C) Death rate. 
(D) DALYs rate.

FIGURE 4

OFCs cases for both genders across 204 nations and regions. (A) Change prevalence cases. (B) Change incidence cases. (C) Change deaths cases. 
(D) Change DALYs.
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1.73 to 2.28) (Supplementary Table S2; Figure  3B). Countries 
experiencing a rapid surge in the number of cases include Qatar, 
Papua  New  Guinea, Chad, Niger, Mali, and Somalia, with their 
incidence rates in 2021 more than doubling compared to 1990 
(Figure 4B). The correlation coefficient between SDI values and ASIR 

is −0.06 (95% CI: −0.20 to 0.08), with a p-value of 0.376, indicating 
no clear correlation between the two (Figure 5).

Papua New Guinea has the highest ASDR (0.19 per 100,000, 95% 
UI: 0.04–0.52) (Supplementary Table S3; Figure 3C). Except for a few 
regions and countries with an increase in ASDR globally (e.g., 

FIGURE 5 (CONTINUED)
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Afghanistan, Trinidad, and Tobago), there has been significant 
decreases in ASDR in all others. It can be observed that countries with 
increased deaths, such as Afghanistan, Chad, Somalia, etc., are mainly 
located in Sub Saharan Africa and Central Asia (Figure  4C). The 
correlation coefficient between the SDI values and ASDR is −0.62 
(95% CI: −0.70 to −0.53), with p-value <0.05, indicating a significant 
correlation (Figure 5).

The age-standardized DALYs rate is highest in Afghanistan (22.53 
per 100,000, 95% UI: 5.8–104). The fastest decline is in China, with an 
EAPC of −9.59 and a 95% CI: −10.13 to −9.03 (Supplementary Table S4; 
Figure 3D). Likewise, the nations experiencing the most substantial 
increases are predominantly in Sub Saharan Africa and Central Asia 
(Figure 4D). The correlation coefficient between the SDI values and 
ASDR is −0.64 (95% CI: −0.71 to −0.55), p-value <0.05(Figure 5).

FIGURE 5

Association between SDI and disease burden indicators for OFCs in 204 countries.
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Gender differences in disease burden

Between 1990 and 2021, trends of OFCs disease burden showed 
nearly identical patterns between two genders. Male population 
exhibited higher ASDR, age-standardized DALYs rate, ASPR 
compared to females, while females exhibited higher ASIR. The 
disparity in ASPR between genders remained stable, with males 
maintaining higher ASPR values by 2021. In contrast, ASDR, 
age-standardized DALYs rate, and ASIR reached comparable levels 
between males and females by 2021 (Figure  6). Among the four 
disease burden indicators, only ASPR showed statistically significant 
gender differences (p < 0.001).

Projections of the global impact of OFCs

We predict the trajectory of OFCs burden from 2022 to 2050. The 
combined ASPR for both sexes is anticipated to decline globally, 
falling from roughly 53.4 per 100,000  in 2021 to about 51.4 per 
100,000 by 2050, which equates to a nearly 3.7% reduction over 
30 years. Expected prevalence in male population is fairly constant, 
with minor rise from around 54.7 per 100,000 to 51.5 per 100,000, 
from 2021 to 2050. For females, a comparable decline is anticipated, 
with the prevalence rate falling from around 52.0 per 100,000 in 2021 
to 51.5 per 100,000 by 2050. The global incidence of OFCs is also 
expected to experience a slight downward trend for both genders 
combined. ASIR is projected to decrease from approximately 2.81 per 
100,000 in 2021 to about 1.78 per 100,000 by 2050. Additionally, 
ASDR for OFCs is expected to decline for both sexes combined, from 
roughly 0.026 per 100,000 in 2021 to around 0.003 per 100,000 by 
2050. Moreover, rate of age-standardized DALYs for OFCs is 
expected to see a significant decline for the sum of both gender 

groups, falling from 5.8 per 100,000 to approximately 2.0 per 100,000, 
2021 to 2050. In all, the decrease in the ASPR is relatively modest, 
and the data differences between males and females are minimal 
(Figure 7).

Discussion

We investigated the trend of the disease burden of OFCs over 
time, as well as its relationship with factors (e.g., social development 
level and gender). Globally, notable reductions were seen in 
age-standardized DALYs rate, ASDR, ASIR, demonstrating enhanced 
capabilities in both preventive strategies and clinical management of 
OFCs. However, the disease burden of OFCs exhibits strikingly 
inequitable distribution and is inversely associated with the socio-
demographic index. Regions with high SDI consistently demonstrate 
superior healthcare capabilities. Over the past three decades, three key 
indicators (ASPR, ASDR, and age-standardized DALYs rate) have 
remained stable and consistently lower than other regions, while only 
ASIR shows variability. This suggests that high-SDI regions not only 
deliver comprehensive, high-quality therapeutic interventions but 
have also achieved measurable advancements in primary prevention 
strategies for OFCs. In regions with high-middle SDI, rapid economic 
growth has been accompanied by the most significant reduction in 
disease burden. Notably, ASPR and ASIR in low-SDI areas are lower 
than those in low-middle SDI regions, potentially attributable to 
incomplete data-reporting system, inconsistencies in case definitions, 
or model-based misinterpretations of epidemiological patterns in 
resource-limited settings. Furthermore, correlation analyses across 21 
geographical regions revealed that SDI values exhibited negative 
associations with ASPR, ASDR, and age-standardized DALYs rate, 
while no significant correlation was observed with ASIR.

FIGURE 6

disease burden indicators for OFCs in males and females from 1990 to 2021.
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Drawing on comprehensive analysis of the GBD 2021 data, our 
calculations indicate a global prevalence of OFCs in approximately 1 
per 731 live births, statistically aligning with existing literatures (21). 
Central Asia stands out with a notably high incidence rate. 
Environmental pressures such as intense solar irradiance and 
significant diurnal temperature differences between day and night in 
Central Asia, may trigger abnormal gene expression during embryonic 
development (22, 23). Moreover, the traditional diet mainly consists 
of meat and dairy products, may lead to insufficient intake of 
vegetables and a consequent lack of key nutrients like folate among 
pregnant women (24). Additionally, exposure to secondhand smoke 
and the drinking habits of pregnant women are also known to 
contribute to the occurrence of OFCs (25). However, the 
age-standardized DALYs rate in Central Asian countries remain 
relatively low, which can attributed to the humanitarian activities of 
voluntary surgeons (26).

South Asia is characterized by high ASPR. The region has a large 
population base, and medical expenditure generally constitutes a low 
proportion of GDP (27). Meanwhile, some countries have received 
support from the WHO and have implemented measures to enhance 
prenatal care and early screening, leading to more cases being 
documented (28). The medical resources in this region are extremely 
scarce, with a severe shortage of surgeons, dentists, and nurses (29). 
This makes it challenging for patients to receive satisfactory treatment. 
Even when patients do receive treatment, their psychosocial trauma 
remains significant (30).

it’s the overall disease burden of Southeast Asia is lower than that 
of Central and South Asia, there are significant disparities among 
individual countries within the region. Vietnamese women generally 
consume less tobacco and alcohol, and their nutritional intake and 
infection prevention during pregnancy are relatively well-maintained, 
ensuring that children can receive timely and effective treatment (31). 
On the contrary, Laos faces a much heavier disease burden, with the 
second highest rate of age standardized DALYs worldwide in 2021, 

almost ten times that of Vietnam, with ASDR also ranking second in 
the world. In Laos, Indonesia, and the Philippines, the majority of 
OFCs patients are unable to receive timely and effective treatment 
(32–35).

East Asia has the lowest burden of OFCs disease in Asia. As the 
world’s second most populous country, China has witnessed rapid 
development, implemented policies related to eugenics and child 
rearing, and widely promoted prenatal checkups (36). Among high 
SDI region, high-income Asia Pacific exhibits the heaviest disease 
burden. Despite having extremely low birth rates in recent years, Japan 
and South Korea still exhibit relatively high ASIR of OFCs, second 
only to Central Asia. The elevated incidence may be  linked to 
advanced maternal age and specific dietary patterns. Some scholars 
have found that excessive intake of multiple vitamins in the early stage 
of pregnancy can also lead to the occurrence of OFCs (37). Moreover, 
the high aesthetic standards in Korean society may impose greater 
psychological stress on individuals with OFCs in their daily lives (38).

OFCs disease burden remains relatively high in Middle East and 
North Africa. The traditional diet in these areas mainly consists of 
meat and cereals, women of childbearing age and pregnant women 
significantly lack folate intake (39). High proportion in women 
population used hookah during pregnancy, and the number of people 
with gestational diabetes is larges (40). Some communities still 
practice consanguineous marriages (41). Moreover, the unstable 
political situation is also one of the major challenges, such as 
Afghanistan, whose age-standardized DALYs rate ranks first among 
all countries, indicating that patients are unable to receive ideal 
treatment (42).

Sub Saharan Africa experiences rapid population growth, with 
approximately 1/778 of newborns affected by OFCs. This is 
significantly different from the previously ratio of 1/2500 in African 
newborns (43). This may be due to the previous excessive scarcity of 
medical resources in Africa, coupled with cultural superstitions that 
led to the discrimination against OFCs patients (44, 45). As a result, 

FIGURE 7

Future forecasts of global burden of OFCs.
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many children did not have the opportunity to seek medical treatment 
and were not recorded (46). Africa’s medical resources remain 
extremely limited, with low medical insurance coverage and a heavy 
reliance on international funding and policy support. Many children 
with OFCs miss out on surgical opportunities due to insufficient 
nutritional intake and feeding difficulties caused by cleft lip and palate. 
Their weight often fails to meet the requirements for surgery, causing 
them to miss the optimal treatment window (47–49).

In Oceania, the impact caused by OFCs is significant, which is 
primarily due to the overwhelming disease burden in 
Papua New Guinea. The country has a notably high rate of teenage 
pregnancy (50). Meanwhile, tropical climate and poor hygiene 
conditions exacerbate the risk of infections during pregnancy (51). 
Papua New Guinea is also home to numerous volcanoes, and the 
volcanic ash emissions contain cadmium, a heavy metal linked to a 
higher risk of OFCs (52). Medical resources in the country are 
extremely scarce and unevenly distributed. Although international 
medical aid teams provide free surgeries, coverage remains low due to 
inadequate transportation and postoperative rehabilitation 
resources (53).

Thanks to sufficient medical resources and effective perinatal 
management (54), the disease burden in Australasia and Europe 
remains quite low. High-income North America has the lowest disease 
burden. The disease burden in Latin America and the Caribbean 
region is roughly at a moderate level, OFCs distribution in Latin 
American and Caribbean countries presented to be heterogeneous, 
with no geographic pattern (55). Brazil has a relatively high rate of 
tobacco and alcohol exposure during pregnancy, a higher risk of 
infections, and a high prevalence of hypertension, along with lower 
coverage rate of surgical procedures (56, 57). In addition, some studies 
suggest that the abuse of cannabis and other drugs in Latin America 
is also associated with OFCs occurrence (58).

From a global perspective, the disease burden of men is slightly 
higher than that of women. This phenomenon may be the result of the 
combined effects of genetics and embryonic development (59). From 
a genetic perspective, some genes exhibit stronger dominant effects in 
male embryos (60). In terms of embryonic development, the critical 
period of facial fusion in male embryos is more sensitive to external 
interference (19). In addition, male patients are more likely to 
be  detected in statistics due to a higher proportion of bilateral 
complete cleft lip and palate, while female embryos have lower 
tolerance for severe deformities, which may lead to a higher rate of 
early natural elimination (61).

We predict that the disease burden of OFCs will continue to 
decrease in the future, and in order to accelerate this process，tailored 
interventions should be  implemented based on country-specific 
disease burden profile. In areas with relatively low SDI, the disease 
burden is significantly heavier. For congenital disorders such as OFCs, 
prevention and early treatment are crucial in these areas. It requires 
implementing prenatal and eugenic policies to prohibit 
consanguineous marriages, enhancing prenatal screenings during 
pregnancy, ensuring adequate nutrition supply, preventing infections, 
getting rid of superstition, and avoiding medication misuse (62–65). 
For the care of newborns with OFCs, it is essential to ensure prompt 
feeding care, prevent lower respiratory tract infections, manage 
psychomotor retardation, and treat of comorbidities (66–69).

Strengthening horizontal health systems is likely the optimal 
long-term strategy compared to vertical, disease-specific 

interventions for addressing cleft-related disabilities (20). 
Ensuring timely and effective access to basic surgical care for 
patients is the most cost-effective approach (43, 70, 71). It not 
only reduces the need for subsequent corrective treatments but 
also effectively alleviates the disease burden and prevents the 
waste of medical resources (72). For instance, prenatal intrauterine 
surgical repair can achieve nearly scar-free healing (73). 
Meanwhile, it is also crucial to establish effective disease 
surveillance and reporting systems in these regions to provide 
reliable epidemiological data.

Developed regions with high SDI have made sufficient efforts in 
many aspects, and their disease burden of OFCs is relatively light. 
Their main problem is delayed childbearing age, as parental age may 
be related to the occurrence and severity of OFCs (74). These regions 
should take the lead in establishing a global epidemiological 
surveillance system and initiating international support projects to 
assist underdeveloped areas (26), simultaneously conducting more 
high-quality multicenter studies to clarify the epidemiological 
characteristics and etiology of OFCs.

Limitation

The GBD data rely on model estimates, which may introduce 
information bias due to variations in disease definitions, diagnostic 
criteria, and data collection methods (e.g., inconsistent reporting 
standards across national health departments). These factors can lead 
to overestimation or underestimation of disease burdens in specific 
regions, particularly in countries/regions with underdeveloped 
healthcare systems or weak data reporting mechanisms. Additionally, 
the database lacks detailed granular data (e.g., race/ethnicity, disease 
subtypes), limiting in-depth analyses for specific populations.

Conclusion

Globally, the disease burden of OFCs has shown a decline from 
1990 to 2021. Males have experienced a slightly higher disease burden 
compared to females, although the gap remains relatively narrow. The 
distribution exhibits significant regional disparities correlated with 
SDI values. The heaviest disease burden occurs in Central Asia, South 
Asia, and Africa. In these regions, it is crucial to strengthen three-tier 
prevention (preconception screening, prenatal diagnosis), enhancing 
primary healthcare sequential treatment capacity, integrating public 
welfare programs to offer free surgeries, collaborating with 
multidisciplinary teams for full-cycle rehabilitation, and promoting 
preventive knowledge through community education. Developed 
regions with lighter disease burdens should conduct research on cleft 
lip and palate, establish efficient and reliable epidemiological 
surveillance systems, and provide support to other regions.
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