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Metformin may alter the course
of Leber’s hereditary optic
neuropathy: a case report

Shenoda Abd Elmaseh?, Danielle A. Gauthier?,
Maryam Golmohammadi'?, Nutsa Pargalava?, Valerio Carelli**
and Alfredo A. Sadun®?*

!Department of Ophthalmology, David Geffen School of Medicine, Los Angeles, CA, United States,
’Doheny Eye Institute, Los Angeles, CA, United States, *Department of Biomedical and Neuromotor
Sciences, University of Bologna, Bologna, Italy, “Programma di Neurogenetica, IRCCS Istituto di
Scienze Neurologiche di Bologna, Bologna, Italy

Leber’'s hereditary optic neuropathy (LHON) is a rare inherited mitochondrial
disease caused by variants in mitochondrial DNA (mtDNA) transmitted exclusively
through the maternal line. The disease predominantly affects young males and
is characterized by progressive bilateral vision loss. ldebenone, a well-studied
drug, modestly enhances the mitochondrial function and visual acuity in many
patients with LHON. In this study, we report the case of a 48-year-old woman
diagnosed with LHON (m.11778G>A/MT-ND4) and type 2 diabetes mellitus
who experienced visual field improvement following metformin treatment after
26 months of progressive vision loss unresponsive to idebenone, nicotinamide
adenine dinucleotide (NAD+), and hormone replacement therapy (HRT). Our
findings offer an intriguing perspective on LHON management but require more
investigations, particularly on the molecular effects of metformin on the mitochondrial
function in LHON patients.
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1 Introduction

Leber’s hereditary optic neuropathy (LHON) is a maternally inherited mitochondrial
disorder caused by missense point mutations in mitochondrial DNA (mtDNA) genes that
encode subunits of respiratory complex I in the electron transport chain (ETC) (1, 2). The
disease typically presents as bilateral, painless vision loss, with one eye usually affected first,
followed by the second within 4 to 8 weeks (2). LHON predominantly affects young males
aged 12 to 30 years, with a male-to-female ratio of approximately 5:1. Although the disease is
most common in this demographic, it can occur at any age, with approximately 10% of cases
reported in individuals over 50 years of age (3). Dysfunction of mitochondrial complex
I (NADH ubiquinone oxidoreductase), caused by the three most common mtDNA
mutations—m.11778G>A in MT-ND4, m.3460G>A in MT-NDI1, and m.14484T>C in
MT-ND6—disrupts energy production and leads to excessive generation of reactive oxygen
species (ROS). These factors are critical to retinal ganglion cell (RGC) health and LHON
pathogenesis (4, 5). Currently, idebenone—a quinone analog that bypasses complex I,
facilitates electron transfer directly to complex III, and exhibits antioxidant properties—is the
only EMA-approved LHON treatment. Although idebenone is the standard of care for LHON
in Europe, it has not received regulatory approval in the United States (6).

Metformin, a biguanide derivative, is a widely prescribed medication for type 2 diabetes
(DM 1I) and has been in clinical use for nearly a century (5). Beyond its well-known role in
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GRAPHICAL ABSTRACT

Metformin-induced visual field improvement was observed in a patient affected by Leber hereditary optic neuropathy (LHON) with concurrent type 2
diabetes mellitus (DM ll). Prior treatments—including idebenone, NAD+, and hormone replacement therapy (HRT)—failed to show efficacy in this
LHON-affected case (m.11778G>a/MT-ND4). DM lI, type 2 diabetes mellitus; ROS, reactive oxygen species; HRT, hormone replacement therapy. Figure
was created using BioRender. Source: Sadun A. (2025). Available online at: https://BioRender.com/ugb2065.

glycemic control, recent studies have highlighted the strong
therapeutic potential of metformin against various diseases, including
cancer (7), cardiovascular disease (8), liver disorders, obesity (9),
neurodegenerative diseases (10), and renal disorders (11, 12)
(Figure 1). Remarkably, metformin has been associated with lactic
acidosis (13), attributed not only to its interference with mitochondrial
respiration at the complex I site (14) but also to its activation of
mitochondrial biogenesis (15). This compensatory mechanism may
improve mitochondrial function (16).

Here, we present an LHON-affected case with visual field
improvement following metformin treatment who was unresponsive
to other therapeutic interventions—including idebenone, NAD+, and
hormone replacement therapy (HRT)—and evaluate metformin’s
potential contribution to the recovery of visual function.

2 Case presentation

A 48-year-old woman presented to the ophthalmology clinic with
decreased visual acuity, generalized central visual field depression, and
impaired color vision in both eyes (OU). She reported initial vision
deterioration in her left eye (OS) on 30 August 2021, followed by the
involvement of right eye (OD) a few days later. Her medical history
was unremarkable, except for perimenopause and maternally
inherited m.11778G>A/MT-NDI mutation associated with LHON.

On 9 September 2021 (10 days after symptom onset), carrier
conversion was confirmed through clinical examination, showcasing
classical LHON symptomatology of impaired color vision, reduced
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retinal nerve fiber layer (RNFL) thickness, and visual field (VF)
defects. Best-corrected visual acuity (BCVA) was 20/80 in the OD and
20/100 OS. Pupils measured 4 mm bilaterally, with no relative afferent
pupillary defect (RAPD). Intraocular pressure (IOP) measured
19 mmHg OU. Her neurological, sensory, and motor assessments were
normal. The anterior segment and external ocular examinations were
also normal. Ishihara color test scores were 10/14 OD and 3/14 OS,
reflecting greater color vision impairment in OS. Optical coherence
tomography (OCT) scans were performed using a Zeiss Cirrus
HD-OCT system (Carl Zeiss Meditec, Inc., Dublin, California,
United States) to measure structural changes in RNFL. OCT showed
anormal average RNFL thickness of 118 um OD and 117 pm OS with
evidence of RNFL swelling, particularly in the temporal-inferior
sectors (Figure 2A). Diffuse thinning of the ganglion cell layer (GCL)
was observed, indicative of RGC loss (Figure 2B). Fundus examination
and OCT showed no evidence of diabetic retinopathy at any point
during follow-up. Standard achromatic 30-2 perimetry tests were
performed using a Humphrey VF Analyzer (Carl Zeiss Meditec, Inc.,
Dublin, California, United States) to measure functional vision
changes. Humphrey visual field (HVF) testing revealed central
scotomas in OU, with a standard mean deviation (MD) of —0.5 dB OD
(Figure 2C) and —2.35 dB OS (Figure 2D). Idebenone treatment was
initiated at a dose of 300 mg orally three times daily after the
confirmation of LHON.

Her follow-up appointment on 9 November 2021 (2.5 months
since LHON onset) showed persistent visual deterioration. Her BCVA
declined to 20/250 —2 OD and 20/200 OS. Ishihara color tests and
IOPs remained unchanged, with no RAPD. OCT showed an increased
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Schematic view of various molecular effects of metformin on different diseases, including obesity, cardiovascular diseases, renal diseases, cancer,
diabetes, liver diseases, and aging. The figure was created in BioRender. Source: Sadun A. (2025). Available online at: https://BioRender.com/j88p452.

Gluconeogenesis

average RNFL thickness of 115 pm OD and 116 pm OS with ongoing
temporal-inferior RNFL swelling (Figure 3A) and progressive diffuse
GCL thinning (Figure 3B). HVF indicated further expansion of the
central scotoma in OD with a MD of —9.24 dB (Figure 3C) and the
development of a cecocentral scotoma in OS of —4.5 dB (Figure 3D).

Progressive visual loss was confirmed on 10 March 2022 (6.5 months
from LHON onset), with suspected poor response to idebenone. BCVA
had declined to 20/800 OD and counting fingers (CF) at three feet
OS. Based on prior evidence of estrogen’s neuroprotective role in LHON
(17, 18), the patient started HRT. She was unable to complete the Ishihara
color test. OCT showed further RGC loss with RNFL thickness decreasing
to 92 pm OD and 90 pm OS (Figure 4A) and persistent bilateral GCL
thinning (Figure 4B). HVF demonstrated profound generalized visual
field depression bilaterally with MD values of —30.94 dB OD (Figure 4C)
and —31.89 dB OS (Figure 4D).

By 16 August 2022 (11.5 months after LHON onset), her BCVA
had decreased to CF at two feet OU. Her OCT showed significant
RNFL thinning of 55 pm OD and 57 pm OS, predominantly in the
superior and inferior quadrants (Figure 5A), with further GCL
thinning (Figure 5B). Similarly, HVF revealed worsening central
scotoma with severe field loss with MD values of —31.97 dB OU
(Figures 5C,D). Due to the lack of response to idebenone and HRT,
the patient was prescribed an alternative 300 mg of NAD+ treatment
three times daily (Figure 6).

On 14 February 2023 (17.5 months following LHON onset), the
patient was diagnosed with DM II and subsequently was prescribed
500 mg of metformin once daily for glycemic control (Figure 6).
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About nine months after starting the metformin treatment course, she
subjectively reported improved visual function. She could recognize
faces at close distance, which she had been unable to do before
therapy. In her follow-up on 11 November 2024 (26 months following
LHON onset), her BCVA deteriorated to CF at three feet OD and
improved to CF at one foot OS. The HVF showed an improvement in
central general depression, with mean deviation (MD) values
improving to —24.56 dB OD (Figure 7A) and —-24.46dB OS
(Figure 7B) from February 2023, with standard MD values of
—29.54 dB OD and —29.86 dB OS (Figure 6). At the time of metformin
initiation, the patient continued idebenone, NAD+, and HRT. While
spontaneous recovery occurs in a few m.11778G>A/MT-ND4 cases,
the timing and correlation with metformin suggest a potential
therapeutic effect, possibly in combination with metabolic
improvements and the other treatments. The patient reported good
adherence to all prescribed therapies and did not experience any
adverse events throughout the treatment period. She reported severe
emotional and functional distress following the onset of vision loss
that impaired her daily activities. After the initiation of metformin,
she subjectively reported improvements, such as the ability to
recognize faces at near distances.

3 Discussion

We described a case of visual improvement in a postmenopausal
woman with LHON and DM II following metformin administration.
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FIGURE 2

(A) Zeiss Cirrus OCT of the ONH and RNFL OU analysis: optic disc cube 200 X 200 scan showing a standard bilateral average RNFL thickness on
September 9, 2021. (B) Zeiss Cirrus ganglion cell OU analysis: macular cube 512 x 128 scan showing diffuse GCL thinning and swelling on the same
date. (C) Zeiss single-field analysis: central 30-2 HVF demonstrating the formation of a central scotoma OU, with standard MD values of —2.35 dB in
OS (D) and —0.5 dB in OD on 9 September 2021. OCT, optical coherence tomography; ONH, optic nerve head; RNFL, retinal nerve fiber layer; GCL,
ganglion cell layer; HVF, Humphrey visual field; MD, mean deviation; OU, both eyes; OS, left eye; OD, right eye.
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The treatment with metformin was for managing her DM IL. It was
initiated 17.5 months after the onset of vision loss and the lack of
improvement with the other therapies (i.e., idebenone, HRT, and
NAD+). Functional improvement corroborated a possible LHON
metformin benefit indicated by a decrease in standard MD on HVF
from —31dB to —25dB OD and from —32dB to —25dB OS
(Figures 8, 9). While there are reported spontaneous remissions in
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some LHON patients (19), the relationship of metformin therapy with
visual improvement supports causality, making further investigation
into its mechanisms worthwhile. The improvement observed
26 months post-onset shows that retinal ganglion cells may remain
viable but are dysfunctional for longer than previously believed, and
therefore, reconsideration of the therapeutic window in LHON is
warranted (1, 19).
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FIGURE 3
(A) Zeiss Cirrus OCT of the ONH and RNFL OU analysis: optic disc cube 200 x 200 scan showing a standard bilateral average RNFL thickness on

9 November 2021. (B) Zeiss Cirrus ganglion cell OU analysis: macular cube 512 X 128 scan showing diffuse GCL thinning and swelling on the same
date (C) Zeiss single-field analysis: central 30-2 HVF illustrating the formation of a cecocentral scotoma, with a standard MD of —4.5 dB OS (D) and
continued growth of the central scotoma, with a standard MD of —9.24 dB OD on 9 November 2021. OCT, optical coherence tomography; ONH, optic
nerve head; RNFL, retinal nerve fiber layer; GCL, ganglion cell layer; HVF, Humphrey visual field; MD, mean deviation; OS, left eye; OD, right eye.
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(A) Zeiss Cirrus OCT of the ONH and RNFL OU analysis: optic disc cube 200 X 200 scan showing a standard bilateral average RNFL thickness on 10
March 2022. (B) Zeiss Cirrus ganglion Cell OU analysis: macular cube 512 x 128 scan showing diffuse GCL thinning and swelling on the same date.
(C) Zeiss single field analysis: central 30-2 HVF illustrating the formation of a cecocentral scotoma, with a standard MD of —31.89 dB OS (D) and
continued growth of the central scotoma, with a standard MD of —30.94 dB OD on 10 March 2022. OCT, optical coherence tomography; ONH, optic
nerve head; RNFL, retinal nerve fiber layer; GCL, ganglion cell layer; HVF, Humphrey visual field; MD, mean deviation; OS, left eye; OD, right eye.
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(A) Zeiss Cirrus OCT of the ONH and RNFL OU analysis: optic disc cube 200 X 200 scan showing a decreased standard bilateral average RNFL
thickness (B) and diffuse GCL thinning and swelling on 16 August 2022. (B) Zeiss Cirrus ganglion cell OU analysis: macular cube 512 x 128 showing
diffused GCL thinning and swelling on 16 August 2022. (C,D) Zeiss single-field analysis: central 30-2 HVF demonstrating profound central general
depression, with a standard MD of —31.97 dB in both eyes on 16 August 2022. OCT, optical coherence tomography; ONH, optic nerve head; RNFL,
retinal nerve fiber layer; OU, both eyes; GCL, ganglion cell layer; HVF, Humphrey visual field; MD, mean deviation.
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FIGURE 6
Timeline of key clinical events, medication interventions, and visual acuity (VA) changes in the affected LHON patient. The timeline illustrates the

progression of vision loss, initiation of treatments, and subsequent changes in the VA testing (Snellen chart). The figure was created in BioRender.
Source: Sadun A. (2025). Available online at: https://BioRender.com/v2qx9ed.
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FIGURE 7
(A) Zeiss single-field analysis: central 30-2 HVF demonstrating profound central general depression, with a standard MD of —24.46 dB OS (B) and

—24.56 dB OD on 11 November 2024. HVF, Humphrey visual field; MD, mean deviation; OS, left eye; OD, right eye.
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Zeiss single-field analysis: central 30-2 HVF OS from 27 February 2018 to 11 November 2024. The graph depicts visual field recovery over 2 years from
the lowest standard MD of —31.89 to —24.46. HVF, Humphrey visual field; MD, mean deviation; OS, left eye. The figure was created in BioRender.
Source: Sadun A. (2025). Available online at: https://BioRender.com/sdyj4x2.
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Zeiss single-field analysis: central 30-2 HVF OD from 27 February 2018 to 11 November 2024. The graph depicts visual field recovery over 2 years from
the lowest standard MD of —30.94 to —24.66. HVF, Humphrey visual field; MD, mean deviation; OD, right eye. The figure was created in BioRender.
Source: Sadun A. (2025). Available online at: https://BioRender.com/b2h0k6y.

Metformin has been increasingly recognized for its effects on the
longevity of life, aside from its traditional indication as the first-line
treatment for DM II (20). Its multiple effects on oxidative stress,
inflammation, and neuroprotection gave us reason to be intrigued by
her incidental visual improvement in our LHON-affected case (21,
22). This case report introduces a potential therapeutic direction for
LHON, the mitochondrial disorder characterized by RGC
degeneration and progressive vision loss. It highlights the general
implications of metformin’s mitochondrial-modulating effects. While

Frontiers in Medicine

the underlying mechanisms of metformin’s effects on LHON remain
unclear, some hypotheses may explain its potential benefits to
mitochondrial function in the context of mitochondrial dynamics,
biogenesis, and mitophagy (23).

A possible benefit of metformin is its ability to influence
mitochondrial biogenesis by decreasing excess ROS production and
subsequent RGC loss, both of which are predominant consequences
of LHON pathogenesis. When metformin binds onto a specific
complex I site (24, 25), it selectively inhibits complex I activity to
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prevent a reverse-electron flux (26-28). This inhibition suppresses
electron transfer from NADH to electron acceptors to generate water
and replenish NAD+ (29), resulting in lowered adenosine triphosphate
(ATP) intracellular levels and higher adenosine diphosphate (ADP)
and adenosine monophosphate (AMP) intracellular concentrations.
As a result, the mtDNA copy number increases, creating a
effect (30, 31).
5’-monophosphate-activated protein kinase (AMPK) is activated,

neuroprotective Concurrently, adenosine
acting as a metabolic pathway regulator (32, 33) known for inducing
autophagy and decreasing ROS overproduction. As oxidative stress
reduces, it creates a protective microenvironment for neuronal
preservation (34-36). Therefore, reducing ROS production may affect
neuronal function. As a result, it may provide some neuroprotection
and enhance neuron survival (37, 38).

On the other hand, metformin-induced mitophagy may enhance
cellular function by restoring a healthy mitochondrial phenotype in
LHON. The accumulation of damaged mitochondria could exacerbate
the ETC dysfunction caused by LHON, leading to oxidative stress and
RGC death (39). Multiple studies have demonstrated that a
homeostatic program controls mitochondrial production and balances
mitophagy and mitobiogenesis (40). This program is regulated by
sensing oxidative phosphorylation efficiency and demand (41), which
is tightly related to ROS production and retrograde signaling systems
collaborating between mtDNA and the nuclear genome (42). In
LHON, this connection may lead to very different outcomes, as
exemplified by the asymptomatic LHON carriers when compared with
LHON:-affected patients. The efficiency of mitochondrial biogenesis
controls the cellular fate (17, 43) regarding autophagy and mitophagy
(44). Metformin’s effects on autophagy are contradictory. While it may
induce autophagy via various AMPK-related signaling pathways in
some context, it could also inhibit excessive autophagy and apoptosis,
thereby preserving RGCs (12, 39, 45).

Another hypothesis indicates that metformin may lower
in LHON patients. Although mitochondrial
dysfunction contributes to neuroinflammation, LHON has
traditionally been regarded as non-inflammatory due to the absence

inflammation

of optic disc leakage on fluorescein angiography. However, it is
speculated that since metformin downregulates the expression of
pro-inflammatory cytokines, such as TNF-a and IL-6, via NF-xB
inhibition and contributes to the suppression of aging-related
inflammatory pathways (46-48), similar benefits may be seen in
LHON. Metformin directly affects peripheral blood mononuclear
cells by entering through the human organic cation transporter type
1, modulating the inflammatory response and mitochondrial
dynamics. Metformin further suppresses inflammation and raises the
apoptosis threshold by reducing insulin levels, IGF-1, and mTOR
signaling (23, 49). Despite these compelling studies, the possible
pathophysiologic influence of metformin on inflammation in LHON
remains unclear.

While this case raises intriguing ideas of possible metformin benefit,
some limitations must be considered. The data are based on one case
report, and the possibility of spontaneous remission cannot be excluded,
particularly given the variable prognosis of the m.11778G>A/MT-ND4
mutation. While the integration of metformin coincided with some visual
field improvement, the patient could be a late responder to idebenone, as
it takes up to 2 years to notice the full benefit. Other limitations involve
the combination of all therapies leading to a synergistic effect on
biogenesis and mitophagy. For instance, the interaction of metformin

Frontiers in Medicine

10.3389/fmed.2025.1609941

with hormonal effects, given the postmenopausal status of the patient,
could have contributed to the improvement. Although idebenone, NAD+,
and HRT had shown no immediate benefits, they may have contributed
to a delayed or synergistic effect with metformin. Earlier reports have
shown that estrogen has neuroprotective effects in LHON (17). The
benefit of metformin could be synergistic or independent, perhaps
augmented by its metabolic effects in the context of DM II. This result
underlines the need to ascertain the interaction of metformin with sex
hormones in LHON and other mitochondrial disorders.

Finally, the specific molecular pathways linking metformin with
visual restoration are speculative without experimental validation in
LHON models. The confounding factor that the patient has DM 1II
concurrently raises the possibility that metformin glycemic control
indirectly influences mitochondrial function and visual restoration.
We cannot exclude the fact that improved glycemic control from
metformin contributed indirectly to improved mitochondrial function
and visual recovery. Future studies would be enhanced by longitudinal
clinical trials with larger groups and molecular analyses to replicate these
findings, including molecular or biochemical measurements, such as ROS
levels, AMP-activated protein kinase (AMPK) activation, and mtDNA
copy number in RGCs. Finally, we recognize inherent HVF and visual
acuity measurement variability in profound vision loss and a possible
learning effect for VF testing. More objective visual function and recovery
visual biomarkers, such as OCT-based metrics, electrophysiology, and
photopic negative response, should be incorporated in future research.

4 Conclusion

This case highlights the potential role of metformin in promoting
visual function in a patient with LHON and DM II. Although the
exact mechanisms remain unclear, metformin’s inhibitory effects on
complex I and the reduction of oxidative stress may alter the course of
LHON type II patients. Additional studies on the molecular level are
needed to explain metformin’s role and confirm its protective role in
LHON patients. Moreover, a clinical trial with a larger sample size may
help confirm this benefit.
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Glossary

LHON - Leber’s hereditary optic neuropathy
mtDNA - Mitochondrial DNA
ETC - Electron transport chain
RGCs - Retinal ganglion cells
ROS - Reactive oxygen species
DM II - Type 2 diabetes mellitus
RNFL - Retinal nerve fiber layer
VF - Visual field

OU - Both eyes

OS - Left eye

OD - Right eye
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BCVA - Best corrected visual acuity
RAPD - Rapid afferent pupillary defect
IOP - Intraocular pressure

OCT - Optical coherence tomography
GCL - Ganglion cell layer

MD - Mean deviation

HRT - Hormone replacement therapy
ATP - Adenosine triphosphate

ADP - Adenosine diphosphate

AMP - Adenosine monophosphate

AMPK - Adenosine 5-monophosphate-activated
protein kinase
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