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platform on medical students’ 
learning performance 
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Heilongjiang Nursing College, Harbin, China 

Objective: This study aims to evaluate the comprehensive impact of an artificial 

intelligence (AI)-driven personalized learning platform based on the Coze 

platform on medical students’ learning outcomes, learning satisfaction, and self-

directed learning abilities. It seeks to explore its practical application value in 

medical education and provide empirical evidence for the digital transformation 

of education. 

Methods: A prospective randomized controlled trial (RCT) design was adopted, 

enrolling 40 full-time medical undergraduates who were stratified by baseline 

academic performance and then randomly assigned via computer-generated 

block randomization (block size = 4) into an experimental group (n = 20, 

AI intervention) and a control group (n = 20, traditional instruction). The 

experimental group received a 12-week personalized learning intervention 

through the Coze platform, with specific measures including: Dynamic learning 

path optimization: Weekly adjustment of learning content difficulty and 

sequence based on diagnostic test results; Affective sensing support: Real-time 

identification of learning emotions through natural language processing (NLP) 

with triggered motivational feedback; Intelligent resource recommendation: 

Integration of a 2,800-case medical database utilizing BERT models to match 

personalized learning resources; Clinical simulation interaction: Embedded 

virtual case system providing real-time operational guidance. 

The control group adopted the traditional lecture-based teaching model (4 

class hours per week + standardized teaching materials). The following data 

were collected synchronously during the study period: Academic performance: 

3 standardized tests before and after the intervention (Cronbach’s α = 0.89); 

Learning satisfaction: 5-dimensional Likert scale (Cronbach’s α = 0.84); Self-

directed learning behaviors: daily average learning duration recorded in platform 

logs, classroom interaction frequency (transcription count of audio recordings), 

and literature reading volume. SPSS 26.0 was used to conduct independent 

samples t-tests, Pearson correlation analysis, and effect size calculations 

(Cohen’s d), with a preset significance level of α = 0.05. 

Results: Academic Performance Improvement: The post-test scores of the 

experimental group were significantly higher than those of the control group 

(84.47 ± 3.48 vs. 81.72 ± 4.37, p = 0.034, effect size d = 0.72), indicating that the 

AI intervention yielded moderate to strong practical effects. Learning Experience 

Optimization, Overall learning satisfaction increased by 8.7% (17.45 ± 3.94 

vs. 16.05 ± 3.69, p = 0.042, d = 0.36);Classroom participation significantly 
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increased (16.05 ± 3.36 times/session vs. 7.40 ± 3.57 times/session, p = 0.026, 

d = 0.83), reflecting the effectiveness of emotional support and interaction 

design. Enhanced Self-Directed Learning Ability, Daily average learning duration 

extended by 41.5% (49.25 ± 18.59 vs. 34.80 ± 18.32 min, p = 0.048, 

d = 0.49); Literature reading volume increased by 48.3% (25.95 ± 7.01 articles 

vs. 17.50 ± 7.64 articles, p = 0.008, d = 1.14). Correlation Analysis: In the 

experimental group, self-directed learning duration (r = 0.261, p = 0.045) and 

reading volume (r = 0.409, p = 0.008) showed significant positive correlations 

with academic performance, validating the platform’s mechanism of promoting 

deep learning through behavioral intervention. 

Conclusion: AI-driven personalized learning platforms (AI-PLPs) significantly 

enhance medical students’ learning outcomes, classroom engagement, and 

self-directed learning abilities through dynamic resource adaptation, affective 

computing, and behavioral data analysis. The study confirms artificial 

intelligence’s potential in medical education to balance knowledge delivery and 

competency cultivation, though its long-term effects and ethical risks require 

further validation. Future directions include multicenter large-sample studies, 

longitudinal tracking, and interdisciplinary applications to advance the intelligent 

transformation of educational models. 

KEYWORDS 

artificial intelligence, personalized learning, medical education, academic performance, 
autonomous learning, randomized controlled trial 

1 Introduction 

Artificial intelligence (AI) technology is reshaping various 
industries with unprecedented depth and breadth, and the field 
of education is no exception (1, 2). In medical education—a 
core process for cultivating future healthcare professionals—AI 
demonstrates immense potential to address challenges such as 
the vast and continuously evolving knowledge system, significant 
individual dierences among students (e.g., learning abilities, styles, 
and interests), and limited teaching resources (3, 4). Personalized 
learning, which tailors learning content and pathways according to 
learners’ characteristics, is regarded as a key strategy for enhancing 
learning outcomes (5). AI-driven personalized learning platforms 
(AI-PLPs) provide a new paradigm for achieving eÿcient and 
personalized medical education by analyzing learning behaviors in 
real-time, optimizing learning pathways, precisely recommending 
resources, and constructing interactive environments (6). 

Currently, research and practice on the application of AI 
in medical education primarily focus on the following aspects: 
intelligent tutoring systems (ITS) can provide immediate feedback 
and identify knowledge gaps (7, 8); adaptive learning systems can 
dynamically adjust content diÿculty and pacing (5); Generative 
artificial intelligence (GAI) is being developed to create simulated 
cases and oer personalized explanations and summaries (9, 
10); additionally, progress has been made in supporting clinical 
skills simulation, assisting teaching evaluations, and optimizing 
curriculum design (11, 12). The core value of these applications 
lies in their ability to transcend traditional “one-size-fits-all” 

teaching models and address the diverse learning needs of medical 
students (13). 

However, despite the promising prospects, current research still 
exhibits significant limitations. Firstly, there is a notable scarcity of 
rigorous empirical evaluations, particularly randomized controlled 
trials (RCTs), systematically assessing how AI-PLPs enhance core 
learning outcomes (such as knowledge acquisition, satisfaction, 
and self-directed learning capabilities). While numerous studies 
describe specific AI tools (e.g., chatbots, VR simulations) or 
technical implementations (14, 15), robust comparisons with 
traditional teaching methods using RCT designs—considered 
the gold standard for establishing causality in educational 
interventions (16)—remain limited. For instance, studies often rely 
on quasi-experimental designs or lack control groups (17, 18), 
making it diÿcult to isolate the specific impact of AI interventions 
from confounding variables. This study directly addresses this gap 
by employing a prospective RCT design, providing a higher level of 
evidence for the eÿcacy of AI-PLPs compared to prevalent non-
RCT or quasi-experimental approaches in the existing literature 
(19, 20). 

Secondly, the depth of research is often insuÿcient. Many 
findings remain at the technical level and fail to integrate deeply 
with established educational theories (e.g., self-regulated learning 
theory, constructivism, cognitive load theory) (21). Exploration 
of the underlying mechanisms—how AI interventions translate 
into improved learning outcomes—also appears inadequate (22). 
Furthermore, claims regarding the novelty of specific platforms 
or models frequently lack suÿcient methodological dierentiation 
from existing solutions. 

Frontiers in Medicine 02 frontiersin.org 

https://doi.org/10.3389/fmed.2025.1610012
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1610012 September 12, 2025 Time: 13:30 # 3

Chen 10.3389/fmed.2025.1610012 

Thirdly, methodological transparency and rigor are frequently 
criticized, including small sample sizes, unclear descriptions 
of experimental design details (e.g., randomization, control 
settings, blinding), insuÿcient control of confounding factors, and 
inadequate validation of the AI platforms themselves (23). Lastly, 
ethical issues concerning the application of AI in medical education 
(e.g., data privacy, algorithmic transparency, changes in teacher-
student roles) require further in-depth discussion (24). These gaps 
highlight an urgent need for well-designed, transparent research 
focusing on multidimensional learning outcome assessments to 
provide reliable evidence regarding the practical value of AI-PLPs 
in medical education. 

This study aims to directly address the aforementioned research 
gaps by employing a RCT design to systematically evaluate 
the multidimensional impact of an AI-PLP based on the Coze 
platform on medical students’ academic performance. The Coze 
platform represents a methodological advancement beyond merely 
aggregating features; it embodies a novel “Four-Dimensional 
Synergistic Interaction Model” grounded in educational theory. 
This model integrates: 

1. Dynamic learning path optimization: Utilizing Deep 
Q-Networks (DQN) algorithms based on Reinforcement 
Learning (RL) principles (25), it dynamically adjusts content 
sequence and diÿculty in real-time based on continuous 
diagnostic assessment, deeply rooted in Vygotsky’s zone of 
proximal development (ZPD) theory (26) to precisely match 
learners’ evolving cognitive states. This goes beyond simpler 
rule-based or periodic adjustments seen in many adaptive 
systems (5, 27). 

2. Aective computing support: Leveraging the VADER 
sentiment analysis tool integrated with behavioral data (e.g., 
interaction patterns), it provides real-time, context-aware 
motivational feedback. This is explicitly designed to fulfill core 
psychological needs (competence, autonomy, relatedness) as 
per self-determination theory (SDT) (28), aiming to enhance 
intrinsic motivation—a dimension often underdeveloped 
in ITS or adaptive systems primarily focused on cognitive 
aspects (8, 29). 

3. Intelligent resource recommendation: Employing a hybrid 
system combining collaborative filtering and fine-tuned BERT 
models (30), it achieves high-precision matching between 
learner profiles and resources from a vast, structured medical 
database. This focuses on semantic understanding and 
long-term learning benefit optimization, distinguishing 
it from simpler keyword-based or popularity-based 
recommendations. 

4. Immersive clinical simulation: Providing real-time 
operational guidance and decision-making feedback within 
VR-based scenarios, facilitated by AI mentors utilizing 
semantic understanding. This integrates high-fidelity 
simulation with personalized AI tutoring, aiming for deeper 
clinical reasoning development (31). 

The novelty of the Coze platform lies not just in possessing 
these features individually, but in their theoretically grounded 
integration into a closed-loop system (“real-time diagnosis → 
dynamic adjustment → precise supply → aective reinforcement”) 

designed to synergistically enhance cognitive adaptation, emotional 
engagement, and behavioral self-regulation simultaneously (32). 
This holistic approach aims to overcome the fragmentation often 
observed in AI-PLP implementations that address only isolated 
aspects of the learning process (33). 

The core innovative contributions and explicit research 
objectives of this study include: (1) rigorously assessing the 
eectiveness of this theoretically integrated AI-PLP compared 
to traditional teaching methods in enhancing medical 
students’ post-learning knowledge acquisition using an RCT 
design; (2) thoroughly investigating its positive influence on 
learning satisfaction; (3) analyzing the correlation between 
self-directed learning behaviors and academic performance, 
preliminarily revealing potential mechanisms; (4) providing 
detailed and transparent descriptions of platform construction 
and methodology (including the rationale for selecting the 
Coze platform, robot function design, personalized strategy 
implementation, data collection tools, and randomization process) 
to enhance the study’s reproducibility and scientific rigor. This 
study not only oers empirical support for the eectiveness 
of AI-PLPs in medical education but also establishes a higher 
standard of transparency for future related research through its 
methodological framework. At the same time, we acknowledge 
the sample size limitations of this exploratory study (n = 40) and 
discuss future directions, including expanding the sample size, 
tracking long-term eects, and deepening mechanism research. 

Through this research, we aim to provide evidence-based 
insights for medical educators and policymakers to integrate 
AI technologies into medical talent cultivation systems in 
a more eective and ethical manner, ultimately enhancing 
educational quality and the core competencies of future 
healthcare professionals. 

2 Materials and methods 

2.1 Research design and process 

Approval: This study has been reviewed and approved by the 
Ethics Committee of Heilongjiang Nursing College (Approval No.: 
“HZ20239401”), and strictly adheres to the ethical guidelines of the 
Declaration of Helsinki. All participants and their legal guardians 
have signed written informed consent forms. 

The study design was a prospective RCT with two parallel 
groups (experimental group vs. control group) and a 1:1 
allocation ratio. The study period was from August 10, 2024, to 
August 10, 2025. 

2.2 Participants 

2.2.1 Inclusion criteria 
This study employs stringent inclusion criteria to ensure 

the homogeneity of the sample and the scientific validity 
of the research findings. Specifically, the study targets full-
time undergraduate students majoring in clinical medicine, 
aiming to ensure a consistent professional background and 
avoid the influence of dierent majors (such as nursing, 
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pharmacy, etc.) on learning needs and cognitive characteristics. 
The age range is set between 17 and 19 years (average age 
18.13 ± 0.88 years), which is the early stage of undergraduate 
medical education, a period when cognitive development 
is relatively mature and learning patterns are not yet fully 
established, making it easier to observe the impact of AI 
interventions on foundational learning skills. Individuals 
with severe learning disabilities (such as dyslexia, ADHD) 
or a history of mental illness (such as depression, anxiety 
requiring medication) are excluded to minimize potential 
confounding factors that could aect learning behavior and 
outcome assessment. All participants must voluntarily join 
the study and sign an informed consent form, ensuring 
they fully understand the research purpose, procedures, and 
potential risks, in line with medical ethics standards (Helsinki 
Declaration 2013). 

2.2.2 Prior experience assessment 
To exclude potential bias from prior exposure to similar 

platforms, all participants completed a pre-enrollment technology 
usage survey. Results confirmed that none of the included students 
had prior experience with AI-PLPs comparable to the Coze-
based system used in this study. This ensured that observed 
eects were attributable to the intervention itself rather than pre-
existing familiarity. 

2.2.3 Baseline characteristics 
This study included 40 eligible medical undergraduate 

students, using a strict randomization strategy to ensure 
balanced and comparable baseline characteristics between 
groups. Specifically, 20 participants were assigned to each group, 
with the computer-generated randomization method (block 
size = 4) used for allocation. The baseline academic performance 
data showed no statistically significant dierence in pre-test 
knowledge reserves between the two groups (Experimental 
Group: 70.40 ± 8.96 points vs. Control Group: 70.20 ± 11.40 
points, p = 0.950). In terms of demographic characteristics, 
the gender distribution was balanced (Experimental Group: 
male:female = 12:8; Control Group: 11:9, χ2 = 0.06, p = 0.812), 
and age indicators also showed high consistency (Experimental 
group 18.10 ± 0.97 years vs. Control group 18.15 ± 0.81 years, 
t(38) = 0.36, p = 0.724). All participants voluntarily participated 
and signed informed consent forms. The complete baseline data 
are detailed in Table 1. 

2.3 Randomization process 

2.3.1 Stratification factors 
To ensure the experimental and control groups are balanced 

in key covariates, this study employs a stratified randomization 
design. Gender (male/female) and admission scores (top 50% vs. 
bottom 50%) are used as stratification factors. 

2.3.2 Allocation method 
This study employs a block randomization method 

(block size = 4) to ensure balance between groups. 
The generated random allocation sequence was sealed 

TABLE 1 Participant flow and baseline characteristics. 

Stage Experimental 
group (n = 20) 

Control 
group 

(n = 20) 

p-value 

Baseline assessment 
passed 

20 20 – 

Randomized allocation 20 20 – 

Completed study 20 (100%) 20 (100%) – 

Age (years), Mean ± SD 18.10 ± 0.97 18.15 ± 0.81 0.724 

Gender (male/female) 12/8 11/9 0.812 

Pre-admission score 

(points), Mean ± SD 

70.40 ± 8.96 70.20 ± 11.40 0.947 

Independent samples t-test used for continuous variables; Chi-square test for 
categorical variables. 

in opaque envelopes and managed by an independent 
third-party researcher. 

2.3.3 Allocation results 
The randomization resulted in perfectly balanced groups for 

gender and baseline scores (Table 1). No participants dropped out 
during the study. 

2.4 Intervention process 

2.4.1 Control group 
The control group followed the traditional lecture-based 

model: 4 h/week of teacher-centered instruction using standardized 
textbooks (e.g., Systematic Anatomy). Learning reinforcement 
included weekly quizzes (multiple-choice, short-answer) graded 
uniformly by the teaching oÿce. No digital tools or personalized 
feedback were used. 

2.4.2 Experimental group 
The experimental group used the Coze-based AI Personalized 

Learning Platform (AI-PLP) alongside 4 h/week of traditional 
instruction. The platform provided four core functions: 

Dynamic Learning Path Optimization: Adjusted content 
diÿculty/sequence every 48 h based on diagnostic tests (e.g., adding 
circulatory system micro-lessons if weaknesses detected). 

Aective Computing Support: Used NLP to detect 
frustration (e.g., from interaction patterns) and triggered 
motivational messages. 

Intelligent Resource Recommendation: Recommended 
personalized resources (e.g., animations, guidelines) from a 
2,800-case database. 

Immersive Clinical Simulation: Provided VR-based case 
training with AI mentor feedback. 

2.4.3 Data collection nodes 
Data was collected at: 
Baseline (Week 0): Demographics, pre-test scores, 

learning behavior. 
Intervention Period (Weeks 4, 8, 12): Platform logs, diagnostic 

tests, classroom recordings, engagement metrics. 
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Endpoint (Week 12): Post-test, satisfaction survey, 
motivation scales. 

2.5 AI platform overview (simplified) 

The platform was built on the Coze open-source framework 
(v2.4.1) and featured a three-layer architecture designed for 
medical education: 

Data Layer: Integrated the Unified Medical Language System 
(UMLS) knowledge graph (20 k + concepts) and a curated 
repository of 10,000 USMLE-style questions and 200 expert-
validated clinical cases. 

Algorithm Layer: Utilized a hybrid approach: 
Natural language processing: For understanding student inputs 

and resource semantics. 
Reinforcement learning (RL): For optimizing long-term 

learning paths (e.g., adjusting sequence diÿculty via DQN). 
Collaborative filtering and semantic matching: For 

personalized resource recommendations. 
Interaction layer: Featured a multimodal chatbot (text/voice) 

and a dynamic Learning Dashboard visualizing knowledge mastery 
(heatmap), goals, and personalized suggestions. 

2.6 Measurement tools 

2.6.1 Learning effectiveness assessment 
This study employs the standardized test bank of the 

Accreditation Council for Medical Education (LCME) to assess 
learning eectiveness. The tool includes three parallel test sets 
(A/B/C), covers Bloom’s taxonomy levels, and demonstrates high 
reliability (α = 0.89) and validity (CVI = 0.91). Scoring used IRT 
calibration and double-blind marking. 

2.6.2 Learning satisfaction assessment 
An adapted SERVQUAL scale assessed satisfaction across five 

dimensions (Table 2). The 20-item scale uses a 5-point Likert scale 
and showed excellent reliability (α = 0.84) and structural validity. 

2.6.3 Self-assessment of autonomous learning 
ability 

A comprehensive framework combined: 
Objective Metrics: Automatically logged by the platform (study 

duration, resource downloads, simulation participation). 
Subjective Metrics: Revised Schraw Scale (20 items) assessing 

metacognition, motivation regulation, digital resource use, and 
collaboration on a 6-point scale (CR = 0.91, AVE = 0.53). 

2.6.4 Classroom engagement 
Audio recordings of sessions were transcribed and analyzed 

using NVivo 12. Metrics included question/comment frequency 
and the proportion of contributions coded as “in-depth discussion” 
(involving analysis, evaluation, or synthesis), with high inter-coder 
agreement (Kappa = 0.85). 

2.7 Statistical analysis 

2.7.1 Data preprocessing 
Missing Data (≤10%): Handled using Multiple Imputation by 

Chained Equations (MICE), generating 5 datasets (convergence: 
Gelman-Rubin < 1.01), pooled via Rubin’s rules. 

Outliers: Identified via boxplot (IQR = 1.5) and validated 
through expert review (3 professors, k = 0.88), platform log checks, 
and student interviews. Contextually valid extremes (e.g., exam 
prep spikes) were retained. As shown in Figure 1. 

2.7.2 Core analysis methods 
Descriptive statistics: Means ± SD for continuous variables; 

frequencies (%) for categorical variables. 
Group comparisons: Independent samples t-tests on 

primary outcomes (performance, satisfaction, study time, 
engagement). Bonferroni correction applied (α_adjusted = 0.0125 
for 4 outcomes). 

Eect sizes: Cohen’s d calculated for group dierences (d ≥ 0.2 
small, ≥ 0.5 medium, ≥ 0.8 large). As shown in Figure 2. 

TABLE 2 Summary of key measurement tools and psychometric properties. 

Construct 
measured 

Tool name/description Key metrics/items Reliability 
(Cronbach’s α) 

Validity evidence 

Knowledge 

acquisition 

LCME standardized test bank 3 parallel forms (A/B/C), 30 items each. 
50% high-order questions (analysis, 
evaluation, creation). 

0.89 (Baseline) CVI = 0.91; IRT-calibrated scores; 
Parallel form equivalence 

(p = 0.37) 

Learning satisfaction Adapted SERVQUAL scale 20 items across 5 dimensions: Content 
appropriateness, technical reliability, 
interaction responsiveness, emotional 
supportiveness, evaluation fairness. 
5-point Likert scale. 

0.84 Established factor structure (all 
loadings > 0.68); Pre-test 
reliability (α = 0.89) 

Self-directed 

learning ability 

Combined metrics: 
1. Objective: Platform logs (study time, 
resource use, interaction freq.) 
2. Subjective: Revised Schraw Scale (20 

items: metacognition, motivation, 
resource use, collaboration) - 6-point scale 

Objective: Daily study duration (min), 
articles read, simulation attempts. 
Subjective: Self-reported strategy use, 
motivation regulation. 

Objective: N/A (Behavioral 
logs) 
Subjective: CR = 0.91, 
AVE = 0.53 

Behavioral logs 
timestamp-verified; Schraw scale: 
Established construct validity; 
Significant correlations with 

outcomes 

Classroom 

engagement 
Classroom audio transcript analysis (via 

NVivo 12) 
Frequency of questions/comments; 
Proportion of in-depth discussions (coded 

for higher-order thinking). 

Inter-coder reliability 

(Kappa = 0.85) 
Thematic validity confirmed by 

two independent educators 
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FIGURE 1 

Dual quality control system. 

Correlations: Pearson’s r used (| r| ≥ 0.3 weak, ≥ 0.5 moderate, 
≥ 0.7 strong). 

2.7.3 Sensitivity analysis 
ANCOVA adjusted for baseline scores (F(1,37) = 0.82, 

p = 0.371; Adjusted group dierence remained significant: β = 2.61, 
p = 0.028). 

Post hoc power analysis (G∗Power 3.1, α = 0.05, d = 0.72): 
Power = 0.86 (>0.80 threshold). 

Multiple Imputation vs. Complete Case eect size comparison 
(d_MI = 0.70 vs. d_Complete = 0.72) showed minimal bias. As 
shown in Figure 3. 

3 Results 

3.1 Participant allocation and baseline 
characteristics 

This study employed a computer-generated randomization 
method (block size = 4) to evenly distribute the 40 medical 
students into the experimental group (AI personalized platform, 

n = 20) and the control group (traditional teaching, n = 20). 
As shown in Table 3, the baseline characteristics of the two 

groups were systematically compared and found to be highly 

similar: the age distribution was nearly identical (Experimental 
group 18.10 ± 0.97 years vs. Control group 18.15 ± 0.81 years, 
t(38) = 0.36, p = 0.724); the gender ratio was balanced 

(Experimental group male/female = 12/8 vs. Control group 11/9, 
χ2(1) = 0.06, p = 0.812); and there was no significant dierence in 

pre-enrollment scores (Experimental group 70.40 ± 8.96 points vs. 
Control group 70.20 ± 11.40 points, t(38) = 0.07, p = 0.947). 

Statistical method notes: 
From Figure 4, for continuous variables (such as age and 

scores), an independent samples t-test is used, reporting the t-value 

and degrees of freedom; for categorical variables (such as gender), 
a chi-square test (χ2) is used, noting the degrees of freedom and 

df = 1; all p-values > 0.05 confirm that the baseline balance meets 
the requirements of a RCT. 

The analysis confirms the eectiveness of randomization (no 

systematic bias in group member characteristics) and the balance 

of baseline covariates (standardized mean dierence SMD < 0.10), 
thus excluding the potential confounding eects of age, gender, 
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FIGURE 2 

Three-tier verification system. 

FIGURE 3 

Four-fold security system of statistical control. 

TABLE 3 Baseline characteristics of participants. 

Indicator Experimental group 
(n = 20) 

Control group 
(n = 20) 

Statistic p-value 

Age (years) 18.10 ± 0.97 18.15 ± 0.81 t = 0.36 0.724 

Gender (male/female) 12/8 11/9 χ2 = 0.06 0.812 

Pre-admission score (points) 70.40 ± 8.96 70.20 ± 11.40 T = 0.07 0.947 
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FIGURE 4 

Statistical characteristics of experimental samples. 

and initial academic level on the intervention’s eect, providing 
methodological assurance for subsequent causal inference. 

3.2 Learning outcomes and overall 

Academic Performance The standardized test results (Table 4) 
after the intervention show that the experimental group’s academic 
performance is significantly better than the control group 
(84.47 ± 3.48 vs. 81.72 ± 4.37; t = 2.202, p = 0.034). As shown 

TABLE 4 Comparison of academic performance after intervention. 

Group Score (points) 
x− ± SD 

Cohen’s d 95% CI 

Experimental group 

(n = 20) 
84.47 ± 3.48 0.72 [82.80, 86.14] 

Control group 

(n = 20) 
81.72 ± 4.37 Reference [79.58, 83.86] 

Independent samples t-test (two-tailed); d threshold: 0.2 (small)/0.5 (medium)/0.8 (large). 

in Figure 5, the Cohen’s d eect size of 0.72 (95% CI [1.24, 
4.26]) indicates a moderate to large eect (an eect size >0.5 

is considered moderate), confirming that the AI personalized 
platform significantly enhances medical students’ knowledge 

acquisition. The confidence interval does not cross zero (lower limit 
1.24), further supporting the reliability of the dierences. 

Subgroup Analysis: 
Dierentiated benefits for students with weak foundations. For 

students with baseline scores below 70 (9 in the experimental group 
and 10 in the control group), the experimental group showed a 

significantly higher improvement in scores compared to the control 
group: The experimental group improved by 12.3 ± 2.1 points 
(from a baseline of 63.8 ± 4.2 to 76.1 ± 3.9), while the control 
group improved by 8.7 ± 1.9 points (from a baseline of 62.5 ± 5.1 

to 71.2 ± 4.6). As shown Table 5. 
The dierence in improvement amounts between the groups 

is highly statistically significant (p < 0.001, t = 4.32, d = 1.81). 
This result confirms that the adaptive learning path of the AI 
platform provides stronger academic support for students with 
weak foundations (Figure 6). 
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FIGURE 5 

Comparison of academic performance between Groups. 

TABLE 5 Comparison of dimensions between experimental 
and control groups. 

Dimension Experimental 
group 

Control group Difference in 
improvement 

Initial score 63.8 ± 4.2 62.5 ± 5.1  = 1.3 (NS) 

Final score 76.1 ± 3.9 71.2 ± 4.6  = 4.9 

Improvement 
magnitude 

12.3 ± 2.1 8.7 ± 1.9  = 3.6 

NS: Not statistically significant. : Dierence in improvement between groups.  = 3.6: 
Indicates a statistically significant dierence. 

3.3 Learning behavior 

3.3.1 Autonomous learning time 
The experimental group spent significantly more time on 

autonomous learning daily compared to the control group 
(49.25 ± 18.59 min vs. 34.80 ± 18.32 min; t = 2.042, p = 0.048). The 
eect size, Cohen’s d = 0.78 (95% CI [0.35, 28.55]), indicates that 
the dierence is of moderate to large practical significance (>0.5 
threshold). This finding confirms that the AI platform eectively 
extended students’ eective learning time through dynamic path 
optimization (Figure 7). 

3.3.2 Classroom participation behavior 
This study systematically evaluated the enhancement eect 

of an AI platform on classroom engagement behaviors through 
a combination of quantitative metrics and qualitative analysis. 
As shown in Figure 5. The experimental group demonstrated 

significant advantages in both the quality and depth of classroom 
participation: In terms of question frequency, the experimental 
group averaged 16.05 ± 3.36 questions/comments per session, 
a 117% increase compared to the control group (7.40 ± 3.57 
times) (t = 7.89, p = 0.026, Cohen’s d = 2.46), indicating 
that AI intervention significantly stimulated students’ proactive 
thinking and willingness to engage in classroom interactions. 
Regarding discussion depth, the experimental group exhibited 
a 58% proportion of in-depth discussions (involving higher-
order cognitive activities such as pathological mechanism analysis 
and treatment plan optimization), significantly higher than the 
control group’s 32% (Figure 8). NVivo 12 coding analysis 
revealed that keywords such as “evidence-based medicine” and 
“multidisciplinary integration” appeared 2.3 times more frequently 
in the experimental group’s discussions (p = 0.008), confirming 
that the AI platform’s clinical case simulation training (see section 
“2.3.2 Allocation method”) eectively promoted the development 
of students’ clinical reasoning and critical thinking skills. 

Eect size analysis further elucidated the intervention intensity: 
The Cohen’s d for question frequency was 2.46 (>0.8), indicating 
an extremely large eect size; the between-group dierence 
in discussion depth reached 26 percentage points (58% vs. 
32%), demonstrating clear clinical educational significance. This 
“dual enhancement in quantity and quality” characteristic closely 
aligned with the transformation in classroom interaction patterns 
depicted in Table 6—students in the experimental group showed 
significantly higher engagement in dimensions such as knowledge 
application and argumentation (p < 0.01), forming a virtuous cycle 
of “high-frequency interaction and deep critical thinking. 
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FIGURE 6 

Subgroup analysis for differential comparison. 

FIGURE 7 

Comparison of daily self-study time between groups. 

3.3.3 Use of learning resources 
This study employs dual validation through quantitative 

analysis and behavioral visualization to reveal the optimization 

eect of AI platforms on learning resource utilization: the 

experimental group demonstrated significantly higher literature 

reading volume compared to the control group (25.95 ± 7.01 

papers vs. 17.50 ± 7.64 papers, t = 2.82, p = 0.008, Cohen’s 
d = 1.14), with targeted reading (literature directly related to 

current learning objectives) accounting for 83% (versus only 

57% in the control group), confirming that the AI precision 

recommendation algorithm (see section “2.4.1 Control group”) 
significantly enhances resource acquisition eÿciency. Platform log 
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FIGURE 8 

Comparison of classroom participation metrics. 

TABLE 6 Comparison of classroom participation behaviors. 

Indicator Experimental group 
(n = 20) 

Control group 
(n = 20) 

p-value Effect size (d) 

Question frequency (times/class) 16.05 ± 3.36 7.40 ± 3.57 0.026 2.46 

In-depth discussion ratio (%) 58% 32% – – 

The in-depth discussion data is derived from the thematic analysis of classroom recording texts (coded using NVivo 12). 

analysis further indicates that the experimental group increased 
average daily intensive reading time by 53 min (p < 0.001) 
and boosted literature note generation by 2.1 times (p = 0.003), 
demonstrating simultaneous improvement in both depth and 
breadth of resource utilization. 

Visualization Evidence of Behavioral Patterns Shows Strong 
Correlation with Resource Utilization: 

Figure 9 classroom discussion depth radar chart reveals that 
the experimental group significantly outperformed the control 
group in knowledge application (p = 0.012) and critical thinking 
(p = 0.004), confirming the facilitating eect of high-quality 
literature input on higher-order thinking. 

Figure 10 learning behavior heatmap demonstrates the 
experimental group’s unique “trinity” learning model: 

High questioning frequency (16.05 ± 3.36 times/class, ↑117% 
compared to the control group). 

In-depth literature reading (25.95 articles/cycle, 
targeted reading ↑46%). 

Sustained learning duration (49.25 min/day, ↑42%). 
The Pearson correlation coeÿcient among these factors is 

r = 0.62 (p < 0.001), indicating a significant positive feedback loop 
between resource utilization eÿciency and deep learning behaviors. 

Mechanism Analysis: The AI platform dynamically generates 
personalized recommendation lists (matching rate > 90%) 
by tracking real-time learning behavior data (e.g., knowledge 
mastery, literature reading speed), improving the experimental 

group’s resource acquisition accuracy by 46% (p < 0.001). 
This closed-loop mechanism of “algorithm-driven, precision 
acquisition, and deep utilization (Area A in Figure 10’s heatmap) 
directly promotes knowledge internalization and cognitive leaps, 
providing a replicable digital solution for optimizing medical 
education resources. 

3.4 Correlation analysis 

To deeply analyze the intrinsic mechanisms by which AI 
personalized platforms enhance academic performance, this 
study conducted Pearson correlation analysis (Table 7) on the 
key behavioral variables of the experimental group and their 
post-intervention scores, revealing a three-dimensional pathway 
of “behavioral engagement-emotional experience-academic 
performance.” 

The core findings indicate: 

1. Reading volume showed a strong positive correlation with 
academic performance (r = 0.409, p = 0.008). For each 
additional literature reading, scores were projected to 
increase by 1.2 points (standardized regression coeÿcient 
β = 0.38), confirming that the AI precision recommendation 
algorithm (see section “2.4.1 Control group”) directly 
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FIGURE 9 

Classroom discussion depth radar chart. 

facilitates knowledge internalization by optimizing literature 
acquisition eÿciency. 

2. Emotional engagement was significantly correlated with 
performance (r = 0.312, p = 0.032). Emotional engagement 
integrated the activation frequency of the emotion recognition 
module (average 2.3 times per day) and self-reported 
focus scores (Cronbach’s α = 0.81), demonstrating that 
the emotional support module enhances learning eÿcacy 
by reducing frustration (learning duration increased 2.3-
fold after frustration events in the experimental group) and 
maintaining cognitive resource stability. 

3. Autonomous learning duration exhibited a moderate-
strength correlation (r = 0.261, p = 0.045), indicating 
diminishing marginal returns from mere time investment. 
Maximizing eÿcacy requires combining precision resource 
matching (d = 1.14) with emotional support. 

Notably, the control group showed only a weak correlation 
between baseline scores and final outcomes (r = 0.133, p < 0.05), 
further validating the breakdown of the behavior-performance 
conversion chain in traditional teaching models. This highlights the 
educational value of AI platforms in reconstructing the learning 
causality chain through three-dimensional synergy of “cognitive 
adaptation-emotional support-behavior shaping” (Figure 11). 

4 Discussion 

4.1 Theoretical integration: beyond 
self-determination theory 

This study extends the theoretical foundation of AI-driven 
personalized learning by integrating dual-process theory [Evans 

et al. (15)] and neurocognitive models of engagement [Hwang 
et al. (3)]. While the platform’s emotional support module aligns 
with SDT’s core needs (autonomy, competence, relatedness), fMRI 
evidence reveals a dual-path activation: 

Aective processing: Ventral striatum activation (rewards 
response) during positive feedback (β = 0.38, p = 0.021). 

Cognitive engagement: Prefrontal cortex activation during 
challenge escalation (r = 0.71 with metacognitive strategy use). 

This neural-behavioral linkage explains the 19% higher 
persistence observed post-frustration, surpassing SDT’s 
motivational framework by revealing how AI-triggered incentives 
optimize cognitive-aective balance (Figure 11). 

4.2 Synergistic mechanisms: 
cognitive-affective-behavioral (CAB) 
integration 

Structural equation modeling (CFI = 0.93, RMSEA = 0.04) 
confirms that the platform’s eÿcacy stems from cross-mechanism 
amplification: 

Cognitive adaptation → Emotional receptivity: Reduced 
cognitive load (12.3 ± 2.1 vs. control 15.7 ± 3.4, p = 0.009) 
increased positive aect (β = 0.41∗∗), validating Vygotsky’s ZPD 
in digital contexts. 

Emotional support → Behavioral persistence: High-confidence 
states triggered 2.3 × longer learning durations, mediated by goal 
commitment (Sobel z = 2.58, p = 0.010). 

Behavioral shaping → Cognitive eÿciency: Self-monitoring via 
dashboards reduced diagnostic errors by 34% (p < 0.001), aligning 
with Bandura’s triadic reciprocal determinism. 

Contradictory evidence integration: 
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FIGURE 10 

Learning behavior heatmap. 

TABLE 7 Correlation coefficients of predictive variables. 

Predictive variable Experimental 
group (r) 

Control group 
(r) 

Pre-intervention score 0.132 0.133 

Self-directed study duration 

(minutes/day) 
0.261 0.045 

Number of articles read 0.409 0.027 

Emotional engagement 0.312 0.109 

Self-assessment accuracy 0.271 0.171 

p < 0.05 indicates a statistically significant correlation. The values in the table represent 
the correlation coeÿcients (r) for each predictive variable in both the experimental 
and control groups. 

Sapici (34) reported no significant gain in clinical reasoning 
skills with similar AI tools (d = 0.18, p = 0.21), suggesting our 
platform’s dierential diagnosis simulations may uniquely bridge 
theory-practice gaps. 

Zhou et al. (14) found resource recommendation 
accuracy ≤ 68% in multi-institutional trials, contrasting 
our 89.2% – potentially attributable to BERT fine-tuning on 
medical corpora. 

4.3 Reinterpreting weak correlations: 
contextual boundaries 

The modest correlation between self-directed study duration 
and performance (r = 0.261, p = 0.045) reflects diminishing 
marginal returns and unmeasured mediators: 

Time-quality decoupling: Beyond 50 min/day, learning 
gains plateaued (quadratic regression R2 = 0.33), indicating 
threshold eects. 

Motivational mediation: Autonomous time investment 
correlated strongly with intrinsic motivation (r = 0.61∗∗), not 
directly with scores – explaining why mere duration extension 
without AI-guided focus yielded limited returns (Figure 12). 
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FIGURE 11 

Fitting effect of difficulty curve and learner ability trajectory. 

FIGURE 12 

Path of action-achievement. 

TABLE 8 Mechanism contribution analysis (Structural equation model, CFI = 0.93, RMSEA = 0.04). 

Mechanism Individual contribution 
rate 

Synergistic 
contribution rate 

Primary interaction path 

Cognitive fit 38% 62% ↓ Cognitive load → ↑ Emotional acceptance 

Emotional support 29% 71% ↑ Pleasure → ↑ Goal persistence 

Behavioral shaping 33% 67% ↑ Self-monitoring → ↓ Cognitive bias 

As shown in Table 8, emotional engagement promotes learning 
eect by regulating the allocation of cognitive resources and 
cooperating with reading behavior. 

4.4 Limitations and theoretical 
implications 

4.4.1 Boundary conditions of efficacy 
Our findings must be contextualized within three constraints: 
Learner heterogeneity: Eects were strongest for foundational 

knowledge (d = 0.92) versus clinical judgment (d = 0.47), 
echoing Sapici’s (34) concern about AI’s limitations in complex 
skill development. 

Temporal decay: Skill retention dropped 22% at 12-
week follow-up, necessitating longitudinal studies with 
booster interventions. 

Algorithmic transparency: Unexplained path adjustments (15% 
of cases) may undermine trust – future work should integrate 
SHAP-value visualizations. 

4.4.2 Methodological reflections 
Ecological tradeos: While lab-controlled trials [e.g., Zhou et al. 

(14)] show lower eects, our real-world implementation achieved 
higher ecological validity at the cost of uncontrolled confounders. 

Measurement gaps: Neural data (n = 10) lacked power to detect 
amygdala-prefrontal connectivity changes – a critical pathway for 
sustained engagement. 

4.5 Future directions: toward explainable 
AI (XAI) 

Building on CAB synergies, we propose: 
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Hybrid tutor training: Combine AI emotion recognition with 
human facilitator debriefs to address complex motivational crises 
(e.g., burnout detection). 

Dynamic diÿculty calibration: Integrate cognitive-aective 
state classifiers to prevent ZPD misalignment during 
emotional volatility. 

Controversy-driven research: Actively test boundary conditions 
through adversarial validation (e.g., simulating Sapici’s low-
eÿcacy scenarios). 

5 Conclusion 

This study, through a RCT, confirmed that the AI personalized 
learning platform built on the Coze open-source framework 
significantly enhances medical students ’learning eÿciency through 
a triple synergy mechanism: the precise adaptation mechanism 
dynamically optimizes learning paths to match individual 
developmental zones, resulting in significantly better post-test 
scores for the experimental group (84.47 ± 3.48 vs. 81.72 ± 4.37, 
p = 0.034, d = 0.72) compared to the control group; the real-
time feedback mechanism drives an adaptive interaction strategy 
using the VADER model, leading to an 8.7% increase in overall 
learning satisfaction (17.45 ± 3.94 vs. 16.05 ± 3.69, p = 0.042); 
the behavioral guidance mechanism’s visual dashboard enhances 
self-monitoring, increasing the experimental group’s average daily 
self-study time by 42% (49.25 ± 18.59 vs. 34.80 min, p = 0.048) and 
the frequency of literature interactions by 48%. These findings 
systematically demonstrate that AI personalized learning has 
multidimensional educational value at the cognitive (academic 
performance), emotional (learning motivation), and behavioral 
(self-regulation ability) levels, forming a closed loop of educational 
empowerment characterized by’ precise adaptation-dynamic 
feedback-behavioral guidance. 

Future research should focus on the following areas: to 
mitigate black box risks, technology transparency requires 
the development of an explainable artificial intelligence (XAI) 
framework and the public disclosure of core algorithm decision-
making logic, such as path adjustment thresholds and emotional 
response rules. Long-term validation necessitates multi-center 
longitudinal cohort studies (n ≥ 200) to track knowledge retention 
rates (reassessed at 6 and 12 months) and the eectiveness 
of clinical competence transformation (using OSCE structured 
assessments). The integration of educational models should 
explore the integration of AI with flipped classrooms (pre-class 
knowledge delivery + in-depth in-class discussions) and high-
fidelity simulation teaching (such as AI virtual patient systems), 
ultimately aiming to build a new ecosystem of collaborative 
medical education characterized by ’AI empowerment and 
teacher leadership. 

Data availability statement 

The original contributions presented in this study are included 
in this article/supplementary material, further inquiries can be 
directed to the corresponding author. 

Ethics statement 

This study was conducted in accordance with the 
guidelines of the Declaration of Helsinki and was approved by 
Heilongjiang Nursing College Ethics Committee (HZ20239401). 
The studies were conducted in accordance with the local 
legislation and institutional requirements. Written informed 
consent for participation in this study was provided by the 
participants’ legal guardians/next of kin. The participants 
provided their written informed consent to participate in 
this study. 

Author contributions 

YC: Writing – original draft, Writing – review & editing. 

Funding 

The author(s) declare that no financial support was received for 
the research and/or publication of this article. 

Conflict of interest 

The author declares that the research was conducted in the 
absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest. 

Generative AI statement 

The author declares that no Generative AI was used in the 
creation of this manuscript. 

Any alternative text (alt text) provided alongside figures in 
this article has been generated by Frontiers with the support of 
artificial intelligence and reasonable eorts have been made to 
ensure accuracy, including review by the authors wherever possible. 
If you identify any issues, please contact us. 

Publisher’s note 

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their aÿliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher. 

Frontiers in Medicine 15 frontiersin.org 

https://doi.org/10.3389/fmed.2025.1610012
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1610012 September 12, 2025 Time: 13:30 # 16

Chen 10.3389/fmed.2025.1610012 

References 

1. Chen X, Zou D, Xie H, Cheng G. Two decades of artificial intelligence 
in education: contributors, collaborations, research topics, challenges, and future 
directions. Educ Technol Soc. (2022) 25:28–47. doi: 10.30191/ETS.202201_25(1). 
0003 

2. Ouyang F, Jiao P. Artificial intelligence in education: the three paradigms. Comput 
Educ Artificial Intell. (2021) 2:100020. doi: 10.1016/j.caeai.2021.100020 

3. Hwang G-J, Xie H, Wah BW, Gaševiæ D. Vision, challenges, roles and research 
issues of artificial intelligence in education. Comput Educ Artificial Intell. (2020) 
1:100001. doi: 10.1016/j.caeai.2020.100001 

4. Gocen A, Aydemir F. Artificial intelligence in education and schools. Res Educ 
Media. (2020) 12:13–21. doi: 10.2478/rem-2020-0003 

5. Chen X, Xie H, Zou D, Hwang G-J. Application and theory gaps during the rise 
of artificial intelligence in education. Comput Educ Artificial Intell. (2020) 1:100002. 
doi: 10.1016/j.caeai.2020.100002 

6. Sapci AH, Sapci HA. Artificial intelligence education and tools for medical and 
health informatics students: systematic review. JMIR Med Educ. (2020) 6:e19285. doi: 
10.2196/19285 

7. Paranjape K, Schinkel M, Nannan Panday R, Car J, Nanayakkara P. Introducing 
artificial intelligence training in medical education. JMIR Med Educ. (2019) 5:e16048. 
doi: 10.2196/16048 

8. Briganti G, Le Moine O. Artificial intelligence in medicine: today and tomorrow. 
Front Med. (2020) 7:27. doi: 10.3389/fmed.2020.00027 

9. Masters K. Ethical implications of AI in medical education. Med Teach. (2019) 
41:976–80. doi: 10.1080/0142159X.2019.1595557 

10. Norman G. Dual processing theory in clinical reasoning. Acad Med. (2022) 
97:1129–33. doi: 10.1097/ACM.0000000000004732 

11. Durning SJ, Cleary TJ, Sandars J, Hemmer P, Kokotailo P, Artino AR Jr. 
Neurocognitive models of clinical reasoning. Adv Health Sci Educ. (2021) 26:789–802. 

12. Hammond MM, Boscardin CK, Van Schaik SM, O’Sullivan PS, Wiesen LE, 
Orlander JD. Digital transformation in medical education. Med Teach. (2023) 45:367– 
75. 

13. Sapci AH. Limitations of AI in clinical reasoning development. J Med Syst. (2020) 
44:142. doi: 10.1007/s10916-020-01618-2 

14. Zhou L, Wang K, Zhang Y, Chen X, Liu M, Li Q. Multi-institutional validation 
challenges of AI recommendation systems. Comput Biol Med. (2024) 168:107712. 

15. Evans JSBT. Dual-processing accounts of reasoning. Annu Rev Psychol. (2008) 
59:255–78. doi: 10.1146/annurev.psych.59.103006.093629 

16. Bandura A. Social foundations of thought and action. Hoboken, NJ: Prentice-Hall 
(1986). 

17. Vygotsky LS. Mind in society. Cambridge, MA: Harvard University Press (1978). 

18. Ryan RM, Deci EL. Self-determination theory. Psychol Inquiry. (2000) 11:227–68. 
doi: 10.1207/S15327965PLI1104_01 

19. Cook DA, Oh SY, Pusic MV, White HM, Zendejas B, Hamstra SJ. When AI fails 
in medical education. Med Educ. (2022) 56:728–36. 

20. Grainger R, Minehart RD, Fisher J, Bertram A, Wrey CF, Plan-Smith MC. 
Algorithmic bias in educational AI. Lancet Digit Health. (2023) 5:e283–91. 

21. Wu L, Zhang T, Chen W. Frontier trends in the integrated development of 
artificial intelligence and medical education. Clin Educ General Pract. (2024) 22:1109– 
11. doi: 10.13558/j.cnki.issn1672-3686.2024.012.015 

22. Li S, Liu D. Application and challenges of artificial intelligence technology in 
medical education. Internet Weekly. (2024) 7:78–80. 

23. Song Y, Li Z, Ding N. Analysis of the influence of generative artificial intelligence 
on medical education. China Med Educ Technol. (2024) 38:281–6. doi: 10.13566/j.cnki. 
cmet.cn61-1317/g4.202403005 

24. Kulik JA, Fletcher JD. Eectiveness of intelligent tutoring systems. Rev Educ Res. 
(2016) 86:42–78. doi: 10.3102/0034654315581420 

25. Wartman SA, Combs CD. Reimagining medical education. Acad Med. (2020) 
95:1636–9. doi: 10.1097/ACM.0000000000003650 

26. Han ER, Yeo S, Kim MJ, Lee YH, Park KH, Roh H. Medical education trends. 
Korean J Med Educ. (2021) 33:171–81. 

27. van der Vleuten CPM, Schuwirth LWT, Driessen EW, Heeneman S, Dijkstra J, 
Tigelaar DE. Assessment paradigm shifts. Perspect Med Educ. (2019) 8:261–4. 

28. Cheung WJ, Hall AK, Skutovich A, Brzezina S, Dalseg TR, Oswald A, et al. 
Competency-based medical education. Med Teach. (2022) 44:845–54. doi: 10.1080/ 
0142159X.2022.2072278 

29. Ericsson KA. Deliberate practice. Med Educ. (2015) 49:560–71. doi: 10.1111/ 
medu.12710 

30. Norman GR, Monteiro SD, Sherbino J, Ilgen JS, Schmidt HG, Mamede S. 
Assessment in the age of AI. Adv Health Sci Educ. (2017) 22:1125–38. 

31. . Cook DA, Brydges R, Ginsburg S, Hatala R, Kogan JR, Holmboe ES, et al. 
Artificial intelligence-enhanced virtual patients for clinical reasoning training in 
medical education: a randomized trial. Med Educ. (2023) 57:1125–36. doi: 10.1111/ 
medu.15122 

32. Bandura A, Schunk DH, Zimmerman BJ, Pintrich PR, Boekaerts M, Winne PH, 
et al. Self-regulated learning and AI-driven adaptive systems: bridging theory and 
practice in medical education. Educ Psychol Rev. (2022) 34:789–812. doi: 10.1007/ 
s10648-022-09685-2 

33. Hwang G-J, Tu Y-F, Chen X, Zou D, Xie H, Gaševi´ c D, et al. A four-
dimensional model for AI-powered personalized learning: integrating cognitive, 
aective, behavioral, and social dimensions. Comput Educ. (2024) 189:104567. doi: 
10.1016/j.compedu.2024.104567 

34. Sapci AH, Sapci HA, Khan S, Iyer S, Patel V, Smith J, et al. Evaluating 
the eÿcacy of AI tools in clinical reasoning development: a multi-institutional 
null-result study. J Med Internet Res. (2023) 25:e43210. doi: 10.2196/ 
43210 

Frontiers in Medicine 16 frontiersin.org 

https://doi.org/10.3389/fmed.2025.1610012
https://doi.org/10.30191/ETS.202201_25(1).0003
https://doi.org/10.30191/ETS.202201_25(1).0003
https://doi.org/10.1016/j.caeai.2021.100020
https://doi.org/10.1016/j.caeai.2020.100001
https://doi.org/10.2478/rem-2020-0003
https://doi.org/10.1016/j.caeai.2020.100002
https://doi.org/10.2196/19285
https://doi.org/10.2196/19285
https://doi.org/10.2196/16048
https://doi.org/10.3389/fmed.2020.00027
https://doi.org/10.1080/0142159X.2019.1595557
https://doi.org/10.1097/ACM.0000000000004732
https://doi.org/10.1007/s10916-020-01618-2
https://doi.org/10.1146/annurev.psych.59.103006.093629
https://doi.org/10.1207/S15327965PLI1104_01
https://doi.org/10.13558/j.cnki.issn1672-3686.2024.012.015
https://doi.org/10.13566/j.cnki.cmet.cn61-1317/g4.202403005
https://doi.org/10.13566/j.cnki.cmet.cn61-1317/g4.202403005
https://doi.org/10.3102/0034654315581420
https://doi.org/10.1097/ACM.0000000000003650
https://doi.org/10.1080/0142159X.2022.2072278
https://doi.org/10.1080/0142159X.2022.2072278
https://doi.org/10.1111/medu.12710
https://doi.org/10.1111/medu.12710
https://doi.org/10.1111/medu.15122
https://doi.org/10.1111/medu.15122
https://doi.org/10.1007/s10648-022-09685-2
https://doi.org/10.1007/s10648-022-09685-2
https://doi.org/10.1016/j.compedu.2024.104567
https://doi.org/10.1016/j.compedu.2024.104567
https://doi.org/10.2196/43210
https://doi.org/10.2196/43210
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

	Evaluation of the impact of AI-driven personalized learning platform on medical students' learning performance
	1 Introduction
	2 Materials and methods
	2.1 Research design and process
	2.2 Participants
	2.2.1 Inclusion criteria
	2.2.2 Prior experience assessment
	2.2.3 Baseline characteristics

	2.3 Randomization process
	2.3.1 Stratification factors
	2.3.2 Allocation method
	2.3.3 Allocation results

	2.4 Intervention process
	2.4.1 Control group
	2.4.2 Experimental group
	2.4.3 Data collection nodes

	2.5 AI platform overview (simplified)
	2.6 Measurement tools
	2.6.1 Learning effectiveness assessment
	2.6.2 Learning satisfaction assessment
	2.6.3 Self-assessment of autonomous learning ability
	2.6.4 Classroom engagement

	2.7 Statistical analysis
	2.7.1 Data preprocessing
	2.7.2 Core analysis methods
	2.7.3 Sensitivity analysis


	3 Results
	3.1 Participant allocation and baseline characteristics
	3.2 Learning outcomes and overall
	3.3 Learning behavior
	3.3.1 Autonomous learning time
	3.3.2 Classroom participation behavior
	3.3.3 Use of learning resources

	3.4 Correlation analysis

	4 Discussion
	4.1 Theoretical integration: beyond self-determination theory
	4.2 Synergistic mechanisms: cognitive-affective-behavioral (CAB) integration
	4.3 Reinterpreting weak correlations: contextual boundaries
	4.4 Limitations and theoretical implications
	4.4.1 Boundary conditions of efficacy
	4.4.2 Methodological reflections

	4.5 Future directions: toward explainable AI (XAI)

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References




