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Background: Lung organoids have emerged as a promising tool for studying 
lung development, function, and disease pathology. The present study aimed to 
analyze the current status and development trends of lung organoid research 
over the past years, present visual representations, and provide references for 
future research directions using bibliometric analysis.

Methods: Information on articles on lung organoids extracted from the Web 
of Science Core Collection, such as year of publication, journal, country, 
institution, author, and keywords, was analyzed. R, VOSviewer, and SCImago 
Graphica were used to visualize publication trends, co-authorship analysis, co-
occurrence analysis, and hotspot evolution.

Results: The number of global publications has increased from 1 in 2011 to 929 in 
2024. The Nature produced the highest number of citations (2,675 citations). The 
United States (8,155 citations and 281 publications), University Medical Center 
Utrecht (2083 citations and 11 publications), and Clevers H (2,711 citations and 
21 publications) were the most influential countries, institutions, and authors, 
respectively. Co-occurrence cluster analysis of the top 54 keywords formed 
four clusters: (1) idiopathic pulmonary fibrosis, (2) lung cancer, (3) cystic fibrosis, 
(4) COVID-19.

Conclusion: Overall, research on lung organoids continues to increase. The 
United States of America and the Netherlands dominated global studies. The 
analysis of pulmonary fibrosis, lung cancer and COVID-19 occupied a prominent 
position of research in this area. The research hotspots for lung organoids are 
disease model and microphysiological systems. Standardization, accurate 
disease modeling, and ethics and safety remain pressing challenges that need 
to be addressed in this field.

KEYWORDS

lung organoids, clinical applications, research focus, future directions, bibliometric

OPEN ACCESS

EDITED BY

Minghui Li,  
Army Medical University, China

REVIEWED BY

Titilola D. Kalejaiye,  
Duke University, United States
T. Thangam,  
Sathyabama Institute of Science and 
Technology, India

*CORRESPONDENCE

Yifeng Ren  
 ryftcm.dr@yahoo.com  

Liting You  
 youlitin_med@163.com

†These authors have contributed equally to 
this work and share first authorship

RECEIVED 14 April 2025
ACCEPTED 27 June 2025
PUBLISHED 16 July 2025

CITATION

Wang Q, Tan S, Fu X, He J, Ma Q, You F, 
You L and Ren Y (2025) Advancing lung 
organoids toward clinical applications: a 
global perspective on research focus and 
future directions.
Front. Med. 12:1611304.
doi: 10.3389/fmed.2025.1611304

COPYRIGHT

© 2025 Wang, Tan, Fu, He, Ma, You, You and 
Ren. This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Systematic Review
PUBLISHED 16 July 2025
DOI 10.3389/fmed.2025.1611304

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1611304&domain=pdf&date_stamp=2025-07-16
https://www.frontiersin.org/articles/10.3389/fmed.2025.1611304/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1611304/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1611304/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1611304/full
mailto:ryftcm.dr@yahoo.com
mailto:youlitin_med@163.com
https://doi.org/10.3389/fmed.2025.1611304
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1611304


Wang et al. 10.3389/fmed.2025.1611304

Frontiers in Medicine 02 frontiersin.org

1 Introduction

The lung system includes airways and alveoli, facilitating immune 
defense and gas exchange. While traditional in vitro cell experiments 
and animal models have been used to study lung development and 
diseases, they have limitations. In vitro models fail to replicate human 
tissue structure and function, and animal models differ from human 
lungs, complicating clinical applications. Organoids are three-
dimensional (3D) tissue-like structures created from adult or 
pluripotent stem cells in vitro. They closely mimic the architecture and 
functions of their source organs, making them the most precise organ 
models (1). These structures resemble the original organ, contain 
diverse cell types, and can self-renew to replicate some organ functions 
(2). It is more physiologically relevant than the monolayer culture 
model and easier to manipulate niche components, signaling 
pathways, and genome editing than animal models. In lung disease 
research, lung organoids address limitations of traditional models and 
connect basic research with clinical applications (3–5). They have 
gained prominence, especially during the corona virus disease 2019 
(COVID-19) pandemic, as effective in vitro models for studying lung 
development, function, and disease.

To date, many review articles have focused on lung organoids, 
covering their creation, culture methods, and clinical uses (6–9). 
However, these often rely on subjective views and lack a comprehensive 
overview, leading to bias. Additionally, they fail to clearly outline 
research distribution in the field or provide timely, targeted guidance 
for clinical practice through interdisciplinary collaboration. The 
clinical use of lung organoids is hindered by challenges like 

standardizing culture methods and addressing ethical issues, which 
current research often overlooks. To navigate this complexity, a 
thorough evaluation of the growing scientific literature is needed, 
providing a clear understanding of the current research landscape and 
data-driven insights to guide future research priorities.

Bibliometrics is a scientific method that emphasizes comprehensive 
and adaptable analysis to map knowledge areas, highlight 
interdisciplinary work, and identify key advancements (10). Despite 
progress in lung organoid research, significant knowledge gaps remain. 
Bibliometric analysis can direct researchers to unexplored areas and 
encourage research to close these gaps. Besides, it can indirectly 
influence clinical research, promoting evidence-based practices for 
better disease management (11). Table 1 summarizes prior organoid 
studies employing bibliometric methods, highlighting differing topics 
despite similar methodologies. To our knowledge, this is the first visual 
analysis on lung organoids, and aimed to address the following questions:

Q1. What are the global publishing trends and cooperation modes 
of lung organoids?

Q2. What is the main knowledge structure in the field of 
lung organoids?

Q3. What are the future prospectives and challenges in the field of 
lung organoid research?

We hope that this comprehensive bibliometric analysis can help 
researchers explore this promising research area.
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2 Materials and methods

2.1 Literature search strategy

We selected the Web of Science Core Collection (WoSCC) for its 
high-quality, multidisciplinary coverage, making it ideal for 
bibliometric analysis. Our search strategy was set as follows: 
TS = (lung* OR pulmo*) AND TS = (((organoid*) OR (spheroid*)) 
OR (((3D) OR (three dimensions) OR (3 dimensions) OR (three 
dimensional) OR (3 dimensional)) AND (cell OR tissue) AND 
((culture) OR (cultures) OR (cultured)))), focusing on English-
language articles and reviews. The search covered the period from the 
database’s inception to December 31, 2024. Two authors independently 
screened titles, abstracts, keywords, and full texts to ensure relevance, 
excluding studies on non-lung organoids, non-organoid methods, and 
unrelated fields like environmental science, ecology, agriculture, and 
water resources.

2.2 Bibliometric analysis

Figure 1 outlines the bibliometric analysis process. To address the 
Introduction’s questions, analysis focused on annual scientific output, 
sources, countries, institutions, authors, and keywords. Bradford’s 
and Price’s laws identified core journals and authors (12). Specifically, 
Bradford’s law posits that the core journals within a given field 
account for one-third of the total publications, whereas Price’s law 
asserts that authors with three or more publications are classified as 
core contributors. In the data collection phase, 4,253 articles were 
retrieved, with 929 valid ones selected after screening. Data was 
exported from WoSCC and cleaned. In our dataset, some articles 

lacked year information, which we  retrieved from the database. 
Articles missing author keywords were supplemented with “keyword 
plus” for better information extraction. We performed necessary data 
splitting and merging. In keyword co-occurrence analysis, 
we standardized synonyms like “coronavirus disease 19” to “COVID-
19” and “tumor” to “cancer,” removing irrelevant terms like “entry.” 
For country analysis, we unified different spellings (e.g., “peoples r 
china,” “taiwan,” “china”). In author analysis, we clarified authors with 
similar names by using full names, changing “Li, Y” to “Li, Yu” or 
“Li, Yue.”

The processed data were analyzed using R (version 4.2.1) and 
VOSviewer (version 1.6.18). R supported both qualitative and 
quantitative analysis of research trends, employing line charts to 
mark significant time points. The Bibliometrix package allowed for 
in-depth examination of publication characteristics, including 
citation counts, sources, and author identities, as well as evaluating 
author impact using the H-index and assessing journal quality with 
the 2023 impact factor (IF). R also produced dumbbell charts to 
monitor research hotspots and forecast trends. VOSviewer was 
employed to perform a co-authorship analysis, which illuminated 
collaboration patterns among countries and authors, alongside a 
keyword co-occurrence analysis aimed at identifying emerging 
research fronts. The findings were visualized utilizing the bibliometric 
mapping software SCImago Graphica. In these visual representations, 
the size of each node corresponds to the magnitude of the parameter 
(e.g., publication counts for countries or authors, frequency of 
keyword occurrences), while the connecting lines illustrate 
relationships, primarily quantified through total link strength (TLS). 
The thickness of the lines or the intensity of the red coloration of the 
nodes increase proportionally with the number of interconnections. 
Distinct colors are employed to differentiate various clusters for both 
nodes and lines.

TABLE 1 List of papers using bibliometrics as the research method.

References Fields

Global Trends of Organoid and Organ-On-a-Chip in the Past Decade: A Bibliometric and Comparative Study (105) Organoid and Organ-On-a-Chip

Current Trends and Research Topics Regarding Intestinal Organoids: An Overview Based on Bibliometrics (106) Intestinal Organoids

Knowledge graphs of ethical concerns of cerebral organoids (107)
Ethical Concerns of Cerebral 

Organoids

Global Trends of Stem Cell Precision Medicine Research (2018–2022): A Bibliometric Analysis (108) Stem Cell Precision Medicine

Patent bibliometric analysis for global trend of organoid technologies in the past decade (109) Organoid Technologies

Global trends and hotspots in research on organoids between 2011 and 2020: a bibliometric analysis (110) Organoids

Progress of research on tumor organoids: A bibliometric analysis of relevant publications from 2011 to 2021 (111) Tumor organoids

Development trends of human organoid-based COVID-19 research based on bibliometric analysis (112) Human organoid and COVID-19

Mapping the scientific output of organoids for animal and human modeling infectious diseases: a bibliometric assessment (113) Organoids and infectious diseases

Human brain organoid: trends, evolution, and remaining challenges (114) Brain organoid

Applications of 3D organoids in toxicological studies: a comprehensive analysis based on bibliometrics and advances in 

toxicological mechanisms (115)
Organoids and toxicity

Bibliometric and visualized analysis of hydrogels in organoids research (116) Organoids and hydrogels

Interpretation of the past, present, and future of organoid technology: an updated bibliometric analysis from 2009 to 2024 (117) Organoid technology
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3 Results

3.1 An overview of publishing trends

A total of 929 papers on lung organoids, comprising 697 articles 
(75.03%) and 232 reviews (24.97%), were identified, with 45,522 
references. Figure  2 illustrates the publication trend, showing a 
gradual increase from one paper in 2011 and 2013 to a rapid rise post-
2019, reaching 192 papers in 2023 and 180 in 2024, reflecting a 49.1% 
annual growth rate. By December 31, 2024, the total number of papers 
had reached 929.

3.2 Top 10 influential journals and papers

Table 2 highlights the top 10 influential journals by citation count. 
Nature leads with 2,675 citations from eight publications, followed by 
Cell (2,058 citations) and Cell Stem Cell (1,634 citations). Journals 
marked with an asterisk, including Nature, Cell Stem Cell, and others, 
are key sources for lung organoid research per Bradford’s law. Nature 
Communications, Scientific Reports, and Plos one are open-access 
(OA) journals. Table 3 shows the top 10 lung organoid articles, with 
citations ranging from 257 to 1,265. The most cited is “Modeling 
Development and Disease with Organoids” from Cell (2016) with 

FIGURE 1

Flow chart of bibliometric analysis.

FIGURE 2

Distribution of publications from 2011 to 2024.

https://doi.org/10.3389/fmed.2025.1611304
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wang et al. 10.3389/fmed.2025.1611304

Frontiers in Medicine 05 frontiersin.org

1,265 citations, followed by “SARS-CoV-2 pathogenesis” with 
474 citations.

3.3 Top 10 influential countries and 
institutions

The study analyzed lung organoid research in 55 countries. 
We identified the top 10 countries by total citations and calculated 
both the total articles and average citations for each (Figure 3A). The 
USA led with 8,155 citations, followed by the Netherlands (3,421) and 
China (2,529). The Netherlands had the highest average citations per 
article (72.80), with the USA second (29.00). China produced more 
papers and citations than most, except the USA and Netherlands, but 

had a lower average citation rate. As Figure 3B shows, the USA leads 
in collaboration, partnering with 29 countries and achieving the 
highest TLS (240), followed by Germany, China, and the Netherlands. 
Top research producers include the USA (281), China (210), Korea 
(57), Japan (55), and Germany (53). Since 2014, the USA’s annual 
publications have risen significantly, with China’s increase beginning 
in 2017, while the other three countries have shown steady growth 
(Figure 3C).

Worldwide,1,638 institutions are engaged in lung organoid 
research. The influence of these institutions was evaluated based on 
article citations. The top 10 most influential institutions, primarily 
from the USA and the Netherlands, have the highest citations. The 
University Medical Center Utrecht in the Netherlands leads with 2,083 
citations, followed by the Royal Netherlands Academy of Arts and 

TABLE 2 Top 10 journals ranked by the number of citations in the lung organoids research field.

Rank Source TC TA IF Category

1 Nature* 2,675 8 50.5 Multidisciplinary

2 Cell 2,058 4 45.5 Biochemistry

3 Cell Stem Cell * 1,634 8 19.8 Biochemistry

4 P NATL ACAD SCI USA* 1,583 9 9.4 Multidisciplinary

5 Nature Communications*△ 1,392 24 14.7 Multidisciplinary

6 Science 1,321 1 44.7 Multidisciplinary

7 Scientific Reports*△ 1,079 10 3.8 Multidisciplinary

8 AM J PHYSIOL-LUNG C* 969 21 3.6 Medicine

9 Plos one*△ 942 10 2.9 Multidisciplinary

10 Development 916 7 3.7 Biochemistry

X *, the journal is the core resource (classified by Bradford Law) of lung organoids research; X△, the journal is open access; TC, the total number of citations; TA, the total number of articles; 
IF, the impact factor in 2023; P NATL ACAD SCI USA, Proceedings of the National Academy of Sciences of the United States of America; AMJ PHYSIOL-LUNG C, American Journal of 
Physiology-Lung Cellular and Molecular Physiology.

TABLE 3 Top 10 articles according to the number of citations.

Rank Title Journal Citations Year

1 Modeling Development and Disease with Organoids (31) Cell 1,265 2016

2 SARS-CoV-2 pathogenesis (118) Nature Reviews Microbiology 474 2022

3
In vitro generation of human pluripotent stem cell-derived lung 

organoids (17)
eLife 422 2015

4
Generation of Tumor-Reactive T Cells by Co-culture of Peripheral 

Blood Lymphocytes and Tumor Organoids (49)
Cell 389 2018

5
Long-term expanding human airway organoids for disease modeling 

(20)
EMBO Journal 332 2019

6
Regeneration of the lung alveolus by an evolutionarily conserved 

epithelial progenitor (119)
Nature 309 2018

7
A three-dimensional model of human lung development and disease 

from pluripotent stem cells (26)
Nature Cell Biology 279 2017

8
Integrin alpha 6 beta 4 identifies an adult distal lung epithelial 

population with regenerative potential in mice (120)
Journal of Clinical Investigation 276 2011

9
Organoid-on-a-chip and body-on-a-chip systems for drug screening 

and disease modeling (121)
Drug Discovery 262 2016

10
Multi-tissue interactions in an integrated three-tissue organ-on-a-chip 

platform (122)
Scientific Reports 257 2017
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FIGURE 3

The analysis of countries related to lung organoids. (A) Total articles, total and average number of citations in the top 10 most highly cited countries. 
(B) Research collaboration between countries. Nodes indicate the number of national publications, with larger nodes signifying higher output. A redder 
node suggests more international collaboration. Lines represent cooperative relationships between countries. (C) Top 5 countries according to annual 
scientific productions.

Sciences (1,597), University of California, San Francisco (1,431), and 
Harvard Medical School (1,381). The remaining four institutions have 
fewer than 1,000 citations (Table 4).

3.4 Co-authorship and top 10 influential 
authors

The 929 papers involved 7,263 authors, with 13 being single-
author works. The H-index (13–15), a measure of research impact, 
highlighted Clevers H as the most influential author, with the highest 
citations in the WoSCC database. The top 10 authors by H-index 
included five from the USA, two from the Netherlands, two from the 
UK, and one from Korea. There are 303 core authors, defined by 
Price’s law as those with at least three publications. The top three 
authors by TLS were Spence JR (71), Chen HY (65), and Bellusci S 
(64) (Table 5). Figure 4 reveals that the co-authorship network of 208 
authors is split into 14 clusters, highlighting a fragmented and loosely 
concentrated collaboration, suggesting that the lung organoid field 
lacks a unified collaboration model.

3.5 The co-occurrence and evolution of 
keywords

A total of 3,745 keywords were detected in 929 articles published 
on lung organoid research. VOSviewer set a minimum occurrence 
threshold of 25 for keywords, leading to 57 keywords being eligible 
for network visualization analysis. The top 10 were organoids (229), 
stem cell (188), differentiation (155), expression (132), in vitro (131), 
cancer (125), lung (125), lung cancer (124), disease (99), and 
pluripotent stem cell (99). Figure  5A shows that 54 keywords, 
excluding subject words, were grouped into four clusters based on 
disease types: Cluster 1 (green) for idiopathic pulmonary fibrosis 
(IPF), Cluster 2 (blue) for lung cancer, Cluster 3 (orange) for cystic 
fibrosis (CF), and Cluster 4 (purple) for COVID-19.

Figure 5B shows the temporal trends in high-frequency keywords. 
The top five keywords are “lung cancer,” “SARS-CoV-2,” “COVID-19,” 
“stem cell,” and “3D-culture.” A rightward red dot indicates a later 
emergence of research trends. “Stem cell” is the earliest and most 
consistently used keyword, while “microphysiological systems” and 
“differentiation” are the newest. Recently, lung organoid research has 
focused on “microphysiological systems,” “lung cancer,” 
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“differentiation,” “SARS-CoV-2,” “disease model,” “COVID-19,” “lung-
on-a-chip,” and “3D culture.”

4 Discussion

4.1 Answer for Q1: what are the global 
publishing trend and cooperation modes 
of lung organoids?

In 2014, the first airway organoids were created from induced 
pluripotent stem cells (iPSCs), initiating lung organoid research (16). 
Since then, publications have nearly doubled each year, leading to 
significant advancements such as human-derived lung organoids and 
those replicating completed airway and alveolar structures (17, 18). By 
2019, research shifted from structural modeling to applications in lung 
disease modeling, drug screening, and therapeutic studies (19–21). 
The COVID-19 pandemic in 2020 further propelled this field, making 
lung organoids crucial for studying severe acute respiratory syndrome 
coronavirus-2 (SARS-CoV-2) entry, replication, inflammatory 
responses, and antiviral drug testing (e.g., remdesivir) (22–25), which 
fostering interdisciplinary collaboration in personalized medicine.

The USA and the Netherlands lead in lung organoid research, 
thanks to strong research foundations and resources. Key 
U. S. institutions like University of California, San Francisco, Duke 
University, and Harvard Medical School drive significant progress in 
lung development, disease modeling, regenerative medicine, and viral 
infection studies (26–28). The USA also fosters interdisciplinary 
collaboration across biomedical science, engineering, and informatics, 
enhancing clinical translation of lung organoids with technologies like 
microfluidics, 3D printing, and gene programming (29, 30). Despite 
producing fewer academic publications than the United States, the 
Netherlands boasts most representative and influential researchers 
and institutions. Notably, Hans Clevers and his team pioneered the use 
of stem cell technology to create functional lung organoids, offering a 
new platform for studying and treating lung diseases like cancer and 
fibrosis (31). The University Medical Center Utrecht, with which he is 
affiliated, is acknowledged as a preeminent institution in the field of 
global lung organoid research. Beyond its role in advancing diverse 
lung disease organoid models, the institution is dedicated to 
employing these models to investigate respiratory viral infections, 
including COVID-19, as well as lung immune response (32, 33). 
Research efforts have also emerged from China, and there has been a 
rise in participation from new researchers and institutions.

TABLE 4 Top 10 institutions according to the total number of citations in the lung organoids research field.

Rank Institution Country TC TA TC/TA

1 University Medical Center Utrecht Netherlands 2,083 11 189.36

2 Royal Netherlands Academy of Arts and Sciences Netherlands 1,597 9 177.44

3 University of California, San Francisco USA 1,431 17 84.18

4 Harvard Medical School USA 1,381 29 47.62

5 University of Michigan USA 1,288 25 51.52

6 University of Pennsylvania USA 1,207 21 57.48

7 Princess Maxima Center for Pediatric Oncology Netherlands 939 5 187.8

8 Duke University USA 933 14 66.64

9 University of Cambridge UK 887 21 42.24

10 Wake Forest School of Medicine USA 772 8 96.5

TC, the total number of citations; TA, the total number of articles.

TABLE 5 Top 10 influential authors in the lung organoids research field.

Rank Author H-index TC TA PY-start Country

1 Clevers H 13 2,711 21 2016 Netherlands

2 Spence JR 12 1,158 20 2015 USA

3 Lee JH 9 700 13 2016 UK

4 Morrisey EE 9 698 13 2016 USA

5 Choi J 8 388 12 2016 UK

6 Dye BR 8 838 8 2015 USA

7 Gosens R 8 190 16 2018 Netherlands

8 Hogan BLM 8 994 8 2014 USA

9 Kim JH 8 257 12 2020 Korea

10 Wang Y 8 405 14 2014 USA

TC, the total number of citations; TA, the total number of articles; PY_start, first year published.

https://doi.org/10.3389/fmed.2025.1611304
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wang et al. 10.3389/fmed.2025.1611304

Frontiers in Medicine 08 frontiersin.org

FIGURE 4

Network of core authors’ cooperation in the lung organoids research field.

FIGURE 5

The analysis of keywords related to lung organoids. (A) Co-occurrence of high-frequency keywords. Node labels show keywords, with sizes 
representing their frequency. Different colored nodes indicate clusters, and line thickness shows connection strength. (B) Temporal trends in high-
frequency keywords. The X-axis shows the year, while the Y-axis represents author keywords over time. Green, red, and blue points denote the first 
quantile, third quantile, and median publication years for each keyword, respectively.

International collaboration in lung organoid research is limited, 
with prominent authors and institutions focusing mainly on domestic 
partnerships. This is due to the competitive nature and academic 
challenges of the field, which encourage teams to keep their findings 
private. Additionally, differing ethical and regulatory standards across 
countries hinder cross-national cooperation. Moreover, the 
development of lung organoids involves complex technologies and 
experimental conditions, with varying research progress among teams 

affecting collaboration. Lung organoid research is prominent, with 
significant findings published in top journals like Nature, Cell, and 
Cell Stem Cell, but most of these are not OA, limiting wider 
dissemination. Due to limited access to lung organoid research, 
we urge the publication of studies in OA formats to improve their 
reach. This approach boosts transparency, reproducibility, and impact, 
allowing a wider global research community to access and validate the 
findings. The OA formats also promote interdisciplinary collaboration 
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across fields like medicine, biology, pharmacology, and materials 
science, advancing the clinical use of lung organoids.

4.2 Answer for Q2: what is the main 
knowledge structure in the field of lung 
organoids?

The main knowledge structure was identified based on 
co-occurrence analysis of high-frequency keywords. Between 2011 
and 2024, lung organoid research is divided into four clusters related 
to lung diseases, as shown in Figure 5A.

4.2.1 Cluster 1 (green): IPF
The IPF is a fatal lung disease characterized by progressive 

scarring of lung tissue that impairs breathing and is irreversible, with 
a poor prognosis (34). Advances in organoid technology enable the 
creation of 3D lung tissue models in vitro, which are more effective 
than bleomycin-induced animal models for studying IPF’s complex 
cell interactions and are better for preclinical research (35). Abnormal 
regeneration of alveolar epithelial cells, particularly alveolar type 2 
(AT2) cells, is crucial in IPF development. Studies show that disrupted 
epithelial-stromal interactions impair regeneration, leading to alveolar 
damage (36). As IPF progresses, AT2 cells lose their regenerative 
capacity due to functional issues and differentiation changes (37). Risk 
factors for IPF include aging and mucin 5B (MUC5B) promoter 
variants (38). In AT2 cells, adenine nucleotide translocases 1 (ANT1) 
staining increases senescence markers (39), and co-culturing with 
fibrotic fibroblasts induces cystic growth and MUC5B expression (40). 
Interleukin-11 (IL-11) is also identified as a potential therapeutic 
target, as it impedes alveolar epithelial regeneration (41).

Lung organoids are valuable for drug screening in IPF. Gokey 
et al. (42) discovered that retinoic acid aids alveolar cell repair and 
fibroblast regeneration, suggesting a potential treatment. Ptasinski 
et  al. (43) found that nintedanib and pirfenidone reduce fibrosis 
markers but do not fully reverse epithelial changes, highlighting the 
need for therapies targeting the alveolar epithelium. Moreover, 
integrating clustered regularly interspaced short palindromic repeats/
CRISPR-associated protein 9 (CRISPR/Cas9) with lung organoids 
could become a new trend, which allows scientists to simulate 
IPF-related gene mutations, potentially advancing precise gene 
therapy strategies (21, 44).

4.2.2 Cluster 2 (blue): lung cancer
Lung cancer ranks among the foremost causes of cancer-related 

mortality, with its substantial heterogeneity, tumor cell plasticity, and 
the dynamic regulation of the tumor microenvironment (TME) 
posing significant challenges to the formulation of effective treatment 
strategies (45). Patient-derived organoids (PDOs) have overcome the 
limitations inherent in traditional cell line models by preserving 
tumor heterogeneity, thereby providing an optimal platform for 
elucidating the mechanisms underlying lung cancer development and 
evaluating preclinical treatment responses (46, 47). PDOs that 
incorporate the TME can simulate intercellular signaling and 
immune surveillance mechanisms through a reconstruction method 
(48, 49), or retaining critical components of the in  vivo 
microenvironment, such as the original tumor’s extracellular matrix 
and vascular mimetics, facilitating the examination of responses to 

immunotherapy and targeted therapies through a whole method 
approach (50, 51).

Lung cancer organoids (LCOs) are vital for developing new drug 
targets and conducting large-scale screenings. Zhang et al. (52) found 
significant differences in drug sensitivity through cell viability tests on 
lung cancer assembloids and organoids. Neal et  al. (51) used an 
air-liquid interface PDO model from patient tumor fragments to 
evaluate PDOs’ response to nivolumab, highlighting its potential for 
immunotherapy screening. Drug resistance poses a significant 
challenge in cancer treatment. Luan et  al. (53) demonstrated that 
fibroblast-secreted factors enhance tumor resistance to adagrasib 
using an LCO-cancer-associated fibroblasts co-culture model. Wang 
et al. (54) showed that inflammatory factors, particularly SAA secreted 
by cancer stem cells, contribute to cisplatin resistance in lung cancer 
models. Beyond co-culture systems, CRISPR-Cas9 technology is 
pivotal in uncovering resistance mechanisms in LCOs. Pfeifer et al. 
(55) used genome-wide CRISPR screening in LCOs to confirm the 
Hippo signaling pathway as a potential target to prevent 
osimertinib resistance.

4.2.3 Cluster 3 (orange): CF
The CF is a genetic disorder resulting from mutations in the cystic 

fibrosis transmembrane conductance regulator (CFTR) gene, and is 
marked by airway mucus obstruction, chronic inflammation, and 
pulmonary fibrosis (56). While traditional functional imaging of 
intestinal organoids (FIS) is frequently employed to evaluate the 
specific effects of CFTR modulators on rare mutations (57, 58), 
research indicates that lung organoids offer superior phenotypic 
advantages in replicating CF pathological characteristics, including 
thickened mucus layers and electrolyte transport deficiencies (20, 59, 
60). Later studies confirmed that lung organoids derived from human 
iPSCs are effective for assessing CFTR channel functionality using FIS 
assays, with some findings suggesting they may react more strongly to 
amiloride compared to airway organoids (61). Gene editing 
technologies, particularly CRISPR/Cas9, are essential for modeling 
lung organoids in CF, as they can effectively correct the CFTR gene 
and restore chloride ion secretion in patient-derived organoids, paving 
the way for personalized gene therapy (62–64). The incorporation of 
lung organ-on-a-chip technology enhances the model’s ability to 
replicate physiological conditions, such as interactions between CF 
epithelial cells and neutrophils, mucus accumulation, and ciliary 
dysfunction (65). CF lung organoid research is still in its early stages, 
mainly concentrating on genetics. Future research could incorporate 
tissue engineering to explore CFTR defects’ impact on immune 
responses and lung inflammation (66).

4.2.4 Cluster 4 (purple): COVID-19
COVID-19, caused by SARS-CoV-2, is highly transmissible with 

a long incubation period and affects multiple organs (67, 68). Lung 
organoids, as 3D models, mimic human viral infections and help 
study virus-host interactions (24, 69). They are used to examine 
changes in respiratory cells under different viral loads, with 
angiotensin-converting enzyme 2 (ACE2) and transmembrane 
protease serine 2 (TMPRSS2) expression levels influencing 
susceptibility. Katsura et al. (70) discovered that ACE2 expression in 
AT2 cells of lung stem cell-derived alveolar spheroids facilitates SARS-
CoV-2 infection. Mykytyn et al. (71) demonstrated that the virus’s 
multibasic cleavage site (MBCS) boosts serine protease-mediated 
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entry, such as TMPRSS2, into airway organoids. Furthermore, Lung 
organoids capture host genetic diversity, highlighting variations in 
viral responses across different ages, sexes, and races, which supports 
personalized treatment strategies (72).

Lung organoid research closely replicates the human 
physiological environment, reducing interspecies variability and 
aiding rapid drug and vaccine development for diseases like COVID-
19. Current studies focus on antiviral drugs targeting viral entry and 
replication using lung organoids from human pluripotent stem cells. 
High-throughput screening has identified SARS-CoV-2 entry 
inhibitors such as imatinib, mycophenolic acid and quinacrine 
dihydrochloride (73). Wang et al. (74) found that the interferon-
stimulated gene cholesterol-25-hydroxylase (CH25H) blocks SARS-
CoV-2 entry in human lung organoids. Additionally, androgen-
blocking drugs show potential by lowering ACE2 expression and 
protecting lung organoids from infection (75). Regarding viral 
replication, low-dose interferon lambda 1, remdesivir, and human 
neutralizing antibodies effectively inhibit SARS-CoV-2 replication in 
lung organoids (33, 76), but combination therapies may yield better 
results (77, 78). Studies show that remdesivir combined with 
nelfinavir or camostat mesylate has a synergistic effect against SARS-
CoV-2. As more lung organoid research data emerges, integrating 
artificial intelligence (AI) and big data analysis will help identify drug 
targets, immune biomarkers, and predict long-term COVID-19 
effects, becoming a mainstream research trend (79).

4.3 Answer for Q3: what are the future 
prospectives and challenges in the field of 
lung organoids?

4.3.1 Future prospectives in the field of lung 
organoids

From an overall development perspective, early research on lung 
organoids primarily focused on model construction. The Wnt 
signaling pathway is crucial for lung development, balancing stem 
cell renewal and differentiation into mature lung cells like alveolar 
epithelial cells in lung organoids (80, 81). Recent research on lung 
organoids has increasingly focused on disease modeling, particularly 
lung cancer and COVID-19. For lung cancer, the emphasis is on 
using PDOs with the tumor microenvironment. In particular, 
co-culturing immune cells with PDOs allows for modeling tumor-
immune interactions, which is valuable for cancer immunotherapy 
and developing new treatments. However, most studies focus on 
exogenous immune components, particularly T cell activation (82, 
104). Moreover, it is crucial to validate the correlation between PDO 
responses and patient clinical outcomes to establish these co-culture 
platforms as clinically relevant preclinical models for immunotherapy. 
Therefore, more comprehensive investigations into these areas are 
necessary in future research endeavors. Precision treatments require 
large-scale clinical trials for validation. The pandemic prompted 
scientists to focus on SARS-CoV-2 infection mechanisms, lung 
injury, immune responses, and inflammation, leading to the swift 
creation of virus-specific models for personalized drug screening 
(83–86). Although the acute phase of the pandemic has subsided, 
issues such as SARS-CoV-2 variant infections (87–89), and 
co-infections with other viruses (90) remain subjects of future 
significant attention.

In addition to disease modeling, research also focuses on 
microphysiological systems, or organ-on-a-chip, which utilize 
microfluidic flow to cultivate cells in organ-like structures. This allows 
for precise control of biochemical and biophysical conditions, 
replicating specific cellular behaviors and ensuring consistent lung 
microenvironment reproduction (91). These systems improve lung 
organoid stability and address issues such as expansion challenges and 
incomplete tumor microenvironment characterization, making them 
valuable in lung organoid drug treatment research (92, 93). Zhang 
et al. (94) designed a microfluidic chip with an adenosine triphosphate 
(ATP) sensor for real-time lung organoid monitoring, while Wu et al. 
(95) created an automated system for single-cell sequencing of lung 
cancer organoids to identify mutations. Although promising, 
microphysiological systems remain in early development, needing 
future standardized evaluations and interdisciplinary collaboration.

4.3.2 Future challenges in the field of lung 
organoids

Lung organoid research holds significant potential for biomedical 
and clinical applications but faces challenges such as standardization, 
disease modeling accuracy, and ethical and safety issues.

The primary challenge is standardization in lung organoid 
research, which faces issues with culture conditions, phenotype 
evaluation, biobank construction, and data analysis. Variations in 
these areas lead to inconsistencies in morphology, functionality, and 
disease modeling (96). Additionally, diverse data analysis methods 
cause inconsistent results, limiting reproducibility and clinical 
relevance. To address these issues, a unified consensus within the 
lung organoid field is needed. Besides, creating a standardized 
biobank for biological samples, integrating data from various 
sources, and facilitating data sharing is crucial. One study has 
identified standardization issues in organoid production and 
suggested improvements in cell lines and culture media (97). Zhang 
et  al. (98) developed a new platform using Pluronic F-127, 
enhancing batch consistency and reducing costs. However, 
significant progress is still needed to fully address the 
standardization challenges.

The second challenge is achieving accurate disease modeling with 
lung organoids. This difficulty stems from their immature 
development, which hinders the replication of the lung’s complex 
architecture and physiological processes, and from the diverse nature 
of diseases, making it hard to mimic individual patient differences. To 
overcome these issues, optimizing culture protocols is essential, 
utilizing tissue engineering techniques like biomaterial scaffolds to 
better simulate lung biomechanics and specific disease states (29, 60, 
99). Furthermore, establishing a biobank with diverse live biological 
samples is crucial for enhancing model accuracy and capturing 
individual disease variations. For example, Liu et al. (50) developed 
patient-derived LCOs with a single-cell RNA sequencing platform to 
study immune responses in lung cancer. However, research mainly 
focuses on anti-cancer therapies. There is a need for multi-modal 
modeling systems that integrate existing lung organoid models and 
data to simulate complex disease mechanisms, facilitate targeted drug 
screening, and improve predictive accuracy for early disease detection 
and progression tracking (100).

The main challenge involves ethical and safety concerns, such as 
the source of cells for lung organoids, ethical issues in embryonic 
research, uncertainties with gene editing, potential mutations or 
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immune reactions during organoid cultivation, and tumor risks with 
long-term culture and transplantation (101). Additionally, 
constructing a biobank or modeling systems requires informed 
consent, data protection, ethical considerations in animal and human 
research, cross-cultural ethics, genetic editing risks, and biosafety. 
Researchers call for strict ethical reviews, better regulation of gene 
editing and cell sourcing, and genomic and phenotypic monitoring to 
ensure organoid safety and functionality (102, 103).

4.4 Innovations and limitations

This study is the first to comprehensively map lung organoid 
research using bibliometric methods, addressing knowledge gaps and 
guiding future research without subjective bias. Unlike previous 
reviews, we identified themes through data analysis and highlighted 
key topics for researchers. We also detailed challenges in lung organoid 
research. While our analysis is comprehensive and objective, it is 
limited by the use of a single database, which may omit some relevant 
literature. However, this ensures consistency and transparency. 
We chose WoSCC for its extensive, high-quality academic information 
and rigorous journal selection criteria, ensuring data reliability 
and authority.

5 Conclusion

This study firstly reveals publication trends, global collaborations, 
and research hotspots of lung organoids over the past 14 years. The 
field of lung organoids is growing rapidly and is likely to expand 
further in the future. The Netherlands and the USA are undoubtedly 
the main drivers of global research. The research hotspots for lung 
organoids are disease modeling (lung cancer and COVID-19) and 
microphysiological systems. Standardization, the accuracy of disease 
modeling, and ethics and safety remain pressing challenges that need 
to be addressed in this field. These findings can help the research 
community identify emerging topics and frontiers in lung organoids 
and provide references for future research.
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