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Background: The Bronchial Provocation Test (BPT) is the gold standard for 
diagnosing airway hyperresponsiveness (AHR) in suspected asthma patients but 
is time-consuming and resource-intensive. This study explores the potential 
of baseline pulmonary function parameters, particularly small airway indices, 
in predicting AHR and develops a machine learning-based model to improve 
screening efficiency and reduce unnecessary BPT referrals.

Methods: This retrospective study analyzed baseline pulmonary function data 
and BPT results from Henan Provincial People’s Hospital (May to September 
2024). Data were randomly split into training (69.8%, n = 289) and validation 
(30.2%, n = 125) groups using R software (Version 4.4.1). The Least Absolute 
Shrinkage and Selection Operator (LASSO) was applied to identify the most 
predictive variables, and 10-fold cross-validation was used to determine the 
optimal penalty parameter (λ = 0.023) to prevent overfitting. Model fit was 
evaluated using the Akaike Information Criterion (AIC), and a logistic regression 
model was constructed along with a nomogram.

Results: The optimal model (Model C, AIC = 310.44) included FEV1/FVC%, 
MEF75%, PEF%, and MMEF75-25%, which demonstrated superior discriminative 
capacity in both the training (AUC = 0.790, cut-off = 0.354, 95% CI: 0.724–
0.760) and validation cohorts (AUC = 0.756, cut-off = 0.404, 95% CI: 0.600–
0.814). In the validation cohort, multidimensional validation through calibration 
plots showed a slope of 0.883. The Net Reclassification Improvement (NRI) for 
Model C compared to other models was 0.169 (vs. Model A), 0.144 (vs. Model 
B), and 0.158 (vs. Model D). The Integrated Discrimination Improvement (IDI) 
and Decision Curve Analysis (DCA) indicated that Model C provided superior 
predictive performance and a significantly higher net benefit compared to 
the extreme curves. For instance, the 10th randomly selected patient in the 
validation cohort showed an 89.80% probability of AHR diagnosis, with a well-
fitting model.

Conclusion: This study identifies MEF75%, MMEF75-25%, FEV1/FVC%, and 
PEF% as effective predictors of early airway hyperresponsiveness in suspected 
asthma patients. The machine learning-based predictive model demonstrates 
strong performance and clinical utility, offering potential as a visual tool for early 
detection and standardized treatment, thereby reducing the risk of symptom 
exacerbation, lung function decline, and airway remodeling.
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1 Introduction

Asthma remains a globally prevalent chronic airway disorder, 
exhibiting high morbidity, persistent therapeutic challenges, and 
substantial disease burden across all age demographics, with the 
global patient population exceeding 330 million (1, 2). Recent 
epidemiological investigations reveal significant disease heterogeneity 
in different populations. Specifically, data from the 2019 China 
Pulmonary Health Study led by Prof. Wang Chen’s research team 
demonstrated an asthma prevalence rate of 4.2% among adults aged 
≥20 years, translating to approximately 45.7 million affected 
individuals nationwide (3). In contrast, prevalence rates are notably 
higher in other regions, with 8.4% in the United Kingdom and 12.5% 
in the United  States (4). Complementing these cross-country 
variations, Burnette et al. further identified demographic patterns in 
asthma distribution, noting that cases predominantly occur in female 
(69%), Caucasian (75%), and non-Hispanic (69%) individuals, with 
most diagnoses made during adulthood (5). Notably, clinical 
management challenges persist across populations, as evidenced by 
suboptimal treatment outcomes in 55.1–62.0% of patients. Particularly 
concerning is the subgroup with severe/uncontrolled asthma (SUA), 
who demonstrate substantially elevated healthcare expenditures 
compared to mild asthma cases - a disparity highlighting the urgent 
need for improved therapeutic strategies (5).

Airway hyperresponsiveness (AHR) is a key pathological feature 
of asthma, referring to excessive and sustained bronchoconstriction 
in response to both external and internal stimuli (6–8). The bronchial 
provocation test is the standard method for assessing AHR, but it is 
complex to perform and carries certain risks, such as the potential to 
trigger acute attacks or allergic reactions. Thus, such a test is unsuitable 
for patients with severe asthma or chronic obstructive pulmonary 
disease (COPD) (9). Although methacholine challenge testing (MCT) 
is widely used, its complexity and high costs limit its use in primary 
care settings (10). Studies in the United  States indicate that early 
accurate diagnosis of AHR remains challenging due to the lack of 
specific biomarkers. Most of asthma patients are managed by primary 
care physicians (PCPs), while approximately one-third of these 
patients do not receive the timely treatment, which can lead to the 
worsening airway inflammation, airway remodeling, and decreased 
lung function (11, 12). Therefore, there is an urgent need for a simple 
and effective predictive method to identify high-risk patients early.

Machine learning (ML) is widely applied in the medical field for 
disease diagnosis and prognosis prediction. By constructing models, ML 
can deeply analyze medical data, support clinical decision-making, and 
classify individual disease risks with high precision in the context of 
complex diseases, thus aiding in more accurate diagnosis, disease 
progression prediction, and personalized treatment planning. In this 
study, a large cohort of patients with suspected asthma was enrolled, 
with their baseline pulmonary function test data and clinical information 
systematically collected. Through LASSO regression analysis, 4 clinically 

accessible and safe indicators were identified, and their application value 
in the diagnosis of AHR was explored in depth. In the process, LASSO 
regression achieved precise screening of key pulmonary function 
parameters by penalizing irrelevant variables, aiming to construct a 
concise and efficient AHR prediction model. This method can prioritize 
the retention of variables with clear clinical significance, such as small 
airway indicators, while effectively reducing the risk of model overfitting, 
thus ensuring that the constructed model possesses both diagnostic 
accuracy and operational feasibility in routine clinical practice. Notably, 
a novel ML-based nomogram model for AHR diagnosis was developed, 
and internal validation was conducted to assess its diagnostic efficacy. 
This research has the potential to enhance the accuracy and efficiency of 
clinical diagnosis, promote early intervention and personalized 
treatment in asthma, reduce the risks of acute exacerbations, lung 
function decline, and airway remodeling, and may ultimately contribute 
to improvements in patient outcomes and quality of life.

2 Materials and methods

2.1 Study subjects

This study, which was part of routine clinical practice, enrolled 
consecutive patients attending the outpatient clinic of Henan 
Provincial People’s Hospital from May to September 2024. The 
research protocol received ethical approval from the Ethics Committee 
of Henan Provincial People’s Hospital (Approval No. 2024173) in 
accordance with the Declaration of Helsinki. Written informed 
consent was obtained from all participants prior to enrollment 
through standardized documentation procedures.

2.1.1 Inclusion criteria
 (1) Patients with suspected asthma symptoms (e.g., recurrent 

breathlessness, coughing, chest tightness, wheezing) for a 
duration of ≥2 months.

 (2) All patients underwent routine pulmonary function tests 
and MCT.

 (3) Imaging tests showed no significant abnormalities (such as 
lung masses, bronchiectasis, pulmonary infections, etc.).

2.1.2 Exclusion criteria
 (1) Patients aged <16 years.
 (2) Patients with coexisting respiratory diseases including 

pneumonia, lung cancer, allergic bronchopulmonary 
aspergillosis, or chronic obstructive pulmonary disease 
(COPD, defined as post-bronchodilator FEV1/FVC < 0.7).

 (3) Patients with heart-related wheezing.
 (4) Patients with severe systemic diseases or malignant tumors.
 (5) Pregnant or lactating women.
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2.2 Research methods

2.2.1 Data collection

2.2.1.1 Basic information
Demographic variables were extracted from the hospital’s 

electronic medical records, including age, sex, body mass index (BMI), 
symptoms, symptom duration, and medical history.

2.2.1.2 Routine pulmonary function parameters
Pulmonary ventilation function and bronchial provocation tests 

(BPT) were performed using a Jaeger MasterScreen pulmonary 
function instrument (CareFusion, Hochberg, Germany) in accordance 
with the standards established by the American Thoracic Society/
European Respiratory Society (ATS/ERS): each patient completed at 
least 3 technically valid maneuvers, and the best results were recorded 
(13). The relevant pulmonary function parameters collected included: 
forced vital capacity as a percentage of predicted value (FVC%pred), 
forced expiratory volume in 1 s as a percentage of predicted value 
(FEV1%pred), the ratio of forced expiratory volume in 1 s to forced 
vital capacity as a percentage of predicted value (FEV1/FVC%pred), 
peak expiratory flow as a percentage of predicted value (PEF%pred), 
maximal expiratory flow at 50% of forced vital capacity as a percentage 
of predicted value (MEF50%pred), maximal expiratory flow at 25% of 
forced vital capacity as a percentage of predicted value (MEF25%pred), 
maximal expiratory flow at 75% of forced vital capacity as a percentage 
of predicted value (MEF75%pred), and maximal mid-expiratory flow 
between 75 and 25% of forced vital capacity as a percentage of 
predicted value (MMEF 75-25%pred).

2.2.1.3 Imaging examination
Chest high-resolution computed tomography (HRCT) scans were 

performed using a SoMATOM Siemens Sensation 64-slice spiral CT 
scanner. All HRCT images were independently reviewed by 
two radiologists.

2.2.2 Data cleaning and standardization

2.2.2.1 Data inspection, cleaning and standardization
The raw data obtained were sorted and integrated based on key 

information from the included patients. To ensure the reliability and 
accuracy of subsequent analyses, data with incomplete information, 
duplicates, unclear classifications, or outliers were excluded from the 
dataset. Additionally, corrections and normalization were performed 
on the variable names and measurement units to ensure data 
consistency and comparability.

2.2.2.2 Missing data handling
Variables with a missing rate greater than 30% were excluded from 

the analysis. For variables with a missing rate ≤ 30%, missing values 
were imputed using multiple imputation by chained equations 
(MICE). Subsequent multivariate analyses were conducted using the 
imputed dataset. (Missing data handling. Variables with a missing rate 
greater than 30% were excluded from the analysis (none in this study). 
For variables with a missing rate ≤30%, including pulmonary function 
parameters (FVC%pred: 8.2%; FEV1%pred: 11.5%; FEV1/FVC%pred: 
6.9%; PEF%pred: 13.7%), missing values were imputed using multiple 
imputation by chained equations (MICE). The MICE procedure 

included 20 imputed datasets, with predictors incorporating all 
variables in the analysis (consistent with the final multivariate model). 
Subsequent multivariate analyses were conducted using pooled results 
from the imputed datasets).

2.2.3 Statistical methods
Statistical analysis was performed using R software (Version 

4.4.1). Categorical data were expressed as frequency (n) and 
percentage (%), while normally distributed continuous data were 
presented as mean ± standard deviation (SD), and non-normally 
distributed continuous data were presented as median (M) with 
interquartile range (Q1, Q3). For comparing continuous data, if the 
data were normally distributed with homogeneity of variance, an 
independent-samples t-test was used; otherwise, the Wilcoxon 
rank-sum test was applied. Categorical data were analyzed using the 
chi-square test or Fisher’s exact test.

Initially, all selected predictor variables were included in a LASSO 
regression analysis to identify the most valuable diagnostic predictors. 
The penalty parameter (λ) was selected using 10-fold cross-validation 
to avoid overfitting, with λ values ranging between λ_min (the λ that 
minimizes model estimation error) and λ_1se (the λ that maintains 
model estimation error within an acceptable range). Statistically 
significant diagnostic predictors were then selected. A nomogram 
based on the Logistic regression model was constructed using the 
“rms” package in R, and the receiver operating characteristic (ROC) 
curve was plotted using the “pROC” package to evaluate the model’s 
reliability and validity. After model development, its predictive 
performance was assessed in both the training and validation cohorts. 
The evaluation included calibration, calculation of net reclassification 
improvement (NRI), integrated discrimination improvement (IDI), 
and clinical decision curve analysis (DCA) to comprehensively assess 
the diagnostic performance of the model. A significance level of 
p < 0.05 was set.

3 Results

3.1 Patient recruitment and baseline profile

3.1.1 Screening and enrollment process
From June to September 2024, a total of 489 outpatients presenting 

with suspected asthmatic symptoms were initially screened. After 
rigorous assessment, 414 patients with complete clinical data who met 
the predefined inclusion criteria were enrolled in the study. The 
exclusion criteria were applied to 75 patients, with the following 
breakdown: 32 cases with comorbid respiratory conditions (including 
pneumonia, lung cancer, allergic bronchopulmonary aspergillosis, and 
chronic obstructive pulmonary disease [COPD]); 6 cases with 
malignancies in other systems; 21 cases with incomplete or missing 
data; and 16 cases excluded due to other unspecified reasons. A flow 
diagram illustrating this process is provided in Figure 1.

3.1.2 Baseline characteristics
The patients were randomly divided into the training group and 

validation group at a 7:3 ratio via the sample() function in R software. 
In the training group, there were 104 patients with positive BPT, with 
a median age of 52 years (IQR: 32, 61), of which 48 were male (46.2%), 
a lower proportion than female patients. In the validation group, there 
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were 55 patients with positive BPT, with a median age of 44 years 
(IQR: 29.5, 57), of which 18 were male (32.7%), also lower than the 
proportion of female patients. No significant differences were 
observed in age, sex, BMI, and other baseline characteristics between 
the training and validation groups (p > 0.05). In both the training and 
validation groups, univariate logistic regression analysis of pulmonary 
function indices between BPT-negative and BPT-positive groups 
showed statistically significant differences in 7 variables (p < 0.05) 
(Table 1).

3.2 Model development

3.2.1 Dimensionality reduction
A total of 11 diagnostic indicators were included in this study 

(Table 1). LASSO regression was used to select features from the 
demographic characteristics, pulmonary function testing indicators, 
and other diagnostic-related variables. A 10-fold cross-validation 
method was applied to select the optimal features corresponding to 
the tuning parameter λmin (the minimum λ criterion), resulting in the 

best feature subset (Figure 2). The trajectory of the coefficients for 
each diagnostic predictor was observed as the log of λ changed in the 
LASSO algorithm (Figure 3). The tuning parameter λmin for LASSO 
regression was determined to be 0.023 (log(λmin) = −3.761) through 
10-fold cross-validation. Based on λmin, four non-zero coefficient 
features, including FEV1/FVC%pred, PEF%pred, MEF75%pred and 
MMEF 75-25%pred, were selected, forming the optimal 
feature subset.

3.2.2 Development of four predictive models
Based on the results of LASSO regression, four predictive models 

for AHR diagnosis were constructed using the selected indicators: 
FEV1/FVC%pred, PEF%pred, MEF75%pred, and MMEF 75-25%pred. 
The models are as follows: model A (MMEF 75-25%pred); model B 
(FEV1/FVC%pred, PEF%pred, MEF75%pred); model C (FEV1/
FVC%pred, PEF%pred, MEF75%pred, MMEF 75-25%pred); model 
D (MEF75%pred, MMEF 75-25%pred). The goodness of fit and 
Akaike Information Criterion (AIC) for each model were calculated, 
and model C (AIC: 310.44) was selected as the optimal model 
(Table 2).

FIGURE 1

The flow diagram for the screening and enrollment process.
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3.2.3 Nomogram-based diagnostic prediction 
model

A nomogram was constructed based on the selected optimal 
model, model C (AIC: 310.44), for visualization. Using the 10th 
patient in the study as an example (Figure 4), each variable’s value in 
the nomogram corresponds to a specific score. The total score is 
obtained by summing the individual scores of all variables. The 
probability of AHR is displayed below the total score, with this patient 
having a diagnosis probability of 89.80%. The model demonstrates a 
good fit.

3.2.4 Model performance evaluation
During the model-construction process, the study subjects were 

divided into two datasets: the training group, which was used to 
develop the optimal fit model, and the validation group, which was 
used for internal validation of the model’s predictive performance. 

After screening the optimal model, its prediction performance was 
evaluated in both the training and validation groups from four key 
aspects: calibration, Net Reclassification Index (NRI), Integrated 
Discrimination Improvement Index (IDI), and Decision Curve 
Analysis (DCA).

Before evaluation, the optimal cut-off values for continuous 
variables were determined using the surv_cutpoint function from the 
“survminer” R package. For the training group, the cut-off value was 
0.354 (95% CI: 0.724–0.760) (Figure 5A), and for the validation group, 
it was 0.404 (95% CI: 0.600–0.814) (Figure 5B). The training cohort 
achieved an AUC of 0.790 with the cut-off value of 0.354, while the 
validation cohort achieved an AUC of 0.756 with the cut-off value of 
0.404. The AUC values ranged from 0.5 to 1, with higher values 
indicating better model performance. An AUC closer to 1 reflects 
superior predictive accuracy.

A DeLong test confirmed no statistically significant difference in 
AUC between cohorts (p = 0.509; z-statistic = 0.662) 
(Supplementary Figure S1), indicating the observed performance 
gap (0.034) falls within random variation. The non-significant 
p-value (>0.05) and z-statistic (absolute value <1.96) collectively 
suggest that the AUC difference stems from random error rather 
than systematic performance disparities, demonstrating the model’s 
statistical robustness and consistent performance across cohorts. 
Together with the model’s moderately high AUC, good calibration, 
and clinical net benefit, these findings demonstrate that Model C 
possesses sufficient predictive accuracy and stable performance in 
new samples, supporting its utility as a reliable tool for early 
screening of airway hyperresponsiveness (AHR) in suspected asthma 
patients and reinforcing the clinical relevance of the 
study conclusions.

3.2.4.1 Calibration evaluation
The calibration of the model C prediction model in this study was 

evaluated by plotting calibration curves for both the training 

TABLE 1 Basic clinical characteristics of the validation and training groups.

Characteristics Validation cohort (n = 125) Training cohort (n = 289)

Negative Positive p.overall Negative Positive p.overall

N = 70 N = 55 N = 185 N = 104

Gender 0.332 0.930

  Female 40 (57.1%) 37 (67.3%) 102 (55.1%) 56 (53.8%)

  Male 30 (42.9%) 18 (32.7%) 83 (44.9%) 48 (46.2%)

Age 46.0 [32.0; 57.0] 44.0 [29.5; 57.0] 0.519 44.0 [33.0; 56.0] 52.0 [32.0; 61.0] 0.069

BMI 24.5 [22.6; 27.0] 25.5 [22.4; 27.3] 0.551 24.7 [22.3; 27.3] 24.7 [22.7; 27.4] 0.720

FEV1/FVC%pred 99.0 [93.0; 104] 88.0 [77.5; 97.0] <0.001 98.0 [90.0; 103] 84.5 [71.0; 96.0] <0.001

MEF50%pred 78.4 (25.5) 63.2 (21.4) <0.001 76.5 [61.0; 94.0] 59.0 [38.5; 77.5] <0.001

MEF25%pred 58.5 [43.2; 82.8] 38.0 [26.5; 52.0] <0.001 57.0 [39.0; 77.0] 37.0 [26.0; 49.2] <0.001

FEV1%pred 98.6 (14.3) 87.5 (14.2) <0.001 98.0 [86.0; 107] 81.5 [71.8; 97.0] <0.001

MEF75%pred 93.7 (23.9) 73.5 (21.4) <0.001 92.5 (23.4) 67.3 (25.2) <0.001

PEF%pred 99.4 (19.9) 86.7 (18.4) <0.001 99.8 (19.8) 83.0 (17.9) <0.001

FVC%pred 106 (14.6) 102 (13.4) 0.151 105 [95.0; 117] 101 [88.0; 112] 0.015

MMEF75-25%pred 70.5 [56.2; 88.2] 51.0 [36.5; 63.5] <0.001 68.0 [55.0; 85.0] 47.0 [29.8; 58.5] <0.001

p < 0.05 in the table indicates that the differences are statistically significant.

FIGURE 2

The plot of optimal feature subset selection using LASSO regression.
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(slope = 1.000) (Figure  6A) and validation (slope = 0.883) 
(Figure 6B) groups.

3.2.4.2 NRI index calculation
In the training group, the results of the comparisons among the 

three models are as follows: When model C was compared with the 
other three models, the NRI values were as follows: the NRI value for 
model C vs. model A was 0.273 (Figure 7A); the NRI value for model 
C vs. model D was 0.175 (Figure 7B); and the NRI value for model C 
vs. model B was 0.111 (Figure 7C). These results indicate that model 
C has superior classification ability, enabling more accurate prediction 

of AHR. In the validation group, when model C was compared with 
the other three models, the following NRI values were obtained: the 
NRI value for model C vs. model A was 0.169 (Figure 7D); the NRI 
value for model C vs. model B was 0.144 (Figure 7E); and the NRI 
value for model C vs. model D was 0.158 (Figure 7F). These results 
suggest that model C exhibits better discriminatory performance, with 
a clear advantage in predicting AHR.

3.2.4.3 IDI index calculation
Training group: When model C is the new model and model B is 

the old model, the IDI value is 0.0115 [95% CI: −0.0021 – 0.0252], 

FIGURE 3

The plot of binomial deviance vs. Log(λ) using LASSO regression.

TABLE 2 AIC values of the four models.

Model Variables Coefficient 95% CL p-value AIC

Model A MMEF 75-25%pred −0.05 (−0.06, −0.04) <0.001*** 312.65

Model B FEV1/FVC%pred −0.02 (−0.04, −0.0002) 0.06. 314.19

MEF75%pred −0.02 (−0.04, −0.004) 0.02*

PEF%pred −0.01 (−0.04, 0.002) 0.09.

Model C FEV1/FVC%pred −0.01 (−0.03, 0.01) 0.36 310.44

MEF75%pred −0.003 (−0.03, 0.02) 0.84

PEF%pred −0.02 (−0.04, −0.001) 0.04*

MMEF 75-25%pred −0.31 (−0.06, -0.006) 0.02*

Model D MEF75%pred −0.02 (−0.04, −0.001) 0.07. 311.23

MMEF 75-25%pred −0.03 (−0.06, −0.008) 0.01*

Signif.codes: 0‘***’0.001 ‘**’0.01 ‘*’0.05 ‘.’0.1‘’1.
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with a p-value of 0.0976; when model C is the new model and model 
A is the old model, the IDI value is 0.0269 [95% CI: 0.0086–0.0452], 
with a p-value of 0.00403; when model C is the new model and model 
D is the old model, the IDI value is 0.0141 [95% CI: −0.0003 – 0.0285], 
with a p-value of 0.0555.

Validation group: When model C is the new model and model B 
is the old model, the IDI value is 0.0115 [95% CI: −0.0021 – 0.0252], 
with a p-value of 0.0976; when model C is the new model and model 
A is the old model, the IDI value is 0.0269 [95% CI: 0.0086–0.0452], 

with a p-value of 0.0040; when model C is the new model and model 
D is the old model, the IDI value is 0.0128 [95% CI: 0.0015–0.024], 
with a p-value of 0.0258.

3.2.4.4 DCA
The x-axis of the graph represents the threshold probability, while 

the y-axis indicates the net benefit, calculated as the benefit minus the 
harm. From Figure 8, it is evident that in both the training (Figure 8A) 
and validation (Figure  8B) groups, model C demonstrates a 

FIGURE 4

Nomogram of model C using the 10th patient in the study as an example.

FIGURE 5

Cut-off values for the training (A) and validation (B) groups.
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significantly higher net benefit compared to the extreme curves, 
indicating its superior performance.

4 Discussion

This study developed and validated four models to predict airway 
hyperresponsiveness (AHR) in suspected asthma patients, with model 
C showing the best predictive performance. We  identified FEV1/
FVC%, PEF%, MEF75%, and MMEF75-25% as the optimal 
parameters for predicting AHR. This is the first study to apply 
machine learning (ML) algorithms combining small airway function 
indices, FEV1, and peak expiratory flow (PEF) for AHR prediction. 
Although previous studies have explored the role of individual 
indicators (14–16), the innovation of this study lies in its early-stage 

diagnostic approach, which integrates baseline pulmonary function 
parameters to exclude the possibility of asthma, providing a simple 
method for identifying patients requiring referral to MCT, thereby 
avoiding unnecessary tests. It also explores the potential application 
of baseline lung function variables in the diagnosis of AHR in 
suspected adult asthma patients.

The results of this study indicate that AIC balances the model’s 
complexity with data fit. A lower AIC value indicates a better model 
fit. Ultimately, model C (AIC: 310.44) was selected as the optimal 
model and visualized through a nomogram. After model development, 
we  assessed its predictive performance in both the training and 
validation groups. The validation cohort achieved an AUC of 0.756 
with the cut-off value of 0.404. The AUC values ranged from 0.5 to 1, 
with higher values indicating better model performance. An AUC 
closer to 1 reflects superior predictive accuracy. Calibration evaluation 

FIGURE 6

Calibration plots in the training (A) and validation (B) groups.
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showed consistency between the predicted and actual risk, with model 
C’s calibration curve approaching a straight line with a slope near 1, 
indicating good concordance between predicted and observed 
probabilities, thus demonstrating high prediction accuracy. When 
NRI is greater than 0, it indicates that the new model outperforms the 
old model in classification ability, accurately reclassifying individuals 
into the correct risk categories. A larger IDI indicates stronger 
predictive capability for the new model, and when IDI > 0, it signifies 
significant improvement in predictive power compared to the old 
model. The DCA graph shows two dashed lines representing net 
benefits for no treatment and universal treatment, with other curves 
compared to these lines. The analysis of these results shows that model 
C demonstrates higher net benefit and stronger predictive value in 
both groups.

Small airway dysfunction is a key pathological feature of asthma, 
and early-stage asthma patients may experience inflammation and 
narrowing in the small airways, increasing airflow resistance (17). In 

routine pulmonary function tests, a reduction in any two of FEF50%, 
FEF75%, or FEF25-75% below 65% suggests small airway dysfunction 
(18–20). While small airways (diameter < 2 mm) contribute minimally 
to airflow resistance under normal conditions, dysfunction in these 
airways significantly increases airway resistance and is closely related 
to AHR, asthma severity, and control level (21–24). Studies show that 
small airway dysfunction increases the risk of AHR, and the 
combination of FENO, FEF50%, and FEF25-75% effectively predicts 
AHR in patients with normal FEV1 (25). Chinese experts suggest that 
the small airways are the primary site of airway inflammation and 
remodeling in asthma patients, particularly in preschool children, 
where small airway dysfunction is associated with AHR and severe 
airflow obstruction (26). FEF25-75%, a key indicator in routine 
pulmonary function tests, predicts AHR in patients with respiratory 
symptoms and has significant value in early asthma exacerbations and 
bronchial hyperresponsiveness (14, 15). French research first 
demonstrated that small airway obstruction, assessed by FEF25-75%, 

FIGURE 7

NRI index calculation. In the training group, the NRI value for (A) model C vs. model A, (B) model C vs. model D, (C) model C vs. model B; In the 
validation group, the NRI value for (D) model C vs. model A, (E) model C vs. model B, (F) model C vs. model D.

https://doi.org/10.3389/fmed.2025.1611683
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Yang et al. 10.3389/fmed.2025.1611683

Frontiers in Medicine 10 frontiersin.org

can lead to persistent AHR and increased risk of adverse outcomes 
(16), with changes in FEF25-75% correlating with the severity of 
newly diagnosed asthma and AHR (27, 28). Israeli studies highlight 
that baseline FEF50% can effectively exclude AHR and reduce 
misdiagnosis risk (29). Studies also indicate that minimum PEF is 
closely associated with AHR in asthma patients, and adjusted 
Min%Max PEF correlates well with airway responsiveness in 
inhalation provocation tests. Real-time PEF monitoring has potential 
in predicting and detecting acute exacerbations in severe asthma 
patients, and PEF trajectory-derived predictors can effectively monitor 
disease deterioration, serving as a convenient alternative indicator for 
AHR (30, 31). Additionally, some studies show that children with 
asthma typically demonstrate a decrease in PEF 1.34 days before 
symptom onset, and early PEF monitoring aids in preventing acute 
exacerbations by enhancing treatment (32). However, Dutch experts 
believe that PEF variability can serve as a diagnostic tool for AHR, but 
single indicators cannot completely replace MCT (33). Literature 
reports indicate that the FEV1/FVC ratio in children with persistent 
asthma is lower than in healthy children, with similar trends observed 

in obese asthma patients (34). Moreover, research by Brazilian experts 
such as Mingotti suggests that an FEV1/FVC ratio near the lower limit 
of normal indicates poor clinical prognosis in asthma patients without 
airway obstruction (35). Based on these findings, the model C in this 
study incorporates indicators such as FEV1/FVC%, PEF%, MEF75%, 
and MMEF75-25%, which are considered the optimal parameters for 
predicting AHR, providing important references for the clinical 
diagnosis and disease management of asthma patients.

In conclusion, we constructed an accurate model using real-world 
data that can diagnose airway hyperresponsiveness in asthma patients 
based on baseline lung volume measurement indices. This machine 
learning-based model demonstrates outstanding performance in 
predicting AHR, with the potential to enhance clinical asthma diagnosis.

Limitations of this study include its retrospective design, with 
clinical data sourced from outpatient records and testing systems. 
Relevant variables such as smoking history and allergy history were not 
included in the analysis due to missing data, which may introduce bias 
into the predictions. Future prospective studies should prioritize the 
systematic collection of smoking-related data (including smoking 

FIGURE 8

DCA curves for the training (A) and validation (B) groups.
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duration, intensity, and cessation status) and allergy history, aiming to 
clarify their roles in predicting AHR and further optimize the model 
framework. Furthermore, this study was conducted at a single center 
in Henan Provincial People’s Hospital, and the geographic limitations 
of the patient population—compounded by regional differences in 
environmental exposures (e.g., biomass fuel use), allergen distributions, 
and genetic factors—may restrict the external generalizability and 
applicability of the results. The confinement to a single seasonal 
window (May–September 2024) in Henan, during which elevated 
pollen levels and viral infections might have influenced airway 
hyperresponsiveness prevalence, adds another layer of contextual 
limitation. Additionally, the underrepresentation of elderly patients and 
the gender imbalance in the sample (with a higher proportion of female 
participants) could affect the model’s performance across diverse 
demographic subgroups. Importantly, the current model is specifically 
developed and validated for patients with suspected asthma, and its 
applicability to other respiratory diseases (e.g., COPD or interstitial 
lung disease) has not been evaluated. These conditions exhibit distinct 
pathophysiological features—such as irreversible airflow obstruction 
in COPD or diffuse parenchymal damage in interstitial lung disease—
that may alter pulmonary function parameters beyond the scope of the 
model’s design, which is rooted in asthma-specific characteristics. 
Similarly, the model’s validity in larger elderly cohorts requires 
dedicated assessment, given the limited representation of this 
population in the current dataset. While external validation efforts 
involving geographically and demographically distinct centers (Beijing, 
Guangzhou, Sichuan) are underway, future large-scale, multicenter 
clinical studies spanning multiple seasons should incorporate subgroup 
analyses by region and demographics to assess model robustness, 
thereby enhancing population representativeness and result stability.

5 Conclusion

The results of the multifactorial analyses in this study indicate that 
MEF75%, MMEF75-25%, FEV1/FVC%, and PEF% are effective 
indicators for predicting early airway hyperresponsiveness in 
suspected asthma patients. The diagnostic prediction model developed 
using machine learning methods demonstrated good predictive 
performance and clinical applicability in internal validation. It holds 
potential as a visual tool to aid in the early identification of mild 
asthma patients, ensuring timely diagnosis and standardized 
treatment, thereby reducing the risks of acute symptom exacerbation, 
pulmonary function decline, and airway remodeling.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding authors.

Ethics statement

The studies involving humans were approved by the Ethics 
Committee of Henan Provincial People’s hospital (No. 2024173) in 

accordance with the Declaration of Helsinki. The studies were 
conducted in accordance with the local legislation and institutional 
requirements. The participants provided their written informed 
consent to participate in this study.

Author contributions

HY: Conceptualization, Formal analysis, Investigation, 
Methodology, Software, Visualization, Writing – original draft. XZ: 
Methodology, Writing  – review & editing. ZC: Formal analysis, 
Writing – review & editing. LY: Resources, Writing – review & editing. 
GZ: Formal analysis, Writing – review & editing. CX: Methodology, 
Writing – review & editing. JX: Resources, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for 
the research and/or publication of this article.

Acknowledgments

We would also like to thank everyone who has helped with 
our research.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmed.2025.1611683/
full#supplementary-material

https://doi.org/10.3389/fmed.2025.1611683
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fmed.2025.1611683/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmed.2025.1611683/full#supplementary-material


Yang et al. 10.3389/fmed.2025.1611683

Frontiers in Medicine 12 frontiersin.org

References
 1. Dubin S, Patak P, Jung D. Update on asthma management guidelines. Mo Med. (2024) 

121:364–7. Available online at: https://pmc.ncbi.nlm.nih.gov/articles/PMC11482852/

 2. Huang K, Wang W, Wang Y, Li Y, Feng X, Shen H, et al. Evaluation of a global 
initiative for asthma education and implementation program to improve asthma CARE 
quality (CARE4ALL): protocol for a multicenter, single-arm study. JMIR Res Protoc. 
(2025) 14:e65197. doi: 10.2196/65197

 3. Huang K, Yang T, Xu J, Yang L, Zhao J, Zhang X, et al. Prevalence, risk factors, and 
management of asthma in China: a national cross-sectional study. Lancet. (2019) 
394:407–18. doi: 10.1016/S0140-6736(19)31147-X

 4. Suruki RY, Daugherty JB, Boudiaf N, Albers FC. The frequency of asthma 
exacerbations and healthcare utilization in patients with asthma from the UK and USA. 
BMC Pulm Med. (2017) 17:74. doi: 10.1186/s12890-017-0409-3

 5. Lugogo N, Judson E, Haight E, Trudo F, Chipps BE, Trevor J, et al. Severe asthma 
exacerbation rates are increased among female, black, Hispanic, and younger adult 
patients: results from the US CHRONICLE study. J Asthma. (2022) 59:2495–508. doi: 
10.1080/02770903.2021.2018701

 6. Barnes PJ. New concepts in the pathogenesis of bronchial hyperresponsiveness and 
asthma. J Allergy Clin Immunol. (1989) 83:1013–26. doi: 10.1016/0091-6749(89)90441-7

 7. Brannan JD, Lougheed MD. Airway hyperresponsiveness in asthma: mechanisms, 
clinical significance, and treatment. Front Physiol. (2012) 3:460. doi: 10.3389/fphys.2012.00460

 8. Cockcroft D. Environmental causes of asthma. Semin Respir Crit Care Med. (2018) 
39:12–8. doi: 10.1055/s-0037-1606219

 9. Coates AL, Wanger J, Cockcroft DW, Culver BH, the Bronchoprovocation Testing 
Task ForceCarlsen KH, et al. ERS technical standard on bronchial challenge testing: 
general considerations and performance of methacholine challenge tests. Eur Respir J. 
(2017) 49:1601526. doi: 10.1183/13993003.01526-2016

 10. Kraemer R, Smith HJ, Sigrist T, Giger G, Keller R, Frey M. Diagnostic accuracy of 
methacholine challenge tests assessing airway hyperreactivity in asthmatic patients - a 
multifunctional approach. Respir Res. (2016) 17:154. doi: 10.1186/s12931-016-0470-0

 11. Ortega H, Bharmal N, Khatri S. Primary care referral patterns for patients with asthma: 
analysis of real-world data. J Asthma. (2022) 60:609–15. doi: 10.1080/02770903.2022.2082308

 12. Bateman ED, Hurd SS, Barnes PJ, Bousquet J, Drazen JM, FitzGerald M, et al. 
Global strategy for asthma management and prevention: GINA executive summary. Eur 
Respir J. (2008) 31:143–78. doi: 10.1183/09031936.00138707

 13. Holguin F, Cardet JC, Chung KF, Diver S, Ferreira DS, Fitzpatrick A, et al. 
Management of severe asthma: a European Respiratory Society/American Thoracic 
Society guideline. Eur Respir J. (2020) 55:1900588. doi: 10.1183/13993003.00588-2019

 14. Kim Y, Lee H, Chung SJ, Yeo Y, Park TS, Park DW, et al. The usefulness of 
FEF25-75  in predicting airway hyperresponsiveness to mannitol. J Asthma Allergy. 
(2021) 14:1267–75. doi: 10.2147/JAA.S318502

 15. Ciprandi G, Cirillo I. The pragmatic role of FEF25-75 in asymptomatic subjects, 
allergic rhinitis, asthma, and in military setting. Expert Rev Respir Med. (2019) 
13:1147–51. doi: 10.1080/17476348.2019.1674649

 16. Siroux V, Boudier A, Dolgopoloff M, Chanoine S, Bousquet J, Gormand F, et al. 
Forced midexpiratory flow between 25 and 75% of forced vital capacity is associated 
with long-term persistence of asthma and poor asthma outcomes. J Allergy Clin 
Immunol. (2016) 137:1709–1716.e6. doi: 10.1016/j.jaci.2015.10.029

 17. Xue Y, Bao W, Zhou Y, Fu Q, Hao H, Han L, et al. Small-airway dysfunction is 
involved in the pathogenesis of asthma: evidence from two mouse models. J Asthma 
Allergy. (2021) 14:883–96. doi: 10.2147/JAA.S312361

 18. McNulty W, Usmani OS. Techniques of assessing small airways dysfunction. Eur 
Clin Respir J. (2014) 1:25898. doi: 10.3402/ecrj.v1.25898

 19. Postma DS, Brightling C, Baldi S, van den Berge M, Fabbri LM, Gagnatelli A, et al. 
Exploring the relevance and extent of small airways dysfunction in asthma (ATLANTIS): 
baseline data from a prospective cohort study. Lancet Respir Med. (2019) 7:402–16. doi: 
10.1016/S2213-2600(19)30049-9

 20. Usmani OS, Singh D, Spinola M, Bizzi A, Barnes PJ. The prevalence of small 
airways disease in adult asthma: a systematic literature review. Respir Med. (2016) 
116:19–27. doi: 10.1016/j.rmed.2016.05.006

 21. Kuwano K, Bosken CH, Paré PD, Bai TR, Wiggs BR, Hogg JC. Small airways 
dimensions in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis. 
(1993) 148:1220–5. doi: 10.1164/ajrccm/148.5.1220

 22. Cosio M, Ghezzo H, Hogg JC, Corbin R, Loveland M, Dosman J, et al. The 
relations between structural changes in small airways and pulmonary-function tests. N 
Engl J Med. (1978) 298:1277–81. doi: 10.1056/NEJM197806082982303

 23. Farah CS, King GG, Brown NJ, Downie SR, Kermode JA, Hardaker KM, et al. The 
role of the small airways in the clinical expression of asthma in adults. J Allergy Clin 
Immunol. (2012) 129:381–387.e1. doi: 10.1016/j.jaci.2011.11.017

 24. Kjellberg S, Houltz BK, Zetterström O, Robinson PD, Gustafsson PM. Clinical 
characteristics of adult asthma associated with small airway dysfunction. Respir Med. 
(2016) 117:92–102. doi: 10.1016/j.rmed.2016.05.028

 25. Bao W, Zhang X, Yin J, Han L, Huang Z, Bao L, et al. Small-airway function 
variables in spirometry, fractional exhaled nitric oxide, and circulating eosinophils 
predicted airway hyperresponsiveness in patients with mild asthma. J Asthma Allergy. 
(2021) 14:415–26. doi: 10.2147/JAA.S295345

 26. Yi L, Zhao Y, Guo Z, Li Q, Zhang G, Tian X, et al. The role of small airway function 
parameters in preschool asthmatic children. BMC Pulm Med. (2023) 23:219. doi: 
10.1186/s12890-023-02515-3

 27. Malerba M, Radaeli A, Olivini A, Damiani G, Ragnoli B, Sorbello V, et al. 
Association of FEF25-75% impairment with bronchial hyperresponsiveness and airway 
inflammation in subjects with asthma-like symptoms. Respiration. (2016) 91:206–14. 
doi: 10.1159/000443797

 28. Sposato B, Scalese M, Migliorini MG, Di Tomassi M, Scala R. Small airway 
impairment and bronchial hyperresponsiveness in asthma onset. Allergy, Asthma 
Immunol Res. (2014) 6:242–51. doi: 10.4168/aair.2014.6.3.242

 29. Peled M, Ovadya D, Cohn J, Seluk L, Pullerits T, Segel MJ, et al. Baseline 
spirometry parameters as predictors of airway hyperreactivity in adults with suspected 
asthma. BMC Pulm Med. (2021) 21:153. doi: 10.1186/s12890-021-01506-6

 30. Matsunaga K, Kanda M, Hayata A, Yanagisawa S, Ichikawa T, Akamatsu K, et al. 
Peak expiratory flow variability adjusted by forced expiratory volume in one second is 
a good index for airway responsiveness in asthmatics. Intern Med. (2008) 47:1107–12. 
doi: 10.2169/internalmedicine.47.0855

 31. Yang Y, Kimura H, Yokota I, Makita H, Takimoto-Sato M, Matsumoto-Sasaki M, 
et al. Applicable predictive factors extracted from peak flow trajectory for the prediction 
of asthma exacerbation. Ann Allergy Asthma Immunol. (2024) 132:469–76. doi: 
10.1016/j.anai.2023.11.015

 32. Chen X, Han P, Kong Y, Shen K. The relationship between changes in peak 
expiratory flow and asthma exacerbations in asthmatic children. BMC Pediatr. (2024) 
24:284. doi: 10.1186/s12887-024-04754-7

 33. Douma W. R., Kerstjens H. A., Roos C. M., Koeter G. H., Postma D. S. Changes in 
peak expiratory flow indices as a proxy for changes in bronchial hyperresponsiveness. 
Dutch Chronic Non-Specific Lung Disease study group. Eur Respir J (2000) 16:220–225. 
doi: 10.1034/j.1399-3003.2000.16b07.x

 34. Ahmed A, Brown A, Pollack Y, Vazhappilly J, Perry C, Thomas ER, et al. 
Relationship between FEV1/FVC and age in children with asthma. Pediatr Pulmonol. 
(2024) 59:1402–9. doi: 10.1002/ppul.26927

 35. Mingotti C, Sarinho J, Stanigher K, Silva J, Roquette E, Marchi E, et al. Evaluating 
the FEV1/FVC ratio in the lower range of normality as a marker of worse clinical 
outcomes in asthmatic subjects without airway obstruction. Respir Med. (2020) 
162:105880. doi: 10.1016/j.rmed.2020.105880

https://doi.org/10.3389/fmed.2025.1611683
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://pmc.ncbi.nlm.nih.gov/articles/PMC11482852/
https://doi.org/10.2196/65197
https://doi.org/10.1016/S0140-6736(19)31147-X
https://doi.org/10.1186/s12890-017-0409-3
https://doi.org/10.1080/02770903.2021.2018701
https://doi.org/10.1016/0091-6749(89)90441-7
https://doi.org/10.3389/fphys.2012.00460
https://doi.org/10.1055/s-0037-1606219
https://doi.org/10.1183/13993003.01526-2016
https://doi.org/10.1186/s12931-016-0470-0
https://doi.org/10.1080/02770903.2022.2082308
https://doi.org/10.1183/09031936.00138707
https://doi.org/10.1183/13993003.00588-2019
https://doi.org/10.2147/JAA.S318502
https://doi.org/10.1080/17476348.2019.1674649
https://doi.org/10.1016/j.jaci.2015.10.029
https://doi.org/10.2147/JAA.S312361
https://doi.org/10.3402/ecrj.v1.25898
https://doi.org/10.1016/S2213-2600(19)30049-9
https://doi.org/10.1016/j.rmed.2016.05.006
https://doi.org/10.1164/ajrccm/148.5.1220
https://doi.org/10.1056/NEJM197806082982303
https://doi.org/10.1016/j.jaci.2011.11.017
https://doi.org/10.1016/j.rmed.2016.05.028
https://doi.org/10.2147/JAA.S295345
https://doi.org/10.1186/s12890-023-02515-3
https://doi.org/10.1159/000443797
https://doi.org/10.4168/aair.2014.6.3.242
https://doi.org/10.1186/s12890-021-01506-6
https://doi.org/10.2169/internalmedicine.47.0855
https://doi.org/10.1016/j.anai.2023.11.015
https://doi.org/10.1186/s12887-024-04754-7
https://doi.org/10.1034/j.1399-3003.2000.16b07.x
https://doi.org/10.1002/ppul.26927
https://doi.org/10.1016/j.rmed.2020.105880

	Innovative machine learning-based prediction of early airway hyperresponsiveness using baseline pulmonary function parameters
	1 Introduction
	2 Materials and methods
	2.1 Study subjects
	2.1.1 Inclusion criteria
	2.1.2 Exclusion criteria
	2.2 Research methods
	2.2.1 Data collection
	2.2.1.1 Basic information
	2.2.1.2 Routine pulmonary function parameters
	2.2.1.3 Imaging examination
	2.2.2 Data cleaning and standardization
	2.2.2.1 Data inspection, cleaning and standardization
	2.2.2.2 Missing data handling
	2.2.3 Statistical methods

	3 Results
	3.1 Patient recruitment and baseline profile
	3.1.1 Screening and enrollment process
	3.1.2 Baseline characteristics
	3.2 Model development
	3.2.1 Dimensionality reduction
	3.2.2 Development of four predictive models
	3.2.3 Nomogram-based diagnostic prediction model
	3.2.4 Model performance evaluation
	3.2.4.1 Calibration evaluation
	3.2.4.2 NRI index calculation
	3.2.4.3 IDI index calculation
	3.2.4.4 DCA

	4 Discussion
	5 Conclusion

	References

