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Background: Chronic obstructive pulmonary disease (COPD) is a chronic 
respiratory disease. However, the biological role of mitochondrial metabolism 
(MM) in COPD remains poorly understood. This study aimed to explore the 
underlying mechanisms of MM in COPD using bioinformatics methods.
Methods: The datasets GSE57148 and GSE8581 were downloaded from Gene 
Expression Omnibus (GEO), and 1,234 mitochondrial metabolism-related 
genes (MM-RGs) were downloaded from the literature. In GSE57148 dataset, 
differentially expressed genes (DEGs) were determined. The intersection of 
DEGs and MM-RGs was taken to obtain candidate genes. Protein–protein 
interaction (PPI) network was used to obtained candidate key genes. Machine 
learning was employed to detect key genes. The biomarkers were identified 
through expression validation and receiver operating characteristic (ROC) 
curves. Subsequently, a nomogram was developed to forecast the likelihood 
of developing COPD. In addition, functional enrichment analysis, immune 
infiltration, molecular regulatory network, and drug prediction were carried out. 
Finally, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) 
and immunohistochemistry analysis were used to verify DEGs of lung tissues of 
COPD patients and controls.
Results: Adenine phosphoribosyltransferase (APRT) and lecithin-cholesterol 
acyltransferase (LCAT) were identified as potential biomarkers. Subsequently, 
a nomogram was formulated based on these two biomarkers, revealing their 
significant diagnostic potential. Pathways co-enriched by two biomarkers 
included ribosome, among others. Immune infiltration analysis showed that 15 
types of immune cells were differential immune cells. APRT predicted a total of 
30 miRNAs and LCAT predicted a total of 17 miRNAs. APRT was predicted to be 
targeted by 30 microRNAs (miRNAs), while LCAT was associated with 17 miRNAs. 
Additionally, 178 transcription factors (TFs) were predicted to regulate APRT, and 
86 TFs were predicted for LCAT. TFs shared by both biomarkers include SPI1, 
CTCF and BCL3, etc. Finally, drug prediction analysis found a total of 114 target 
drugs for APRT and 156 target drugs for LCAT. The mRNA and protein expression 
of APRT and LCAT were significantly decreased in COPD patients’ lung tissues.
Conclusion: APRT and LCAT were identified as biomarkers for COPD, and 
this provides deeper understanding into the mechanisms behind COPD and 
identifies potential markers for early diagnosis and therapeutic intervention.
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1 Introduction

Chronic obstructive pulmonary disease (COPD), the third leading 
cause of death globally, is a chronic respiratory disease with incomplete 
reversible and progressive airflow restriction (1, 2). COPD is not only a 
serious threat to human health, but also brings a heavy burden to the 
medical system and social and economic development because of its high 
incidence, disability rate, and repeated acute exacerbations (1, 2). The 
main symptoms of COPD are cough, sputum, shortness of breath, chest 
tightness and decreased activity tolerance, and the critical pathological 
features were small airway remodeling, emphysema, and airway 
inflammation (3). Current treatments of COPD include bronchodilators, 
oxygen therapy, respiratory training and rehabilitation, and surgery, 
which aims to control symptoms and reduce the frequency and severity 
of acute exacerbations (4). Although recent clinical and translational 
studies focusing on COPD, its etiology and pathogenesis were not fully 
elucidated (5). Therefore, excavating new biomarkers and exploring the 
molecular mechanism of COPD are of great significance for exploring 
targeted treatment strategies and improving patient prognosis.

Mitochondria are double-membraned organelles found in most 
eukaryotic cells and are deeply involved in metabolism, cell growth, 
and cell death (6). They serve as the primary intracellular sites for 
aerobic respiration, converting nutrients such as carbohydrates, fats, 
and amino acids into adenosine triphosphate (ATP) through oxidative 
phosphorylation, thereby supplying the essential energy currency 
required to power diverse cellular activities (7). Mitochondrial 
metabolism (MM) refers to the bioenergetic processes encompassing 
both energy production and utilization carried out by mitochondria 
within cells, including reactive oxygen species (ROS) oxidative 
phosphorylation (OXPHOS), ATP, and so on (8, 9). Furthermore, 
emerging evidences indicated that MM activities critically modulate 
cellular redox homeostasis and participate in maintaining intracellular 
equilibrium, with their functional integrity being mechanistically 
linked to diseases and aging processes (8, 10). For instance, an 
investigation focusing on pancreatic ductal adenocarcinoma (PDA) 
showed that pancreatic cells expressing oncogenic Kras had higher 
level of 4HNE (4-Hydroxy-2-nonenal), a marker for mitochondrial 
oxidative stress, and Mito-Q, the mitochondria-targeted antioxidant, 
could reduce Kras-caused formation of pancreatic abnormal 
structures in mice (11). Furthermore, disruption of mitochondrial 
function due to deficiency of the mitochondrial transcription factor 
A (TFAM) gene could decrease tumorigenesis in an oncogenic Kras-
driven mouse model of lung cancer (12). These evidences suggested 
that MM and mitochondrial ROS generation are critical to 
tumorigenesis (11, 12).

Recently, increasing attention have been given to the role of MM 
in the occurrence and development of COPD by scholars. 
Mitochondrial impairment in airway epithelium was observed in 
COPD animal models (13). Notably, cigarette smoke extract (CSE)-
exposed airway epithelial cells demonstrated downregulation of 
Sirtuin 3 (Sirt3), a mitochondrial-localized deacetylase critical for 
mitochondrial functional regulation, accompanied by dose-dependent 
attenuation of the antioxidant enzyme manganese superoxide 

dismutase (MnSOD) (13). Moreover, previous studies have indicated 
that prolonged CSE exposure in airway epithelium upregulate the 
expression of mitochondrial fission and fusion proteins, dysregulate 
the OXPHOS system, and enhance mitochondrial oxidative stress 
responses (14). Moreover， compared to smoker controls, airway 
epithelial cells from COPD patients exhibited elevated mitochondrial 
oxidative stress markers (14). These results showed that MM was 
deeply involved in both the pathogenesis and progression of 
COPD. However, current evidence remains limited to correlational 
studies delineating MM involvement in occurrence and development 
of COPD. Consequently, identifying MM-associated biomarkers in 
COPD and systematically investigating MM regulatory mechanisms 
hold critical significance for elucidating the pathogenic mechanisms 
underlying COPD development, as well as advancing novel 
therapeutic strategies targeting mitochondrial dysfunction.

This study (Figure 1) established a multidimensional analytical 
framework leveraging COPD transcriptomic data from publicly 
available databases. Machine learning algorithms were employed to 
identify pivotal genes, followed by integrative analysis of training and 
validation cohorts to discern COPD-associated biomarkers. Systems 
biology approaches were subsequently performed to characterize 
biomarker-enriched biological pathways, delineate immune cell 
infiltration patterns, construct molecular regulatory networks, and 
prioritize potential therapeutic agents. Lastly, experimental validation 
using COPD patient-derived lung tissue specimens was conducted. 
This investigation provides novel mechanistic insights for COPD 
diagnosis, evaluation, and management.

2 Materials and methods

2.1 Data source

The Gene Expression Omnibus (GEO) database1 was employed for 
obtain transcriptomic data from COPD. Specifically, GSE57148 
(GPL11154) contained 184 lung tissue samples, including 95 COPD 
patient’s lung tissue samples and 89 normal lung tissue samples (control 
samples) (15). In addition, GSE8581 dataset (GPL570) includes 35 lung 
tissue samples, comprising 16 from COPD patient’s lung tissueand 19 
from control lung tissue (16). The database was accessed on December 9. 
A total of 1,234 mitochondrial metabolism-related genes (MM-RGs) were 
retrieved from previously published literature (17).

2.2 Identification and analysis of candidate 
genes

Principal component analysis (PCA) was performed on the 
GSE57148 dataset (COPD vs. control) using the prcomp function 

1  https://www.ncbi.nlm.nih.gov/geo/
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from the “stats” package (v 4.2.2) (18) to identify and remove outlier 
samples. The “scatterplot3d” package (v 0.3.42) (19) was used to 
visualize clustering of different sample groups. Differentially 
expressed genes (DEGs) were obtained in GSE57148 dataset (COPD 
vs. control) using the “DESeq2” (v 1.38.0) (20) with p < 0.05 and 
|log2fold change (FC)| > 0.5 as criteria. A volcano plot and a 
heatmap were generated using the R packages “ggplot2” (v 3.4.3) 
(21) and the “ComplexHeatmap” (v 2.14.0) (22), respectively, to 
visualize the top 10 upregulated and downregulated genes, ranked 
by their log2 fold change (log2FC) values. The intersection of DEGs 
and MM-RGs was used to identify candidate genes using the 
“VennDiagram” (v 1.7.3) (23). Finally, Gene Ontology (GO) and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were 
conducted using the R package “clusterProfiler” (v 4.7.1.003) (24)
(p < 0.05). The STRING2 was utilized for protein–protein interaction 
(PPI) network construction. The threshold was an interaction score 
≥0.4. Results were visualized using the Cytoscape software (v 3.10.2) 
(25). To find the candidate key genes, a total of 3 algorithms (Stress, 
Bottleneck, and Betweenness) of CytoHubba plugin in Cytoscape 
software (v 3.10.2) were used to assess the importance of each 

2  http://www.string-db.org/

FIGURE 1

The flowchart of the experiment. GEO, gene expression omnibus; DEGs, differentially expressed genes; MMRGs, mitochondrial metabolism related 
genes; PPI, protein–protein interaction; ROC, receiver operating characteristic; GSEA, gene set enrichment analysis; HE, hematoxylin–eosin; qRT-PCR, 
quantitative real-time polymerase chain reaction.
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candidate gene, and the candidate gene with top  10 of each 
algorithm were selected and visualized. The intersection of the 
top  10 candidate genes from three different algorithms were 
obtained as candidate key genes using the R package “UpSet” (v 
1.4.0) (26).

2.3 Identification of biomarkers

Machine learning was employed to identify the key genes. First, 
in GSE57148 dataset, based on candidate key genes, the support vector 
machine–recursive feature elimination (SVM-RFE) algorithm was 
constructed using the R package “caret” (v 6.0–93) (27) for svmRadial 
function to identity SVM-RFE-genes, and a 10-fold cross validation 
was performed. Second, in GSE57148 dataset, based on candidate key 
genes, the Boruta algorithm was built using the “Boruta” (v 8.0.0) (28) 
to identity Boruta genes. Finally, the key genes were identified by 
intersecting SVM-RFE genes and Boruta genes using R package 
“ggVennDiagram” (v 1.2.2) (29). The R package “pROC” (v 1.18.0) 
(30) was employed to plot receiver operating characteristic (ROC) 
curves in GSE57148 and GSE8581 datasets to assess the capacity of 
key genes to distinguish between COPD and control samples, with 
area under curve (AUC) values being computed. The key genes 
exhibiting an AUC value above 0.70 under the ROC curve in both the 
GSE57148 and GSE8581 datasets were identified as candidate 
biomarkers. In addition, Wilcoxon was utilized to compare the levels 
of expression of candidate biomarkers between COPD and control 
samples in GSE57148 and GSE8581 datasets (p < 0.05). The candidate 
biomarkers that exhibited consistent expression patterns and 
statistically significant differences among GSE57148 and GSE8581 
datasets were identified as biomarkers. A boxplot was then created 
using the R package “ggplot2” (v 3.4.3) to show results. A nomogram 
was developed utilizing the biomarkers in GSE57148, employing the 
R package “rms” (v 6.5.0) (31). In GSE57148, the calibration curves of 
the nomogram were employed to assess its predictive accuracy using 
the “ResourceSelection” (v 0.3.5) (32) (p > 0.05). The ROC curve for 
the nomogram was generated utilizing the “pROC” (v 1.18.0), and the 
AUC value was used to evaluate its capacity for accurate diagnosis for 
COPD, with an AUC > 0.7 indicating good performance. The 
reliability of the nomogram was evaluated through decision curve 
analysis using the “rmda” (v 1.6) (33).

2.4 Functional analysis of biomarkers

To examine the chromosomal localization of biomarkers, the 
R package “RCircos” (v 1.2.2) (34) was used to visualize their 
location on chromosomes. GSEA analysis was carried out. First, 
the Spearman correlation coefficient between each biomarker and 
other genes was computed using the “psych” (v 2.2.9) (35). The 
correlations between the biomarkers and other genes were then 
ranked in descending order determined based on their correlation 
coefficients. Subsequently, the c2.kegg.v7.4.symbols gene set was 
acquired from Molecular Signatures Database (MSigDB)3 to serve 

3  http://www.broadinstitute.org/msigdb

as the background gene sets (v 7.5.1) (36). Finally, the 
“clusterProfiler” (v 4.7.1.003) (24) was used for GSEA pathway 
enrichment analysis of biomarker (normalized enrichment score 
(NES)| > 1, FDR < 0.25, p < 0.05). The “enrichplot” (v 1.18.3) (37) 
was employed to visualize the top 10 results by p value.

2.5 Immune infiltration

First, the immune abundance of 28 immune cells (38) in 
GSE57148 between COPD and control samples was determined 
using the “GSVA” (v 1.46.0) (39) ssGSEA algorithm. The 
“pheatmap” package (v 1.0.12) (40) was used to visualize the 
distribution of enrichment scores of 28 immune infiltrating cells. 
The Wilcoxon test was used to assess differences in immune cell 
infiltration between the two groups, and the differential immune 
cells were identified as differential immune cells (p < 0.05), with 
visualizations created using the “ggplot2” (v 3.4.3) to construct 
boxplot. Subsequently, Spearman correlation analysis was 
performed using the ‘psych’ package (v2.2.9) to evaluate 
associations among the differential immune cells, with 
correlations considered significant at |correlation coefficient 
(cor)| > 0.3 and p < 0.05. Correlation heatmaps were created 
using the “ggplot2” (v 3.4.3). Spearman correlation analysis was 
conducted between the differential immune cells and the 
identified biomarkers under the same thresholds (|cor| > 0.3 and 
p < 0.05), and the results were also visualized using correlation 
heatmaps in “ggplot2”.

2.6 Establishment of the network

The miRNAs associated with biomarkers were predicted using 
miRWalk4 and mirDIP.5 The intersecting miRNAs from both databases 
were identified using the “VennDiagram” package (v 1.7.3). The 
Cytoscape software (v 3.10.2) was utilized for visualization purposes. 
Transcriptional regulation is a crucial aspect of gene expression 
control, wherein transcription factors (TFs) exercise their regulatory 
function by binding to specific nucleotide sequences located upstream 
of a gene’s promoter region. The hTFtarget database6 was used to 
predict transcription factors (TFs) associated with the biomarkers, 
and a graphical network representation of TF–mRNA interactions was 
constructed using Cytoscape software (v 3.10.2).

2.7 Drug prediction and molecular docking

To identify potential therapeutic drugs associated with 
biomarkers, the Comparative Toxicogenomics Database7 was 
employed to forecast potential medications that interact with the 
biomarkers. Drugs were ranked from the highest to the lowest 
interaction score, and the top 5 drugs with the highest interaction 

4  http://mirwalk.umm.uni-heidelberg.de/

5  https://ophid.utoronto.ca/mirDIP

6  http://bioinfo.life.hust.edu.cn/hTFtarget/

7  http://ctdbase.org/
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scores for each biomarker were displayed. Molecular docking was 
performed using the top-scoring drugs and their corresponding 
biomarkers. First, the 3D structures of the target proteins (biomarkers) 
were downloaded from AlphaFold.8 Next, the 3D structures of the 
molecular ligands (key active ingredients) were obtained from 
PubChem.9 Docking simulations were then carried out using the 
CB-Dock2 platform.10

2.8 Subjects

According to the diagnostic criteria of the 2023 revision of the 
Global Initiative for Chronic Obstructive Pulmonary Disease 
(GOLD), the patients were divided into COPD group and normal lung 
function control group. Selection criteria were as follows: patients who 
underwent lobectomy due to pulmonary nodules; pulmonary function 
index tests and mMRC (modified British medical research council) 
tests were performed preoperatively; patients could provide detailed 
medical history, such as smoking history and history of comorbidities. 
The pathological examination of the resection margin confirmed the 
absence of concurrent tumors. The exclusion criteria were as follows: 
age under 18 years old; presence of chronic respiratory diseases such 
as asthma, bronchiectasis, interstitial lung disease; presence of chronic 
infectious diseases, such as chronic viral hepatitis, tuberculosis; 
undergoing chemotherapy, radiotherapy, theophylline, anticholinergic 
drugs, adrenal cortex hormone, catecholamine, and beta blockers, 
which could affect lung function in 3 months; presence of an 
autoimmune system disease, such as systemic lupus erythematosus 
(SLE) and rheumatoid arthritis; presence of other systemic chronic 
uncontrolled diseases such as hypertension, diabetes, coronary heart 
disease, severe liver and kidney impairment, neurological disorders 
and so on.

Pulmonary tissue specimens were obtained through post-surgical 
collection following lung resection procedures from five individuals 
diagnosed with COPD and five normal lung function individuals as 
controls at the Second Affiliated Hospital of Nanchang University. 
One portion of the lung tissue was fixed in 4% paraformaldehyde for 
paraffin-embedding, while the other portion was snap-frozen in liquid 
nitrogen for subsequent RNA extraction. Subject characteristics were 
presented in Table 1. The study was performed in accordance with the 
Declaration of Helsinki, and was approved by the Ethics Committee 
of the Second Affiliated Hospital of Nanchang University. All patients 
provided written informed consent.

2.9 Histological staining, reverse 
transcription-quantitative polymerase 
chain reaction (RT-qPCR) and 
immunohistochemistry analysis

Hematoxylin–eosin (HE) staining was used to observe the 
morphological changes of lung tissues. Transparent tissue sections 
were prepared from wax blocks using a paraffin microtome (RM2235, 

8  https://www.wwpdb.org/

9  https://pubchem.ncbi.nlm.nih.gov/

10  http://cao.labshare.cn/cb-dock/

Leica, Wetzlar, Germany). And, these sections were dewaxed, 
hydrated, and stained with HE. Finally, the stained samples were 
observed under an optical microscope (DP80, Olympus, Tokyo, 
Japan). The images were analyzed under 200-fold magnification, and 
three visual fields were randomly selected for analysis per sample. Five 
alveoli cross-sectional areas (CSA) in one field were measured to 
calculate the average CSA of this field. The average of the three fields 
was considered as the CSA of this specimen.

RT-qPCR was utilized for confirm the expression levels of the 
biomarkers of lung tissues. Extraction of total RNA was carried out 
from 10 samples using Trizol (Ambion, Austin, USA), adhering 
strictly to the manufacturer’s instructions. The total RNA was 
transcribed into cDNA utilizing the SurescriptTM First-strand cDNA 
Synthesis Kit (Servicebio, Wuhan, China), in accordance with the 
manufacturer’s protocol. QPCR was carried out with the 2X Universal 
Blue SYBR Green qPCR Master Mix (Servicebio, Wuhan, China). The 
relative expression of mRNA was calculated by 2 − △△CT. Primer 
sequences for adenine phosphoribosyltransferase (APRT) were F: 
5′-ATCGACTACATCGCAGGTCTG-3; R: 5′-GCCTTCCCATAC 
TCTAGAGAATAG-3′. Primer sequences for and lecithin-cholesterol 
acyltransferase (LCAT) were F: 5′-ACCTGGTCAACAATGGCT 
ACG-3′; R: 5′-ACCTGGTCAACAATGGCTACG-3′. Primer 
sequences for GAPDH were F: 5′-CAAGGTCATCCATGACAACT 
TTG-3′; R: 5′-GTCCACCACCCTGTTGCTGTAG-3′. Finally, the 
PCR results were imported into GraphPad for statistical 
analysisand plotting.

Transparent tissue sections were prepared from wax blocks, and 
dewaxed, hydrated, blocked. Primary antibodies against APRT 
(abcam ab196558, 1:200) and LCAT (abcam ab109417, 1:200) were 
applied overnight at 4°C, with species-matched secondary antibodies 
and 3,3’-Diaminobenzidine Tetrahydrochloride (DAB) chromogen 
detection. Slides were counterstained with hematoxylin, dehydrated, 
and mounted. Protein expression was semi-quantitatively analyzed 
using ImageJ software.

TABLE 1  Subject characteristics.

Item Control group COPD group

Total of subjects (n) 5 5

Sex [male, n (%)] 4 (80) 4 (80)

Age (year, mean ± SD) 40.55 ± 9.70 47.36 ± 10.52

Smoking index (pack years, 

mean ± SD)

27.63 ± 15.38 35.73 ± 16.70

Disease constitution carcinoma, 

n (%)

3 (75) 4 (80)

FEV1 (L, mean ± SD) 2.37 ± 0.89 1.81 ± 0.56*

FVC (L, mean ± SD) 2.99 ± 0.74 3.11 ± 0.63

FVC% pred (mean ± SD) 82.74 ± 7.26 79.25 ± 6.31

FEV1/FVC (mean ± SD) 79.21 ± 8.78 60.23 ± 9.14*

FEV1%pred (mean ± SD) 90.42 ± 11.77 63.59 ± 14.43*

Frequency of AE (times/year, 

mean ± SD)

1.58 ± 0.72* 0

mMRC (mean ± SD) 0 1.40 ± 0.55*

COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory volume in the first 
second; FVC, forced vital capacity; AE, acute exacerbation. mMRC, modified british medical 
research council. *p < 0.05 vs. control group.
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2.10 Statistical analysis

Statistical analyses were conducted using R software (v 4.2.2), with 
the Wilcoxon employed to assess differences among groups. For CSA, 
RT-qPCR and immunohistochemistry analysis comparisons, the t-test 
was used. p value less than 0.05 were considered as significant.

3 Results

3.1 Identification and enrichment of 
candidate genes

The PCA results show that the COPD and control groups sample 
had good clustering and no outlier samples (Figure 2A). A total of 3,077 
DEGs were determined in GSE57148, including 1,967 up regulated and 
1,110 down regulated genes (Figures 2B,C). The DEGs and MM-RGs 
were selected to be intersected, and 52 candidate genes were detected 
(Figure 2D). A total of 583 Gene Ontology (GO) biological functions 
were determined, including 453 biological processes (BP), 26 cellular 
components (CC), and 104 molecular functions (MF) (p < 0.05) 
(Figure 2E; Supplementary Table 2). In BP, these candidate genes were 
primarily associated with phospholipid metabolic process, lipid 
catabolic process, glycerolipid metabolic process, glycerophospholipid 
metabolic process, and fatty acid metabolic process; In CC, these 
candidate genes were mainly involved in mitochondrial inner 
membrane, inner mitochondrial membrane protein complex, 
mitochondrial protein-containing complex, early endosome and 
mitochondrial matrix. In MF, these candidate genes were mainly 
involved in phospholipase activity, lipase activity, carboxylic ester 
hydrolase activity, oxidoreductase activity acting on paired donors, with 
incorporation or reduction of molecular oxygen and electron transfer 
activity. KEGG identified a total of 36 enriched functional pathways, 
specifically: glycerophospholipid metabolism, ether lipid metabolism, 
cholesterol metabolism, arachidonic acid metabolism, alpha-Linolenic 
acid metabolism, linoleic acid metabolism, steroid hormone 
biosynthesis, chemical carcinogenesis  - reactive oxygen species, 
Parkinson disease, and Alzheimer disease (p < 0.05) (Figure  2F; 
Supplementary Table  3). The PPI network was built utilizing the 
candidate genes, comprising 74 interactions among 42 proteins, and 
there were 10 proteins that do not interact with other proteins. Notably, 
the TMEM86B, APOA2, and GDPD3 protein interacts with most of the 
proteins in the network (Interaction score ≥ 0.4) (Figure 2G). The 
top 10 candidate genes for each algorithm were obtained using three 
algorithms from the cytoHubba plugin (Figure  2H), through the 
overlap of derived from various algorithms, and a total of 9 key genes 
were identified (Figure 2I; Supplementary Tables 4–6).

3.2 APRT and LCAT as biomarkers

A total of 3 SVM-RFE-genes (APRT, LCAT, and PTGS2) were 
acquired from GSE57148 dataset (Figure 2A). The Boruta algorithm 
identified 4 Boruta genes from GSE57148—PTGS2, LCAT, ABCB11, 
and APRT (Figure 3B). Then, by overlapping SVM-RFE-feature genes 
and Boruta-feature genes, APRT, LCAT, and PTGS2 were identified as 
key genes (Figure 3C). Subsequently, ROC curves were plotted for 
these three key genes in both GSE57148 and GSE8581 datasets, the 

objective of plotting these curves was to evaluate their capacity to 
differentiate between COPD and control samples. Notably, the AUC 
values for APRT and LCAT exceeded 0.7 in GSE57148 and GSE8581 
datasets; therefore, a total of two candidate biomarkers were obtained 
(Figure 3D). In the GSE57148 and GSE8581 datasets, validation of the 
expression levels for the two candidate biomarkers was carried out. The 
findings indicated that both candidate biomarkers exhibited notably 
decreased expression in the COPD group, with consistent expression 
trends observed across both datasets (p < 0.05). Therefore, the APRT 
and LCAT were selected as biomarkers for this study (Figure 3E).

3.3 Constructing a model with exceptional 
diagnostic capability for COPD

Subsequently, in the GSE57148 dataset, these 2 biomarkers were 
integrated into a nomogram to harness their combined diagnostic 
strengths for COPD. Higher total scores in the nomogram indicated an 
increased risk of COPD development (Figure 4A). The good consistency 
of the calibration curve to the ideal curve indicated that the nomogram 
was more accurate (p = 0.416) (Figure 4B). In ROC curve, the AUC value 
was 0.841; thus, the ROC curve indicated that the nomogram performed 
well clinical utility (Figure  4C). The DCA curve shows that the 
nomogram (model) demonstrated markedly elevated performance 
compared to the diagonal line (All) and the horizontal line (None). These 
results showed that the nomogram demonstrated favorable clinical net 
benefits, suggesting its strong clinical applicability (Figure 4D).

3.4 Chromosomal localization and GSEA 
for biomarkers

Chromosome localization analysis of biomarkers showed that 
APRT and LCAT were all on chromosome 16 (Figure 5A). The GSEA 
results showed that APRT enriched 97 functional pathways, among 
which the top 10 results were ribosome, oxidative phosphorylation, 
Parkinson’s disease, Huntington’s disease, Alzheimer’s disease, focal 
adhesion, pathways in cancer, proteasome, regulation of actin 
cytoskeleton and glutathione metabolism (Figure  5B; 
Supplementary Table 7). LCAT was enriched for a total of 74 functional 
pathways, of which the top  10 results were ribosome, oxidative 
phosphorylation, Parkinson’s disease, pathways in cancer, Huntington’s 
disease, Jak–STAT signaling pathway, T cell receptor signaling 
pathway, apoptosis, chemokine signaling pathway and ubiquitin 
mediated proteolysis (p < 0.05) (Figure 5C; Supplementary Table 8). 
Understanding the enrichment of LCAT in these pathways can provide 
insights into its potential roles and interactions within the cell.

3.5 A total of 15 differential immune cells

Immune cell infiltration analysis was performed in GSE57148 
to obtain 28 immune cells infiltration score between two groups 
(Figure  6A). A comparison was subsequently conducted to 
examine the differences in immune cell infiltration between the 
two groups, and the 15 immune cells were used as differential 
immune cells (p < 0.05) including activated CD4 T cell, etc. 
(Figure  6B). The correlation analysis between differential 
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FIGURE 2

Identification and enrichment of candidate genes. (A) The principal component analysis of two group. (B) The volcano map of differentially expressed 
genes (DEGs). (C) The heatmap of DEGs. (D) Venn diagram of DEGs and mitochondrial metabolism related genes (MMRGs). (E) Candidate gene GO 
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immune cells and differential immune cells unveiled a remarkable 
positive association between plasmacytoid dendritic cell and 
neutrophil (cor = 0.83, p < 0.001), and the strongest negative 
correlation was effector memory CD4 T cell and CD56dim 
natural killer cell (cor = − 0.37, p < 0.001) (Figure  6C; 
Supplementary Table  9). The correlation analysis between 
differential immune cells and biomarkers were a remarkable 
positive association between LCAT and CD56dim natural killer 
cell (cor = 0.49, p < 0.05); the strongest positive correlation was 
between APRT and CD56dim natural killer cell (cor = 0.44, 
p < 0.05). However, the strongest negative correlation was 
between LCAT and Type 2 T helper cell (cor = − 0.64, p < 0.05), 
and the most significant negative correlation was between APRT 
and Central memory CD8 T cell (cor = − 0.49, p < 0.05) 
(Figure 6D). These correlations provide initial insights into the 
potential interactions between LCAT, APRT, and specific immune 
cell subsets. Functional studies could be performed to determine 
whether LCAT and APRT directly affect the proliferation, 
differentiation, or function of these immune cells.

3.6 Regulatory networks for biomarkers

Firstly, in the miRNA–mRNA network, there were two biomarkers 
and 47 miRNAs. A total of 30 miRNA were predicted to be regulated 
by APRT, and a total of 17 miRNA were predicted to be regulated by 
LCAT; the miRNAs shared by two biomarkers were hsa-miR-4474-3p 
(Figure 7A; Supplementary Table 10). In addition, the TF-mRNA 
network was constructed. APRT and LCAT obtained 178 TFs and 86 
TFs of acting on biomarkers, respectively. Notably, SPI1, CTCF, and 
BCL3 were co-regulated by APRT and LCAT, etc. (Figure  7B; 
Supplementary Table 11).

3.7 A total of 270 potential drugs

A total of 270 target drugs were identified for the two biomarkers 
through database screening. Both biomarkers were predicted to 
interact with 47 common drugs, including bisphenol A, 
tetrachlorodibenzodioxin, perfluorooctane sulfonic acid, and sodium 
arsenite, among others (Supplementary Tables 12, 13).

The molecular docking results showed that the bisphenol A was 
selected and two biomarkers for molecular docking analysis, 
respectively. The binding energy between APRT and bisphenol A was 
−6.6 kcal/mol, while the binding energy between LCAT and bisphenol 
A was −7.2 kcal/mol (Supplementary Table 14). Molecular docking 
conformation of APRT interaction with bisphenol A is shown in 
Figure 8A. Molecular docking conformation of LCAT interaction with 
bisphenol A was display in Figure 8B.

3.8 The verification of APRT and LCAT in 
lung tissues

As presented in Table  1, there were no significant difference 
between the two groups regarding to sex, age, smoking index, and 
composition of diseases. Compared to the control group, lung 
function index in the COPD group was significantly declined 
(p < 0.05). Also, typical emphysema changes were found in the lung 
tissues of COPD patients and the alveolar CSA in the COPD patients 
was significantly larger than the control patients (p < 0.05, Figure 9A). 
The mRNA expression of APRT and LCAT was significantly decreased 
in COPD lung tissue (p < 0.05, Figure 9B). The protein expression of 
APRT and LCAT was also significantly decreased in COPD lung 
tissues (p < 0.05, Figures 9C,D).

4 Discussion

COPD is a common and frequently occurring disease of the 
respiratory system, with both its incidence and mortality rates 
exhibiting a steady annual increase worldwide (1, 4). The pathogenesis 
of COPD involves multiple factors that act in concert, underpinning 
the complexity of the disease (3). Mitochondrial metabolism serves as 
the central hub for cellular energy supply and metabolic 
transformation, and it has been implicated in a wide array of human 
diseases (41, 42). For instance, the pathological mechanisms of COPD 
were attributed to aberrant mitochondrial characteristics and 
mitochondrial dysfunction (43, 44). However, the specific mechanistic 
role of MM in the pathogenesis of COPD remains to be fully elucidated.

Therefore, this study systematically identified and validated 
MM-related key genes in COPD through public databases and clinical 
lung tissue specimens. First, differential expression analysis of the two 
groups in the training set revealed 3,077 DEGs. Subsequent 
intersection with MM-RGs yielded 52 candidate genes, which were 
further explored for their functional annotations and signaling 
pathways. Next, nine hub genes were identified from these 52 
candidates via PPI network analysis, combined with machine learning 
algorithms (SVM-RFE and Boruta). By integrating data from the 
training and validation sets, ROC curve analysis and expression 
validation pinpointed two biomarkers, APRT and LCAT. A diagnostic 
nomogram based on these biomarkers demonstrated robust predictive 
performance. Further analyses included chromosomal localization, 
GSEA, to uncover enriched pathways, differential expression levels in 
immune cell populations, and the construction of miRNA-mRNA and 
TF-mRNA regulatory networks at the molecular level. Additionally, 
potential targeted drugs were predicted and validated through 
molecular docking. These findings provide a theoretical foundation 
for future clinical investigations into COPD pathogenesis and 
therapeutic strategies.

enrichment cycle. Each GO item has a corresponding circle, and the color inside the circle represents the logFC value of that entry, with red 
representing up-regulated expression and blue representing down-regulated expression. (F) Enrichment chords of KEGG pathways for candidate 
genes. Each line represents a different molecular mechanism, has its own unique color, and is marked with a label on the circumference. 
(G) Identification of protein–protein interaction (PPI) networks of candidate genes. The Degree of the protein encoded by the gene ranges from small 
to large, corresponding to the color from yellow to green. (H) Each of the three algorithms scored the top 10 candidate genes, including stress, 
bottleneck and betweenness. (I) Intersection gene of 3 algorithms.
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FIGURE 3

APRT and LCAT as biomarkers. (A) SVM-RFE (Support vector machine recursive feature elimination) analysis identified 3 genes. The abscissa indicates 
the number of feature genes, and the ordinate represents the cross-validated accuracy. (B) The Boruta algorithm identified 4 Boruta-genes. The yellow 
box plots depict the minimum values of shaded attributes, lime green denotes their mean values, and dark green corresponds to the maximum values. 
Purple boxes indicate rejected genes, while blue boxes signify confirmed genes. (C) The overlapping SVM-RFE-feature genes and Boruta-feature 
genes. (D) Receiver Operating Characteristic (ROC) curves of key genes in the training set (left) and validation set (right). The abscissa denotes the False 
Positive Rate (FPR; 1 – Specificity), and the ordinate represents the True Positive Rate (TPR; Sensitivity). The Area Under the Curve (AUC) quantifies the 
diagnostic performance of the ROC analysis. (E) Box plots of expression of candidate biomarkers in the training set (left) and validation set (right).
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FIGURE 4

Constructing a model with exceptional diagnostic capability for COPD. (A) A nomogram of APRT and LCAT. The abscissa for points/total points 
corresponds to scoring metrics, whereas the abscissa for the two biomarkers indicates quantitative gene expression values. (B) Calibration curve of two 
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APRT is a pivotal enzyme in the purine salvage pathway, 
catalyzing the recycling of adenine moieties derived from cellular 
metabolic byproducts such as polyamine catabolism (45). Its coding 
sequence (CDS) encodes a 180-amino acid protein that mediates the 
phosphoribosylation of adenine to form adenosine monophosphate 
(AMP), a critical step in nucleotide homeostasis (45, 46). APRT was 
involved in cellular metabolism and energy production, particularly 
in cell populations requiring rapid nucleotide biosynthesis to sustain 
DNA and RNA synthesis demands (47, 48). In recent years, the 
research on APRT has mainly focused on the relationship between 
APRT deficiency and kidney disease (47, 49–51). For instance, a large 
pediatric cohort study aiming to assess the clinical presentation, 
diagnosis, and outcome of APRT deficiency in French reference 
laboratories, demonstrated that half of the children had decreased 
kidney function, and two patients presented with acute renal failure 
(49). Another experiment on chronic intermittent hypoxia (CIH)-
induced renal injury showed that APRT overexpression reduced 
fibrosis and apoptosis, inhibited oxidative stress, and enhanced 
autophagy in CIH-induced renal tubular epithelial cells, and 
attenuated the serum levels of blood urea nitrogen in CIH rats (50). 
These results presented the important role of APRT in kidney 
metabolism. In addition, a study about diabetic wound healing 
showed that APRT could utilize adenine to recover cellular 
proliferation and ATP levels from hydrogen peroxide-induced 
oxidative damage. Which presented its role during the healing of 
diabetic wounds (51). Although there were no studies on APRT and 
COPD, previous studies suggested an important role for APRT in 
metabolism. In this study, for the first time, the biomarker identity of 
APRT in mitochondrial bioenergetics of COPD was screened by 
bioinformatics analysis and verified by lung tissues of COPD patients.

LCAT is a plasma enzyme that catalyzes the esterification of free 
cholesterol with fatty acids derived from phosphatidylcholine 
(lecithin), generating cholesteryl esters (52, 53). This biochemical 
process was essential for maintaining cholesterol homeostasis in 
plasma and preventing pathological accumulation of cholesterol 
within vascular walls, thereby serving as a critical mechanism in the 
prevention of atherosclerosis (52, 54, 55). Current researches were 
predominantly focused on elucidating the role of LCAT in the 
pathogenesis and therapeutic modulation of cardiovascular diseases 
(55, 56). For example，there were investigators who explored the 
function of LCAT independent of low-density lipoprotein (LDL) 
clearance effects though a double knockout (LCAT−/−& LDLR−/−, 
DKO) hamster model and indicated that DKO hamsters presented 
increased atherosclerotic lesions in the aorta, aortic root, and 
coronary artery compared to low-density lipoprotein receptor 
(LDLR)-deficient (LDLR−/−, LKO) hamsters (55). Another study 
detected the plasma LCAT mass concentration and plaque burden in 
267 patients with angiographically proven coronary artery disease 
(CAD) and 97 control without CAD and found that plasma LCAT 
mass concentration was increased in CAD patients and negatively 

related to plaque volume (57). These studies suggested the helpful 
role of LCAT in suppressing the development of atherosclerotic. 
Therefore, a plenty of studies and clinical investigations were aimed 
at promoting plasma lipid metabolism by enhancing the activity of 
LCAT to find better managements choices for familial LCAT 
deficiency (FLD) and cardiovascular disease (58). Although no 
studies to date have investigated the role of LCAT in pulmonary 
diseases, emerging evidence from research on chronic kidney disease 
(CKD) offered preliminary insights into its potential systemic 
regulatory functions (59). In this study, a higher ROS production in 
renal cells was observed in patients with lower serum LCAT 
concentration, and decreased plasma LCAT concentration was 
positively related to CKD development over time in patients with 
renal dysfunction (59). Downregulation of LCAT mRNA expression 
was detected in collected COPD lung tissues, indicating its potential 
involvement in COPD-associated mitochondrial bioenergetics 
dysregulation, which may contribute to the pathogenesis and 
progression of the disease.

Both APRT and LCAT are localized to chromosome 16. While 
these two genes have not been previously implicated in COPD, this 
experiment showed novel insights into the metabolic dysregulation 
underlying this disease. APRT, a key mediator of purine salvage 
pathways (45), may influence cellular energy homeostasis through its 
regulation of AMP levels—a mechanism of particular relevance given 
the chronic oxidative stress and impaired energy metabolism 
characteristic of COPD. LCAT, though best characterized in 
cardiovascular cholesterol metabolism (52, 53), exhibits pulmonary-
specific downregulation in this cohort, suggesting its potential role in 
handling and subsequent inflammatory amplification. Critically, 
GSEA revealed shared enrichment of both biomarkers in oxidative 
phosphorylation and ribosomal pathways, which aligned with 
established COPD hallmarks, such as mitochondrial dysfunction in 
airway epithelia and proteostasis imbalance in immune cells (13, 14). 
Then，immune infiltration analysis, regulatory networks and drug 
prediction and molecular docking was conducted for APRT and 
LCAT. These correlations provided initial insights into the potential 
interactions between LCAT, APRT, and specific immune cell subsets. 
APRT is involved in the purine rescue pathway and generates 
adenosine monophosphate (AMP) (45), which may affect the energy 
metabolism and proliferation of immune cells. LCAT is responsible 
for cholesterol esterification (53), which may affect the integrity of cell 
membranes and signal transduction, thereby regulating the activation 
and killing function of immune cells. Future functional studies could 
be performed to determine whether LCAT and APRT directly affect 
the proliferation, differentiation, or function of these immune cells.

Given the established roles of APRT in purine salvage pathways 
and LCAT in reverse cholesterol transport, future studies could 
prioritize developing targeted small-molecule therapeutics to 
modulate purine and cholesterol metabolic pathways, thereby 
intervening in COPD-associated metabolic reprogramming. 

biomarkers. The abscissa represents the nomogram-predicted probability of disease, while the ordinate corresponds to the observed probability of 
disease. (C) Receiver Operating Characteristic (ROC) curve analysis of two biomarkers. The abscissa denotes the False Positive Rate (FPR; 1 – 
Specificity), and the ordinate represents the True Positive Rate (TPR; Sensitivity). The Area Under the Curve (AUC) quantifies the diagnostic performance 
of the ROC analysis. (D) Decision Curve Analysis (DCA) of two biomarkers. The abscissa represents the risk threshold (Pt), and the ordinate corresponds 
to the net benefit (NB), calculated as benefits minus harms. The curves in the figure illustrate the net benefit across varying risk thresholds.
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FIGURE 5

Chromosomal localization and Gene Set Enrichment Analysis (GSEA) for biomarkers. (A) Chromosome localization analysis of two biomarkers. APRT 
and LCAT are localized to chromosome 16. (B) GSEA enrichment analysis of biomarker APRT. (C) GSEA enrichment analysis of LCAT.
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FIGURE 6

Immunoinfiltration analysis. (A) Heatmap of Single sample Gene Enrichment Analysis (ssGSEA). (B) 15 types of immunoinfiltrating cells based on the 
enrichment fraction box plot between COPD group and control group. The abscissa denotes the 15 differential immune cell types, and the ordinate 
represents their corresponding enrichment scores. (C) Heatmap of correlation between 15 different immune cells. Both the abscissa and ordinate 
represent the 15 differential immune cell types. The intensity of the red hue corresponds to the strength of positive correlations, while the saturation of 
the blue shade reflects the magnitude of negative correlation coefficients. (D) Heatmap of correlation between 15 different immune cells and two 
biomarkers. The abscissa represents the 15 differential immune cell types, and the ordinate corresponds to the two biomarkers. The intensity of red 
coloration correlates with stronger positive associations, whereas deeper blue hues indicate larger magnitudes of negative correlation coefficients.
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FIGURE 7

Regulatory networks for biomarkers. (A) miRNA-mRNA regulatory network. Orange denotes biomarkers, while purple represents miRNA. 
(B) Transcription Factors (TFs)-mRNA regulatory network. Orange denotes biomarkers, while purple represents TFs.

FIGURE 8

Molecular docking conformation of APRT (A) and LCAT (B). The molecular docking of APRT with bisphenol A and LCAT with bisphenol A is shown from 
top to bottom. The left picture is the whole and the right picture is the partial display. The outermost is the protein skeleton, the middle is the ligand 
(i.e., drug), and the numbers represent the binding targets.
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Furthermore, the emerging evidence of their immune-metabolic 
crosstalk—particularly with CD56dim nature killer cells and 
alveolar macrophages—opens avenues for precision immune-
metabolic therapeutic strategies, such as engineered metabolic 
checkpoint inhibitors or lipid metabolism-modulating biologics 
tailored to COPD endotypes. This dual targeting approach may 
synergistically restore metabolic-immune homeostasis while 
mitigating disease progression.

While current diagnostic guidelines establish pulmonary function 
testing as sufficient for COPD diagnosis, this study identified APRT 
and LCAT as possible key regulators of mitochondrial bioenergetics 
dysregulation in COPD pathogenesis, with preliminary validation in 
lung tissues. Although these genes currently lack utility as molecular 
biomarkers for early detection, they provide a solid theoretical 
foundation for understanding COPD-associated mitochondrial 
dysfunction and propose novel perspectives for early metabolic 
intervention strategies and therapeutic target discovery - particularly 
through their mechanistic links to emerging therapeutic paradigms 
such as immune-metabolic reprogramming and mitochondrial quality 
control in chronic airway diseases. Notably, current research on APRT 
has predominantly focused on the relationship between APRT 
deficiency and childhood renal dysfunction (49), while studies on 
LCAT have primarily centered on its cardioprotective effects in male 
populations with atherosclerosis (57). These findings regarding age- 
and sex-specific manifestations in prior studies underscore the 
necessity to prioritize investigating the relationships between age/
gender and these biomarkers in future COPD studies.

However, this study has certain limitations: The clinical translation 
of these biomarkers requires validation in larger cohorts and 
confirmation through functional experiments. The limited sample size 

of this validation cohort represented a statistical power limitation in 
this study, particularly given the inherent biological heterogeneity of 
COPD populations. Pulmonary tissue specimens inherently require 
invasive surgical procedures such as lobectomy, particularly 
complicating sample collection in COPD patients due to their 
compromised pulmonary function and stricter surgical eligibility 
criteria. A multipronged validation strategy was outlined for future. 
First, expanding collaborations with thoracic surgery centers to 
prospectively collect a larger surgical cohort with balanced gender 
representation and broader age stratification COPD patients in four 
stages (mild, moderate, severe, and very severe) and a more 
comprehensive set of clinical characteristics. Second, complementary 
validation using less invasive longitudinal —including peripheral 
blood and research bronchoscopy-derived bronchoalveolar lavage 
fluid (BALF). Third, the expression patterns of APRT and LCAT 
within distinct cell types, such as epithelial cells, vascular endothelial 
cells, and stromal cells, could be  analyzed and verified in 
future investigations.

In summary, leveraging datasets from the GEO database and 
employing integrative bioinformatics approaches, this study 
identified MM-associated biomarkers with potential therapeutic 
relevance in COPD. Comprehensive analyses elucidated their 
biological pathways, immune signatures, molecular regulatory 
networks (including miRNA-mRNA and TF-mRNA interactions), 
and pharmacological predictions. Preliminary validation was 
performed using clinical specimens. Despite limitations 
mentioned, the novel findings provide a foundational framework 
for future research. Ongoing investigations will focus on 
mechanistic exploration of these biomarkers to advance their 
therapeutic application in COPD management.

FIGURE 9

The verification of APRT and LCAT in lung tissues. (A) Histological structure of lung tissues. Alveoli cross-sectional areas (CSA) were measured to 
present emphysema changes in different groups. (B) Relative APRT and LCAT mRNA expression between the two groups. (C) Immunohistochemistry 
analysis of the APRT protein expression in lung tissues. (D) Immunohistochemistry analysis of the LCAT protein expression in lung tissues. The black 
scale represents 500 μm. COPD, Chronic obstructive pulmonary disease. *p < 0.05 vs. control group.
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