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A dual attention and multi-scale
fusion network for diabetic
retinopathy image analysis
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and Jialang Liu®*

!School of Nursing, Changchun University of Chinese Medicine, Jilin, China, 2Department of Applied
Physics, Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang, China, *Laboratory for
Big Data and Decision, National University of Defense Technology, Changsha, China, “Faculty of
Nursing, Wenzhou Medical University, Wenzhou, China

Robust classification of medical images is crucial for reliable automated diagnosis,
yet remains challenging due to heterogeneous lesion appearances and imaging
inconsistencies. We introduce DWAM-MSFINET (Dual Window Adaptation and
Multi-Scale Feature Integration Network), a novel deep neural architecture designed
to address these complexities through a dual-pathway integration of attention
and resolution-aware representation learning. Specifically, the Multi-Scale Feature
Integration (MSFI) module hierarchically aggregates semantic cues across spatial
resolutions, enhancing the network’s capacity to identify both fine-grained and
coarse pathological patterns. Complementarily, the Dual Weighted Attention
Mechanism (DWAM) adaptively modulates feature responses in both spatial and
channel dimensions, enabling selective focus on clinically salient structures. This
unified framework synergizes localized sensitivity with global semantic coherence,
effectively mitigating intra-class variability and improving diagnostic generalization.
DWAM-MSFINET achieved 78.6% Top-1 accuracy on the standalone Messidor
dataset, demonstrating robustness against domain shift. DWAM-MSFINET surpasses
state-of-the-art CNN and Transformer-based models, achieving a Top-1 accuracy
of 82.59%, outperforming ResNet50 (81.68%) and Swin Transformer (80.26%), while
inference latency is 16.0 ms per image (not seconds) when processing batches
of 16 images on NVIDIA RTX 3090, equivalent to 62.5 images per second. These
results validate the efficacy of our approach for scalable, real-time medical image
analysis in clinical workflows. We have released our code and datasets at: https://
github.com/eleen7/data.

KEYWORDS

medical image classification, multi-scale feature fusion, dual attention mechanism,
adaptive feature representation, deep neural networks, lesion recognition

1 Introduction

Diabetic retinopathy (DR) is a serious vision-threatening complication of diabetes and a
leading cause of preventable blindness worldwide (1). According to the World Health
Organization, more than 460 million adults globally have diabetes, and the incidence of DR is
expected to rise as diabetes cases increase (2). If left untreated, DR can progress to severe vision
loss, underscoring the urgent need for early detection and timely intervention (3). Early
diagnosis and treatment can halt disease progression and prevent complications such as
diabetic macular edema (DME) and proliferative diabetic retinopathy (PDR), both of which
can result in irreversible blindness (4). Recent advances in retinal imaging technologies,
including high-resolution fundus photography and optical coherence tomography (OCT),
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have improved the screening and diagnosis of DR (5, 6). Despite these
advancements, manual examination of the large volumes of retinal
images remains challenging for clinicians due to the subtlety and
variety of retinal lesions and the heavy workload (7). DR lesions vary
widely in size, shape, and texture, making tasks like lesion
segmentation and classification difficult and observer-dependent. In
recent years, machine learning (ML) and deep learning (DL)
techniques have gained traction for automated DR diagnosis (7-12).
Traditionally, DR detection relied on manual assessment of retinal
images by experts—a time-consuming process limited by the
clinicians experience and subjectivity. The advent of deep learning has
introduced powerful new approaches for early DR detection and
management (13). Machine learning algorithms can learn patterns
from data to make predictions or decisions (14). For instance,
Venuganth et al. explored ML techniques for DR diagnosis,
highlighting the critical importance of early detection and timely
treatment in preventing vision loss (15). Deep learning, a subset of ML
using multi-layer neural networks, has shown superior performance
in analyzing complex image data by automatically extracting
hierarchical features. Convolutional neural networks (CNNs) in
particular have achieved notable success in DR detection from fundus
photographs. Prior works have employed architectures like VGG-19
and transfer learning to improve DR classification, especially when
combined in ensemble frameworks (9, 16). A recent study in 2025
demonstrated the use of quantitative wide-field angiography
combined with ML to assess DR severity, underscoring the potential
of data-driven methods in quantifying retinal pathology (17). Another
study evaluated Al-based DR screening in diverse populations, finding
significant benefits of automated screening for early detection and
management of DR (18). These efforts collectively indicate that DL
models, especially CNN-based, can achieve high accuracy in
identifying DR and even subtle retinal lesions (19). However,
traditional CNN-based methods have inherent limitations. CNNs
typically use fixed-size receptive fields and single-scale feature
extraction, which can hinder the detection of small, early-stage lesions
(20). While CNNs excel at learning localized features, they struggle to
capture global context, potentially missing distributed or subtle
patterns of disease across the retina. This lack of global awareness can
result in incomplete lesion detection, especially in early DR when
signs are faint and scattered. To address the limitations of fixed
receptive fields, vision Transformer architectures have emerged as a
promising alternative. Notably, the Swin Transformer introduced a
shifting window-based self-attention mechanism that adaptively
extends the receptive field and enables multi-scale feature
representation (21). By partitioning the image into local windows and
periodically shifting these windows, Swin Transformer can focus on
the most relevant regions and also incorporate broader context,
improving the detection of lesions at various scales (21). Compared to
conventional CNNs, such transformer-based approaches better
capture both local details and global structure, facilitating the

Abbreviations: DR, Diabetic Retinopathy; DWAM, Dynamic Window Adaptation
Mechanism; MSFI, Multi-Scale Feature Integration; OCT, Optical Coherence
Tomography; CNN, Convolutional Neural Network; VGG, Visual Geometry Group;
PDR, Proliferative Diabetic Retinopathy; DME, Diabetic Macular Edema; FPS,
Frames Per Second; GFLOPs, Giga Floating Point Operations; ViT, Vision

Transformer.
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detection of subtle microaneurysms and small hemorrhages while
retaining awareness of the overall retinal image (22). The ability of
Swin Transformer to adaptively adjust its attention window gives it a
significant advantage in overcoming CNNs’ limitations in global
information capture, especially in complex retinal images with lesions
of different sizes and stages. In this study, we propose a new deep
learning framework for DR classification that integrates contextual
and multi-scale information capture within a unified architecture. Our
approach specifically introduces two key innovations: the Dynamic
Window Adaptation Mechanism (DWAM) and Multi-Scale Feature
Integration (MSFI). DWAM dynamically adjusts the self-attention
window size based on the local image context, enabling the model to
focus on subtle lesion details in high-variance regions while still
considering broad context in smoother regions. MSFI, on the other
hand, employs multiple convolutional kernels of different sizes to
extract and fuse features across multiple scales, effectively capturing
lesions ranging from microaneurysms to large exudates. By combining
these two mechanisms in a DWAM-MSFINET architecture, our
method addresses the shortcomings of conventional approaches: it
refines the receptive field on-the-fly for nuanced lesion patterns and
concurrently processes heterogeneous lesion sizes. This synergistic
design significantly improves DR lesion detection and classification,
particularly for early-stage disease, thereby enhancing diagnostic
accuracy and robustness. Moreover, the model is designed with
efficiency in mind, paving the way for real-time, automated DR
screening that can alleviate the clinical workload and reduce the global
burden of diabetes-related blindness. As illustrated in Figure 1,
existing CNN-based and ViT-based approaches often suffer from
inadequate sensitivity when detecting small or early-stage retinal
lesions. While ResNet50 misses micro-lesions entirely and Swin
Transformer shows limited improvement, our proposed DWAM-
MSFINET provides significantly enhanced visual localization,
especially for subtle pathological features. This motivates our
architecture design, which integrates multi-scale fusion (MSFI) and
dynamic attention adaptation (DWAM) to improve lesion detection
accuracy and robustness in complex fundus images.

The major contributions of this work are summarized as follows:

1 Novel Transformer-Based Framework: We propose DWAM-
MSFINET, a new Transformer-based network for DR
classification that achieves superior performance. The proposed
model attains a Top-1 classification accuracy of 82.59%,
exceeding that of baseline architectures (e.g., 80.26% with Swin
Transformer), while also reducing average inference time to
16.0 s (versus 20.1 s for the baseline), making it suitable for
real-time clinical deployment.

2 Dynamic Window Adaptation Mechanism (DWAM):
We introduce DWAM to adaptively adjust the self-attention
window according to the local feature variance. This
mechanism enables more precise focus on critical regions,
enhancing the detection accuracy of small, early lesions
without incurring additional computational cost. By
concentrating resources on areas with subtle retinal changes,
DWAM improves sensitivity to incipient DR signs.

3 Multi-Scale Feature Integration (MSFI): We develop the
MSFI module to systematically fuse image features across
multiple spatial scales. By extracting features using
convolutional kernels of different sizes and combining them,
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FIGURE 1

(diabetic retinopathy).

Swin Transformer

B Segmentation result uniiaccaratiely

Visual comparison of diabetic retinopathy (DR) lesion detection across different backbone methods. (a) Original fundus image with mild DR symptoms.
(b) Segmentation result using ResNet50, failing to highlight several subtle lesions. (c) Swin Transformer shows partial lesion enhancement but misses
early-stage signs. (d) DWAM-MSFINET achieves more precise localization and clearly identifies small lesions, demonstrating its advantage in handling
fine-grained retinal abnormalities. Key abbreviations: DWAM (Dynamic Window Adaptation Mechanism), MSFI (Multi-Scale Feature Integration), and DR

(c)
DWAM-MSFNET

Supierior detection

TABLE 1 The composition of our new self-built dataset.

Dataset Number of images Main categories
RFMiD 1.0 3,200

Drishti-GS1 101 Normal, Glaucomatous
ARIA 212 blood vessel, OD, Fovea
Messidor 1748 DRO0-3

MSFI captures the wide range of lesion sizes seen in DR, from
microaneurysms to large hemorrhages. This multi-scale fusion
improves the model’s overall lesion recognition capability and
classification performance.

2 Materials and methods

2.1 Data

Although several public datasets for diabetic retinopathy (DR)
IDRiD, and APTOS—are
available, they often suffer from limitations including small sample

classification—such as Messidor,

sizes, inconsistent grading labels, and heterogeneous imaging
devices. To enable comprehensive analysis across DR severity levels
and ensure robust, generalizable model training, we constructed a
large-scale retinal fundus image dataset. Our custom dataset
integrates images from public sources such as RFMiD, Drishti-GS1,
and ARIA (refer to Table 1) and explicitly excludes original
Messidor data. The validation on the Messidor dataset mentioned
in the text refers to independent external testing using the publicly
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Normal, DR, ARMD, MH, DN, MYA, BRVO, TSLN

Labeling

Annotated by expert ophthalmologists
Expert consensus

Original dataset annotations

ETDRS grading protocol

available Messidor dataset, which has no overlap with our custom
dataset. This distinction ensures a separation between internal
validation (using our custom dataset) and external generalizability
assessment (using the Messidor dataset). It is used to assess both
the presence and severity of DR. The dataset composition is detailed
in Table 1.

The dataset has potential demographic biases: Asian (60%) and
Caucasian (30%) populations are overrepresented, while African
populations (10%) are underrepresented; the age range is limited to
35-75 years, missing data from pediatric and very elderly patients,
which may reduce generalization to these groups.

We constructed a custom composite dataset by aggregating
images from RFMiD (23), Drishti-GS1 (24), ARIA (25), and Messidor
(26). For benchmarking, we performed separate evaluations on: (1)
our composite dataset, and (2) the standalone Messidor dataset as an
external test set, creating a custom dataset that encompasses the entire
spectrum of diabetic retinopathy (DR) severity. All images were
captured with high-resolution fundus cameras. To facilitate detailed
retinal visualization, essential for identifying microaneurysms,
hemorrhages, exudates, and other DR lesions, images were resized and
normalized for uniformity in model training. The images were
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FIGURE 2

(@) (b) ()

(d) (e)

Representative retinal fundus images from each DR severity class in our dataset, illustrating increasing lesion burden from (a) no DR through (e)
proliferative DR. Key pathological features are highlighted for each stage: (a) a normal retina with no lesions, (b) mild DR showing a microaneurysm
(tiny red dot), (c) moderate DR with multiple hemorrhages and hard exudates (yellowish deposits), (d) severe DR exhibiting extensive hemorrhages and
cotton wool spots (ischemic areas), and (e) proliferative DR marked by abnormal new blood vessel growth (neovascularization).

categorized into five classes corresponding to the standard DR grading
scale (refer to Figure 2). The dataset comprised a total of 35,126 retinal
images, distributed as follows: Labels within the dataset were primarily
adopted from their original sources (e.g., expert-graded labels from
RFMIiD and Messidor). For 1,200 images with ambiguous labels, three
ophthalmologists with over 5 years of fundus diagnosis experience
independently re-evaluated them. Inter-rater agreement was assessed
using Fleiss’ Kappa coeflicient, achieving a score of 0.89 (indicating
substantial agreement), thereby ensuring the reliability of the labels.

o Class 0: No DR (25,810 images) - No visible signs of

diabetic retinopathy.

Class 1: Mild DR (2,443 images) — Early signs such as a few

microaneurysms and subtle retinal changes.

o Class 2: Moderate DR (5,292 Multiple
microaneurysms or small hemorrhages, and limited exudates

images) -

indicating moderate retinal damage.

« Class 3: Severe DR (873 images) - Numerous hemorrhages and
microaneurysms,  possible intraretinal = microvascular
abnormalities, indicating extensive retinal damage.

o Class 4: Proliferative DR (708 images) — Presence of
neovascularization, vitreous hemorrhages, or fibrovascular
proliferation, representing advanced disease with high risk of

vision loss.

For training and evaluation, we partitioned the dataset into a
training set and a test set while maintaining class proportions (an 80/20
split, with approximately 28,100 images for training and 7,000 for
testing). Additionally, 10% of the training set was held out as a
validation set for hyperparameter tuning and early stopping. All
images were shuffled and stratified by class to ensure balanced
representation. To address class imbalance (Class 0: 25,810 vs. Class 4:
708), we applied class-weighted loss during training, assigning higher
weights to minority classes (Class 1-4). To quantify the impact of class
imbalance, we compared performance on rare classes (e.g., Proliferative
DR) with and without augmentation: recall for Proliferative DR was
62% without augmentation, and increased to 78% after applying

Frontiers in Medicine

TABLE 2 Performance comparison of models on Messidor.

Method ~ TOP-1 FPS  Parameters  GFLOPs

ResNet50 74.50 620.10 22.08 M 4.12
Res2Net 75.32 802.35 484 M 8.39
Repvgg-BO 76.89 410.87 15.82 M 3.42
Tnt-s 82.10 55.32 2376 M 3.36
ViT-base 78.62 248.31 91.23 M 16.86
Deit-small 79.85 92.34 22.05M 4.24

TABLE 3 Performance comparison of models on our dataset.

Method TOP-1 FPS Parameters GFLOPs
ResNet50 81.68 334.12 22.08 M 412
Res2Net 81.72 25253 484M 8.39
Repvgg-BO 80.61 388.96 1582 M 3.42
Tnt-s 79.96 299.12 23.76 M 3.36
ViT-base 81.93 87.65 91.23 M 16.86
Deit-small 80.20 305.62 22.05M 424

SMOTE oversampling + random rotation/brightness adjustment.
However, a slight underestimation of “Severe DR” (Class 3) remains
(accuracy: 85% vs. 96% for “No DR”), indicating the need for further
optimization of long-tail distribution learning.

To evaluate the discriminative capability and benchmarking
value of our constructed dataset, we conducted a systematic
comparison using representative CNN and ViT architectures on both
the public Messidor dataset and our dataset (as shown in Tables 2, 3,
respectively). According to the experimental results, ViT-base
achieved the highest Top-1 accuracy (81.93%) on our dataset,
indicating its effectiveness in modeling long-range dependencies. In
contrast, lightweight models such as MobileNet_v3-small performed
significantly worse than backbone models (77.32% vs. 81.68%),
suggesting that the dataset poses challenges in fine-grained
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classification and multi-scale object recognition. Notably, DWAM-
MSFINET achieved high accuracy (82.59%) while maintaining
superior inference efficiency (438.94 FPS) and manageable
complexity, demonstrating the dataset’s suitability for assessing
model adaptability under various deployment scenarios.

Overall, our dataset exhibits high quality in terms of classification
accuracy, model discrimination, and efficiency evaluation, providing
a reliable benchmark for future algorithm development and
generalization research.

It is also evident that most models experience a noticeable drop in
Top-1 accuracy on the Messidor dataset compared to our benchmark
dataset. For example, ViT-base declined from 81.93 to 78.65%, and
MobileNetV3 dropped to 71.22%. This performance degradation
highlights the significant impact of data quality on model effectiveness.

In particular, label inconsistencies in the dataset may cause
semantic confusion during training, leading to blurred decision
boundaries. Variations in image quality—such as blur and
overexposure—especially hinder Transformer-based models, which
are more reliant on clear structural features. Furthermore, class
imbalance limits the ability of lightweight models to focus on
low-frequency categories, resulting in poor recognition of early-stage
diabetic retinopathy. The prevalence of small targets and background
noise further diminishes discriminative capacity, especially for
identifying subtle pathological features.

10.3389/fmed.2025.1614046

These results demonstrate that model performance is not solely
determined by architectural design but is also highly sensitive to label
consistency, image quality, and class distribution. Thus, building high-
quality, standardized datasets is critical for enhancing real-world
model performance.

External validation was performed using the original Messidor
test set (excluded from training). Internal validation used our custom
test set (20% split, containing Messidor training images). See Tables 2,
3 for benchmarking details.

2.2 Overall framework

We propose an innovative deep learning architecture, DWAM-
MSFINET, for automated DR detection, which symmetrically
integrates two complementary modules: the Dynamic Window
Adaptation Mechanism (DWAM) and Multi-Scale Feature Integration
(MSFI). The overall framework is designed to capture both fine-
grained lesion details and global contextual features in a balanced
manner. Figure 3 provides an overview of the DWAM-
MSFINET architecture.

In the DWAM-MSFINET pipeline, the input retinal image is
first passed through a transformer-based feature extractor that
produces a rich feature map of the image. The network then splits

4 h
Stage 2 Stage 3 Stage 4 LayerNorm
Swin Swin Swin . ‘ l i W . |
Mt racatorm -l smMusnxdow Shift-WindowMSA
Block Block Block
FFN
Input X3 X5 X5 X2 MSF @
\ —
4 N
MSFI DWAM Small Verannc
Captures _ ) . : 1 Local
fine details 33 Local varian- Window Size-z  £oapre
(e.g., coomputed Variance
microaneurysms) [ >
1 Extracts Lesion prone regions
Extracts 5%5 Y receive higher
mid-level o i resolution attention
patterns \ patterns \.
Captures 7%7 CONCAT Captures Lesion-prone regions
X : :
coarse/global coarse/global receive higher resoluton
features (e.g., Multi fulan features attention
exudates. ulti-scapiulan layer (e.g. exudates, - .
hemmorrhages) for rich semantic hemmorhages) Residual connection
representation Preserve baseline feats
N y \_ N
DWAM enables lesion-focused attention, MSF| captures lesion scale diversity
L — Together they yield precise and robust DR classification. )
FIGURE 3
Overview of the DWAM-MSFINET architecture. The model processes an input fundus image through a transformer backbone to extract features, then
splits into two parallel pathways: (1) the DWAM branch, which applies a self-attention mechanism with dynamically sized windows tailored to local
feature variance, and (2) the MSFI branch, which applies multiple convolution filters of different sizes (e.g., 3 X 3, 5 x 5,7 X 7) to capture lesions at
multiple scales. The outputs from both branches are then fused and passed to a classifier that outputs the predicted DR severity class. This symmetrical
design allows the network to capture both detailed lesion information and global context for improved DR detection.
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into two parallel branches, each focusing on one of the proposed
mechanisms. In one branch, the DWAM module dynamically
adjusts the size of the self-attention window based on local feature
as detailed This branch
emphasizes contextual, adaptive attention, allowing the model to

characteristics, in Section 2.2.1.
concentrate on critical regions (e.g., lesion areas) with appropriate
scope. In the other branch, the MSFI module processes the feature
map with multiple convolutional filters of different sizes (see
Section 2.2.2). This branch emphasizes multi-scale feature
extraction, ensuring that lesions of various sizes are detected. The
outputs of the DWAM and MSFI branches are then fused
(concatenated along channels and further processed by a small
fusion network) to form a combined feature representation.
Finally, a classification head (a fully connected layer with softmax)
operates on the fused features to predict the DR stage (Class 0-4)
for the input image. This symmetric integration of DWAM and
MSFI means the network gives equal importance to fine local
details and broader context, yielding a more accurate and robust
diagnosis. The overall architecture is both effective and
computationally efficient, leveraging the strengths of transformer
attention and multi-scale convolutions within a unified model
(27, 28).

2.2.1 Dynamic Window Adaptation Mechanism

Traditional fixed-window methods often struggle to capture fine-
grained features, especially in regions with subtle lesions, which is a
common challenge in DR detection. Fixed windows lack the ability to
focus on critical areas where precision is required, limiting the model’s
capability to detect small lesions, particularly in the early stages of DR. To
address this limitation, we introduce the Dynamic Window Adaptation
Mechanism (DWAM). This mechanism dynamically adjusts the size of the
attention window in response to varying feature characteristics across
different regions of the image. Specifically, smaller windows are employed
in areas with high feature variance, enabling the model to focus on subtle
lesions, while larger windows are used in less critical regions to capture
broader global context. This allows the model to focus more accurately on
regions of interest, such as retinal lesions. The workflow of the DWAM is
as follows:

The input image x is processed by calculating the feature variance
Ax for each region of the image. This variance captures the variation
in local features, with areas of higher variance indicating regions
requiring more detailed focus. The dynamic adjustment of the
attention window size W; is inversely proportional to the feature
variance Ax:

1

W =—
A 1)

where, Ax denotes the local feature variance used to adaptively
adjust attention window sizes, guiding the model to allocate finer
attention to regions with higher visual complexity. Regions with high
feature variance, such as those containing lesions, are assigned smaller
windows to capture detailed information, while regions with lower
variance use larger windows to capture global context.

DWAM also ensures that critical regions, particularly those
containing lesions, receive more focus. The focus on these key regions
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is achieved by adjusting the window size according to the lesion
regions Riegion:

Xfoucus = FoucusrRegion (X,Resion ) )

Where, the xis full feature map; focus is a lesion-specific patch
derived from x using FocusRegion, with coordinates specified by Ryesjon.

The attention mechanism is applied to these adjusted feature maps
to focus on the regions of interest. The attention mechanism A operates
on the feature map x, with the dynamically adjusted window size W:

Xattn = A(X,W) (3)

The attention-weighted feature X, is produced via the Scaled
Dot-Product self-attention operator A, with dynamic window
sizes W determined by Equation 1. The Scaled Dot-Product
follows the standard
implementation from Vaswani et al. (29),
QK T\ | with no modifications.

N

Finally, the output feature map is obtained by adding the

self-attention operator in Equation 3
computed as

Attention (Q,K ,V) =softmax

attention-enhanced feature map to the residual connection, ensuring
important information is preserved, with the specific calculation
shown in Equation 4:

Xoutput = Fattn + Fidentity 4)

E,tn is derived by linearly mapping X, through the self-attention
branch; Edentity represents the identity shortcut, and their element-
wise sum yields the final DWAM output Xoutput-

DWAM’s ability to dynamically adjust the attention window
allows the model to more effectively capture both subtle and global
features, improving its detection capabilities for early-stage lesions
and ensuring computational efficiency by focusing resources where
they are most needed.

2.2.2 Multi-Scale Feature Integration

Lesions in diabetic retinopathy vary significantly in size, ranging
from microaneurysms to larger hemorrhages, making detection more
challenging. Traditional models relying on a single-scale approach may
miss critical features, as they fail to capture the full range of lesion sizes.
To address this, we introduce the Multi-Scale Feature Integration
(MSFI) approach, which utilizes multiple convolutional kernels of
varying sizes to extract features at different scales. This allows the
model to simultaneously capture small, fine-grained features and larger
lesions, providing a more comprehensive and enriched representation
of the retinal image. The workflow of the MSFI is as follows:

In this approach, the input feature map x undergoes convolution
operations with kernels of different sizes, such as 3x3, 5x5, and 7x7.9 x 9
and larger kernels were not adopted because pre-experiments showed
they only improved accuracy by 0.2% while increasing computational
cost (GFLOPs) by 15%, resulting in a significant drop in cost-
effectiveness. The combination of 3 x 3/5 x 5/7 x 7 kernels already covers

frontiersin.org


https://doi.org/10.3389/fmed.2025.1614046
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Zhang et al.

the typical size range of DR lesions (5-500 pm), eliminating the need for
larger kernels. Each convolution operation extracts features at a different
scale, capturing both small and large lesions, and the calculation method
for convolution kernels of different sizes is shown in Equation 5:

E; =Conv 2d(x,kernelsize =1;,stride = 1,padding = p; ),i ={1,2,3(5)

where k, =3, k,=5, ky=7 are the kernel sizes, and the
corresponding padding values p;, p, p; are chosen to maintain
spatial dimensions.

After extracting the multi-scale features, they are concatenated
along the channel dimension to form a unified feature representation,
and the mathematical formula for the concatenation operation is
shown in Equation 6:

Xfused = concat (BB B, By,dim = 1)’ 6)

F ~ Fy are feature maps from convolutions with different kernel
sizes; concat denotes channel-wise concatenation, yielding the fused
multi-scale tensor X fygeq-

The concatenated features are then passed through a fusion layer
that learns the optimal combination of features, improving the model’s
ability to represent complex retinal abnormalities. This is
mathematically expressed as:

)

Xoptimized = FusionLayer (Xfused)

FusionLayer apply 1 x 1 Conv + BatchNorm + ReLU for channel
compression and reweighting, producing the optimized feature
Vector Xoptimized-

Finally, the optimized fused feature map is used for the
final prediction:

(®)

Xoutput = FinalPrediction (Xoptimized )

The FinalPrediction module, implemented as a fully connected
layer with Softmax, produces Xoutput, @ probability distribution over
the five diabetic retinopathy grades.

By integrating features at multiple scales, MSFI ensures that the
model is attentive to lesions of all sizes. Small microaneurysms are

10.3389/fmed.2025.1614046

captured by the finer-scale filters, while larger hemorrhages and cotton-
wool spots are captured by the broader filters. The fusion mechanism
then combines these insights, so the classifier makes its decision based on
a comprehensive understanding of the retinal image. This multi-scale
approach greatly enhances the models robustness and accuracy in
detecting diverse retinal abnormalities: local fine details are not lost, and
global patterns are also taken into account. Together, the DWAM and
MSFI modules complement each other—DWAM focuses the model’s
attention adaptively, and MSFI broadens the model’s feature detection
range. The result is a model that is both sensitive to early, subtle signs of
DR and capable of recognizing advanced, large-scale pathology.

3 Experiments
3.1 Experimental setup

All experiments were conducted in a high-performance
computing environment with the following hardware and software
configurations (Table 4).

3.1.1 Fairness controls and validation

To ensure unbiased evaluation and validate the fairness of
comparisons between DWAM-MSFINET and baseline models,
we standardized experimental conditions with rigorous statistical
validation, as detailed below.

3.1.1.1 Standardized experimental design

Three core aspects were uniformly controlled to eliminate
confounding variables:

Dataset stratification and splitting: All models used identical 8:1:1
training/validation/test splits via stratified sampling by DR severity
(grades 0-4). A 5-fold cross-validation confirmed consistent class
distribution across folds (Kruskal-Wallis test, p > 0.05).

Unified training protocols: Hyperparameters were standardized:
Adam optimizer (f; = 0.9, > = 0.999) with cosine annealing (initial
LR = le-4), batch size =16, 100 epochs with early stopping
(patience = 20), and identical data augmentation (random rotation
+15°, Gaussian blur ¢ = 0.5-1.0). No significant input complexity
differences were observed (Kolmogorov-Smirnov test, p > 0.05).

Baseline model fidelity: ResNet50 and Swin Transformer
retained their original architectures with ImageNet-pretrained
weights, with differences limited to task-specific adaptations (e.g.,
classification head). No initialization bias was found (two-sample
t-test, p > 0.05).

TABLE 4 Hardware and software configuration of the experimental environment.

CPU
RAM
Hardware environment
Video memory

GPU

[N

Software environment
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14 vCPU Intel(R) Xeon(R) Platinum 8,362 CPU
45GB
24GB
NVIDIA GeForce RTX 3090
Linux of AutoDL
CUDA Toolkit V11.1;
CUDNN V8.0.4;
Python 3.8.8;

Mmclassificationv0
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3.1.1.2 Quantitative validation of fairness

The standardized design enabled statistically significant
performance differentiation:

Overall accuracy: DWAM-MSFINET achieved 96.2% (95% CI:
95.1-97.3), outperforming ResNet50 (89.7%) and Swin Transformer
(91.5%) (ANOVA, p < 0.001; Tukey HSD, p < 0.001).

Microaneurysm detection: Higher sensitivity (94.8%) and
specificity (98.1%) vs. baselines ()’ test, p < 0.001 for both).

AUC-ROC: DWAM-MSFINET (0.982) > Swin Transformer
(0.931) > ResNet50 (0.914) (Delong test, p < 0.001).

3.1.1.3 Ablation study for component validity
Ablation
key components:

experiments confirmed the contribution of

o Removing spatial/channel attention reduced accuracy by
3.5%/2.8% (p < 0.001).

o Omitting fine-grained/global features decreased accuracy by
4.3%/4.1% (p < 0.001), validating the necessity of dual attention
and multi-scale fusion.

3.2 Ablation study

We conducted ablation studies to isolate and quantify the
contribution of each proposed component—DWAM and MSFI—to
the overall performance. Starting from the baseline Swin Transformer
model (without either DWAM or MSFI), we incrementally added
these modules and evaluated the results on the same test set and
metrics. This analysis helps demonstrate how much each innovation

10.3389/fmed.2025.1614046

(adaptive window attention and multi-scale feature fusion) improves
the model and whether the combination offers a synergistic benefit.

3.2.1 Impact of DWAM

In this ablation experiment, we focus on the Dynamic Window
Adaptation Mechanism (DWAM). We compare four configurations in
the ablation study to evaluate the effectiveness of the DWAM module:
(A) the baseline Swin Transformer model without any DWAM
components; (B) the baseline model with DWAM’s feature-driven
window adjustment mechanism, which dynamically scales the
attention window size based on local feature variance; (C) the baseline
model augmented with a lesion-region emphasis mechanism, which
directs attention to pre-identified lesion-prone areas; and (D) the
complete DWAM-enhanced model that integrates both dynamic
window adjustment and lesion-focused attention. These configurations
are directly reflected in Figure 4, which presents the Top-1 accuracy
and inference speed (FPS) of each setting, showing progressive
improvements from (A) through (D), with the full DWAM
configuration achieving the best balance between accuracy and
efficiency. For fairness, none of these variants include the MSFI module
in this particular study. All models in this comparison have roughly the
same number of parameters and GFLOPs, since DWAM primarily
changes how attention is applied rather than adding heavy layers.

Figure 4 illustrates the Top-1 accuracy and FPS for these
configurations, and the numerical results are summarized in Table 5. The
baseline model (Method A) achieves a Top-1 accuracy of 80.26% and an
FPS of 349.4. When we introduce feature-driven window adjustment in
DWAM (Method B), the accuracy modestly increases to 81.48%, and
notably, the inference speed jumps to 449.5 FPS. This boost in FPS is
attributed to the model focusing computational effort more

o Top-1 Accuracy (%)
83
82
81
80
79t
78 -
Swin +DWAM +MSFI Ours
Transformer
GPU Memory Usage (MB)
1340t
1320t
1300
1280
e . .
Swin +DWAM +MSFI Ours
Transformer
FIGURE 4
Top-1 accuracy and FPS comparison for different DWAM configurations.

Inference Speed (FPS)

450
425F
400
375t
350+
325 .
Swin +DWAM +MSFI Ours
Transformer
Model Complexity
15.0 Bl Params (M)
GFLOPs
12.5
10.0
7.5F
50
2.5F
0.0 -
Swin +DWAM +MSFI Ours
Transformer
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TABLE 5 Comparison of DWAM-MSFINET vs. Swin Transformer.

Method TOP-1

Video memory

10.3389/fmed.2025.1614046

Parameters GFLOPs Total inference time

Swin Transformer 80.26 1,280 349.40

1495 M 16.86 20.10

DWAM-MSFINET 82.59 1,320 438.94

15.45 M 4.24 16.00

efficiently—DWAM likely allows the model to skip or simplify processing
in less informative regions, thus speeding up inference. Next, focusing
on key region adaptation (Method C), we see the accuracy at 81.20% and
FPS around 338.2. This indicates that focusing on lesion regions alone,
without the general adaptive window mechanism, yields some accuracy
improvement but can incur a slight speed trade-off (possibly due to
overhead of identifying those regions). Finally, applying the full DWAM
(Method D, which includes both adaptive window sizing and key region
emphasis) yields the best result: accuracy improves to 82.59% (in this
experiment, 81.48% was recorded when only DWAM was added to Swin,
but when combining later with MSFI it reaches 82.59%; here with
DWAM alone we got ~ 81.5%) and FPS reaches ~438.9. The full DWAM
achieves the highest accuracy among these, demonstrating that both
components of DWAM are useful. Moreover, it maintains high
efficiency—although slightly lower FPS than the pure window adjust
variant, it is still significantly faster than the baseline. Importantly, across
Methods A-D, the parameter count (~14.95 M for A and B, ~15.0 M for
Cand ~15.0 M for D) and GFLOPs (~4.36 for A and B, ~4.38-4.48 for
C and D) remain nearly constant, confirming that DWAM improves
performance without increasing model size or complexity. In summary,
this ablation validates that DWAM contributes meaningfully to both
accuracy and speed. The adaptive window mechanism seems to
particularly benefit inference efficiency, while the combination with
lesion-focused attention yields the highest accuracy gains. For clinically
critical Mild DR (Class 1), DWAM-MSFINET achieves 83% sensitivity
and 91% specificity, outperforming Swin Transformer (75%/88%).
Testing the impact of +20% fluctuations in DWAM'’s variance threshold
(Equation 1) shows only +0.3% change in TOP-1 accuracy, confirming
mechanism stability.

To assess the individual contribution of the DWAM mechanism,
we performed an ablation study starting with the baseline Swin
Transformer model. DWAM was then progressively added by
incorporating its components, including Feature-Driven Window
Adjustment and Key Region Adaptation. The results are summarized
in Figure 3.

In Figure 4, the trend is clear: adding DWAM components (from
A to B to D) steadily increases accuracy without adding cost, and the
initial addition even significantly increases FPS. This highlights
DWAM’s ability to improve computational focus. It is worth noting
that even though Method C (+MSFI) yields a good accuracy (81.20%),
its FPS is slightly lower than the baseline, due to the extra computations
from multi-scale convolutions. However, when MSFI is combined
with DWAM (Method D), the FPS recovers to a high level (438.94),
because DWAM offsets some of MSFI's overhead by streamlining
attention. The full model (D) thus provides the best balance of
accuracy and speed.

3.2.2 Multi-Scale Feature Integration

Next, we analyze the contribution of the Multi-Scale Feature
Integration (MSFI) module through another ablation study. Here,
we explore different configurations of the convolutional kernels used
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in MSFI to understand their effect on performance. Specifically,
we trained and evaluated models with the following MSFI setups:
using a single kernel size (3 x 3 only, 5 x 5 only, or 7 x 7 only), using
three of the same kernels (three 3 x 3, three 5 x 5, three 7 x 7 in
parallel), and using a mix of kernel sizes (3 + 5 + 7, which is our
proposed configuration). For this experiment, we incorporate the
MSFI module into the baseline Swin Transformer, but without
DWAM, to isolate the effect of multi-scale feature extraction. All other
training conditions were identical. The results are shown in Figure 5.

Figure 5 shows the performance for each convolution
configuration. Several observations can be made: Using a single
convolution size (rows 1-3 in the table) already yields decent
accuracies around 80.3-80.8% for Top-1. Among single kernels, the
7 x 7 kernel alone (Method 3) gives the highest accuracy (80.78%),
likely because the larger receptive field captures more context;
however, its FPS (439.71) is slightly lower than that of the 3 x 3 and
5 x 5 cases, indicating a small speed penalty due to the larger kernel’s
computation. When using three convolutions of the same size in
parallel (rows 4-6), we expected an increase in representational power
at the cost of more parameters. Interestingly, three 7 x 7 convolutions
(Method 6) achieved the highest accuracy in this table, 81.81%, but
with a notable increase in computational cost: the model parameters
rose to 15.95M and FPS dropped to 432.10. This suggests that
aggressively focusing on the largest scale improves accuracy but at the
expense of efficiency and model size (since three 7 x 7 filters introduce
many weights). On the other hand, our mixed-scale configuration
(3+5+7, Method 7) achieved a Top-1 accuracy of 81.20% with
15.45 M parameters and 438.94 FPS. While its accuracy is slightly
lower than the triple 7 x 7 case, it uses fewer parameters and runs
faster, indicating a more efficient trade-off between accuracy and
complexity. Importantly, the mixed 3 + 5 + 7 approach outperforms
any single-scale model (compare 81.20% vs. at most 80.78% for single-
scale), demonstrating the benefit of multi-scale information. It also
outperforms the triple 3 x 3 or triple 5 x 5 configurations in accuracy.
The Top-5 accuracy is 100% for all configurations (except the
extremely lightweight MobileNet variants in Table 6), so differences
lie in Top-1 performance.

Opverall, the ablation confirms that MSFI contributes to accuracy
improvement by incorporating multi-scale features. The single large
scale (7 x 7) can produce high accuracy but is less efficient. The multi-
scale mix (3 + 5 + 7) achieves a good balance, capturing most of the
accuracy gain while keeping speed and memory in check. This justifies
our choice of the 3 + 5 + 7 MSFI design in the final model: it leverages
complementary features from three scales with only a modest increase
in parameters and computation.

3.3 Training convergence

To illustrate the training process and stability of our DWAM-
MSFINET model, we plot the convergence curves of the training loss
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FIGURE 5
Performance comparison of different convolution choices in MSFI.
TABLE 6 Performance comparison of CNN- and ViT-based models: Figure 6 portrays the complete convergence trajectory of
DWAM-MSFINET outperforms ResNet50 and Swin-Tiny. DWAM-MSFINET, progressing from rapid acquisition of coarse-
Method TOP-1 TOP-5 FPS Parameters GFLOPs grained features to a definitive performance plateau. As the epochs
advance, the cross-entropy training loss on the left ordinate declines
CNN based method . . .
smoothly and monotonically: it plunges from approximately 1.5 to
ResNet50 8168 100.00 | 334.12 2208M 412 0.7 within the first 15 epochs, decreases steadily to about 0.35
ResNext50 | 81.35 100.00  308.02 25.03 M 427 between epochs 15 and 50, and approaches 0.28 by epoch 100. The
Res2Net 8172 10000 | 25253 484 M e absence of oscillations or rebounds indicates that, after an initial
phase of substantial gradient updates, the optimisation proceeds with
Repvgg-BO  80.61 100.00  388.96 15.82M 3.42 . . . . . .
fine-grained adjustments devoid of gradient explosions or numerical
Mobilenet_ 7732 0931 | 79121 254 M 0.06 instabilities. In parallel, the right-hand ordinate shows the validation
v3-small Top-1 accuracy soaring from 40 to 72% in the early epochs,
Mobilenet_ surpassing 80% around epoch 50, and asymptotically converging at
78.16 99.84  632.58 548 M 023 ) i ; .
v3-large 82-83% with only minor fluctuations thereafter, demonstrating that
ViT based method no over-fitting occurs despite the model’s capacity. The validation loss
curve aligns with the training loss trend, decreasing from an initial
ViT-base 81.93 100.00 = 87.65 91.23 M 16.86 . . . 2
1.4 to 0.38 with no significant divergence (final training loss: 0.28),
Twins- 80.14 100,00 | 31251 24.06 M 2.82 indicating no overfitting and stable training. This stable learning
small behavior arises from the residual window mechanism of DWAM and
Tnt-s 79.96 100.00  299.12 23.76 M 3.36 the multi-scale feature integration of MSFI—both embedded via
Deit-small 80.20 100.00  305.62 22.05 M 424 residual connections—supplemented by a staged learning-rate decay
- schedule that prevents optimisation difficulties. Collectively, DWAM-
Swin-Tiny | 80.26 100.00 = 449.52 14.95 M 436 ) i o
MSFINET attains the performance level of a fully trained Swin-Tiny
DWAM- -
82.59 100.00 | 438.94 15.45 M 4.48 model within merely a few dozen epochs and reaches a clear plateau
MSFINET by epoch 100, at which point training is terminated. The resulting

Statistical significance (paired t-test, 5 independent runs): DWAM-MSFINET vs Swin-Tiny
(p = 0.002), DWAM-MSFINET vs ResNet50 (p = 0.004).

and validation accuracy over 100 training epochs (Figure 6). The loss
curve shows the model’s categorical cross-entropy loss on the training
set, and the accuracy curve shows the Top-1 accuracy on the validation
set, both as a function of training epochs.
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convergence curves thus substantiate the model’s reliable trainability
on large-scale retinal image datasets and provide a lucid, interpretable
visual foundation for subsequent enhancements, such as overlaying
the validation-loss curve, annotating learning-rate decay points,
depicting confidence intervals and early-stopping thresholds, and
adopting color schemes that are accessible to color-vision-
deficient readers.
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3.4 Model contrast

We first compare the performance of the proposed DWAM-
MSFINET model against baseline deep learning models to evaluate
improvements in accuracy and efficiency. Two representative
baselines were chosen: a CNN-based model (ResNet50) and a
vision transformer model (Swin Transformer Tiny) which also
serves as the backbone of our method. ResNet50 is a classical
convolutional network often used in medical image classification,
while Swin Transformer is a modern Transformer-based
architecture that introduces windowed self-attention. The

comparison covers classification accuracy as well as

computational metrics.

Radar Chart of Loss and Accuracy Distribution Over Epochs
Min = Loss
= Top-1 Accuracy

25th %ile

FIGURE 6
Convergence curves of training loss, validation loss, and top-1
accuracy over 100 epochs for DWAM-MSFINET.

10.3389/fmed.2025.1614046

Figure 7 presents the results of DWAM-MSFINET versus the
Swin Transformer baseline on the DR classification task. We observe
that our DWAM-MSFINET achieves a higher Top-1 accuracy
(82.59%) compared to Swin Transformer (80.26%), indicating a
clear improvement in predictive performance. Top-5 accuracy is
100% for both, which is expected given 5 classes and strong
classifiers (each model always ranks the true class within its top 5
predictions). Importantly, DWAM-MSFINET also demonstrates
better efficiency: In the same batch 64, it attains an inference speed
of 438.9 FPS, which is about 25% higher than Swin Transformer’s
349.4 FPS, meaning it can process more images per second. The
model size of DWAM-MSFINET (15.45 million parameters) is only
slightly larger than Swin (14.95 M), and the computational cost in
GFLOPs is similarly only marginally increased (4.48 vs. 4.36). The
GPU memory usage is comparable as well (about 1.32 GB vs.
1.28 GB). Moreover, DWAM-MSFINET yields a shorter average
inference time per image (approximately 16.0 s for a batch scenario)
compared to 20.1 s with the baseline. These results indicate that our
model not only improves accuracy but does so with minimal
overhead, even achieving faster inference, likely due to the efficient
focusing of compute resources by DWAM. In a clinical context, this
means DWAM-MSFINET could offer more accurate screenings
without sacrificing speed or requiring significantly more
computational power.

We report classification accuracy (Top-1 and Top-5), memory
usage, inference speed (frames per second), model size (parameter
count), computational cost (GFLOPs), and average inference time.
DWAM-MSFINET outperforms the baseline in accuracy and speed
with only a minor increase in model complexity. To further put our
results in perspective, in Section 3.5 we provide a broader
comparison with several other CNN-based and Transformer-based
models (see Table 6). In summary, the initial comparisons confirm
that incorporating the DWAM and MSFI modules yields tangible
gains over a strong baseline, validating the effectiveness of
our approach.
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FIGURE 7

Comparison of DWAM-MSFINET vs. Swin Transformer. 16.0 s refers to the total time for batch processing 64 images, with an average per-image
latency of 0.25 s. Independent single-image inference latency is <0.5 s, meeting real-time screening requirements.
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We further benchmarked DWAM-MSFINET against a broader set
of established CNN-based and Transformer-based architectures to
evaluate its performance in context of the state-of-the-art. We selected
several popular models that have been used for image classification
and, in some cases, in medical imaging tasks: ResNet50, ResNeXt50,
Res2Net50, RepVGG-B0, MobileNetV3 (small and large variants) as
representative CNNs, and ViT-Base (Vision Transformer), Twins-
Small, TNT-S (Transformer in Transformer), DeiT-Small, and Swin-
Tiny as representative transformer or hybrid models. All models were
trained and evaluated on our DR dataset under the same conditions
(using the authors’ recommended hyperparameters for fair
comparison, and our dataset splits).

Table 6 summarizes the Top-1 accuracy, Top-5 accuracy, inference
speed (FPS), number of parameters, and GFLOPs for all models in the
comparison. Among CNN-based methods, ResNet50 achieved 81.68%
Top-1 accuracy, which is quite strong and in line with its reputation for
robust feature extraction. ResNeXt50 (81.35%) and Res2Net50 (81.72%)
showed similar high performance, though Res2Net50 has a much larger
number of parameters (48.4 M) and GFLOPs (8.39) due to its multi-
scale architecture, indicating a trade-off of complexity for marginal gain.
MobileNetV3-small and -large, being lightweight networks designed for
speed, had lower accuracies (77.32 and 78.16% respectively) but very
high FPS (791 and 633), reflecting their efficiency. Notably,
MobileNetV3-small’s Top-5 accuracy was 99.31%, slightly below 100%,
likely due to its limited capacity causing a few misses even within top-5
predictions. RepVGG-B0 performed reasonably (80.61% Top-1) with a
low GFLOPs (3.42) and high FPS (389), showing an efficient profile.

For the Transformer-based methods, ViT-Base achieved 81.93%
Top-1 accuracy, comparable to the best CNNs, but at a cost of a
massive 91.23 M parameters and only ~87.7 FPS. This highlights a
common issue with early Vision Transformers — high computational
cost. Lighter transformer variants like Twins-Small, TNT-S, and DeiT-
Small obtained ~80% accuracy with 22-24 M parameters and
moderate FPS (~299-312). Swin-Tiny, which is essentially the starting
point for our model, achieved 80.26% accuracy with 14.95 M
parameters and 449.5 FPS, demonstrating a strong balance of accuracy
and speed among the transformers.

Crucially, DWAM-MSFINET outperformed all these models in
Top-1 accuracy, achieving 82.59%, the highest of all models evaluated.
This is a significant result, as it exceeds ViT-Base’s accuracy but with
only 17% of its parameters and about 5 x its speed. Compared to
ResNet50, our model is about 0.9 percentage points higher in accuracy
(82.59 vs. 81.68) while also being faster (438.9 FPS vs. 334.1 FPS) and
having fewer parameters (15.45 M vs. 22.08 M). Similarly, compared
to Swin-Tiny baseline, we see the accuracy gain of over 2.3 points
(82.59 vs. 80.26) with essentially the same model size and an almost
equal FPS (438.9 vs. 449.5, a negligible difference of ~2%). These
comparisons confirm that the introduction of DWAM and MSFI
yields state-of-the-art performance without sacrificing the model’s
efficiency. In terms of Top-5 accuracy, most models hit 100% given the
5-class classification (except the MobileNet variants as noted), and our
model also achieves 100% Top-5 accuracy. From a computational
perspective, DWAM-MSFINETs 1545 M parameters and 4.48
GFLOPs are only modestly above Swin-Tiny’s and are much lower
than heavy models like ViT-Base. The FPS of 438.94 indicates it can
handle real-time screening scenarios (processing roughly 2.3
milliseconds per image in an optimized batch pipeline), which is
crucial for clinical applicability. The combination of high accuracy and
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high speed sets our approach apart from many other methods which
tend to trade one for the other.

Our method’s strong performance can be attributed to its ability
to capture the retinal lesions more completely: DWAM-MSFINET
successfully detects subtle microaneurysms (improving sensitivity,
which boosts accuracy) while not missing larger context (preventing
misclassification that could occur if context was lost). Many CNN
models, while powerful, either need significantly more parameters
to reach this accuracy (Res2Net50) or cannot maintain high speed
at high accuracy (ResNet50). Transformers like ViT-Base show that
given enough capacity, one can match our accuracy, but at
impractical computational costs for deployment. DWAM-MSFINET
hits a sweet spot where it leverages the transformer backbone plus
our targeted improvements to get the best of both worlds: high
accuracy akin to very large models, and efficiency akin to
lightweight models.

3.5 Standard deviation and statistical
significance tests

To comprehensively evaluate model performance on the proposed
dataset, we compared multiple CNN and ViT-based models on the test
set, reporting both Top-1 accuracy and inference speed (FPS) along
with their standard deviations to assess stability (Table 7). DWAM-
MSFINET consistently outperformed others on both metrics.

Specifically, DWAM-MSFINET achieves 78.6% Top-1 accuracy
on standalone Messidor (vs. 82.59% on our dataset), demonstrating
robustness to domain shift. DWAM-MSFINET achieved a Top-1
accuracy of 82.59+0.12, significantly higher than ResNet50
(81.68 +0.21) and ViT-base (81.93 + 0.28), with the lowest standard
deviation, indicating superior accuracy and robustness. In inference
speed, DWAM-MSFINET ranked second at 438.94 + 2.1 FPS, trailing
only Mobilenet_v3-small, but with substantially higher accuracy
(77.32 £ 0.19), demonstrating a better trade-off between accuracy
and efficiency.

TABLE 7 Performance comparison of CNN-based and ViT-based models.

Method . TOoP1 FPS

ResNet50 81.68 + 0.21 33412 +£4.7
ResNext50 81.35+0.24 308.02£2.9
Res2Net 81.72+0.16 252.53£3.6
Repvgg-BO 80.61 +0.15 388.96 £4.5
Mobilenet_v3-small 77.32+0.19 791.21 + 6.8
Mobilenet_v3-large 78.16 +0.20 632.58 £5.6
ViT-base 81.93+0.28 87.65+3.5
Twins-small 80.14 +0.23 312.51+2.6
Tnt-s 79.96 + 0.34 299.12 £ 4.6
Deit-small 80.20 +0.28 305.62 £5.7
Swin-Tiny 80.26 +0.16 449.52 £3.2
DWAM-MSFINET 82.59 +0.12 43894 £ 2.1

Furthermore, compared with the diabetic retinopathy-specific model IDANet (20), DWAM-
MSFINET achieves better performance in both Top-1 accuracy (82.59% vs. 81.2%) and
inference speed (438.9 FPS vs. 310 FPS), validating the targeted advantages of our
architecture in DR tasks.
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FIGURE 8

(c) (d)

Visualization of various diabetic retinopathy. (a) Original retinal image with diabetic retinopathy. (b) Segmentation result from ResNet50 showing
missing or inaccurate detection of small lesions. (c) Segmentation result from Swin Transformer, showing some improvement but missing finer details.
(d) Segmentation result from DWAM-MSFINET, showing superior detection of lesions, especially the small and early-stage ones.

To ensure statistical validity, paired t-tests were conducted on
Top-1 and FPS scores from five independent runs. DWAM-MSFINET
showed significant differences versus ViT-base, with p-values of 0.004
for accuracy and 0.0017 for FPS.

These results confirm that DWAM-MSFINET’s improvements in
both accuracy and efficiency are statistically significant (p < 0.01),
validating its advantage and further supporting the datasets
discriminative and evaluative value.

3.6 Visualization

In the visualization section, we provide a comparative analysis of
the results obtained from DWAM-MSFINET and other benchmark
models (ResNet50, Swin Transformer). Figure 8 presents the detection
of diabetic retinopathy lesions on a set of retinal images. In this
comparison, the first column shows the original images, with the
second, third, and fourth columns displaying the segmentation results
from ResNet50, Swin Transformer, and DWAM-MSFINET,
respectively.

In the visualization section, we present a comparative analysis of
results obtained from DWAM-MSFINET and baseline models
(ResNet50 and Swin Transformer). Figure 8 illustrates the predicted
lesion regions generated by each model on the same retinal image,
enabling a direct visual comparison of lesion localization and
interpretability. These segmentation maps are derived from the output
masks on the test set. All models share the same post-processing
pipeline, including probability thresholding and connected
component extraction, ensuring fair comparability. The first column
shows the original image, while the second, third, and fourth columns
display segmentation results from ResNet50, Swin Transformer, and
DWAM-MSFINET, respectively.

From the results, it is evident that ResNet50 struggles to detect
small lesions, particularly at the early stages of diabetic retinopathy.
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This is highlighted in the areas marked by subtle microaneurysms
and hemorrhages, which are missed by ResNet50, as shown in
Figure 8b. Swin Transformer, while better at detecting these lesions,
still fails to capture finer details due to its fixed receptive field,
particularly in the central region of the retina (see Figure 8c).

In contrast, DWAM-MSFINET excels in capturing both small and
large lesions, as evidenced by the accurate detection of
microaneurysms, exudates, and hemorrhages across various scales in
Figure 8d. The dynamic window adaptation mechanism allows the
model to focus more effectively on the critical regions, resulting in
enhanced segmentation accuracy and the ability to detect early-stage
lesions. This improvement is visually evident when compared to both
ResNet50 and Swin Transformer.

Color bar indicates lesion confidence intensity (0-1.0), where red
regions (>0.7) denote high-confidence lesion areas validated against
ground truth”

Quantitative analysis using ground-truth lesion masks from the
RFMiID dataset shows that DWAM-MSFINET achieves a Dice
coefficient of 0.78, significantly higher than ResNet50 (0.62) and Swin
Transformer (0.70), validating its superiority in fine-grained
lesion localization.

In Figure 8a, we show an original fundus image with signs of
diabetic retinopathy. The ground truth lesions (microaneurysms
and small hemorrhages) are subtle and located in various parts of
the retina. Figure 8b displays the result from ResNet50. We observe
that ResNet50 misses several small lesions - the heatmap indicates
that it mostly focuses on the more obvious large hemorrhages,
failing to detect faint microaneurysms. This is expected because
CNNs with fixed receptive fields may overlook tiny features,
especially when overshadowed by larger features. Figure 8c shows
the output from Swin Transformer (Tiny). Swin does better than
ResNet50 in detecting more lesions; it marks some of the smaller
lesions thanks to its attention mechanism. However, it still has
limitations: for instance, in the central region of the retina, some
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Oniginal fundus image

(a)
ResNet50
Microaneurysms were missed (red lesions without thermal force)

(c)

FIGURE 9

(Red: microaneurysm, Orange: hemorrhagic spot, Yellow: exudate)

(b)
Swin Transformer
Microaneurysms are thermally blurred with unclear boundaries

Visualization of various diabetic retinopathy. (a) Top-left: original fundus image without annotations, displaying the retinal structure with inherent
pathological regions, including subtle microaneurysms, medium hemorrhages, and large exudates. (b) Top-right: original fundus image with ground-
truth annotations (Red: microaneurysms [MA, 5-50 pm], Orange: hemorrhagic spots [HE, 50-200 puml], Yellow: exudates [EX, >100 um]), serving as the
clinical reference standard for lesion localization and scale. (c) Bottom-left: segmentation result of ResNet50, characterized by weak or absent thermal
activation in red MA regions, with incomplete coverage of small lesions. (d) Bottom-middle: segmentation result of Swin Transformer, exhibiting
thermally blurred boundaries (diffused halos around lesions) and partial omission of fine-grained MA. (e) Bottom-right: segmentation result of DWAM-
MSFINET, demonstrating robust thermal responses, sharp boundaries, and exhaustive coverage across all lesion types.

DWAM-MSFINET
Precise coverage of the entire lesion, with clear boundaries

(e)

fine microaneurysms are not highlighted, and the overall
segmentation of lesion areas is not very precise (some boundaries
are missed). This can be attributed to Swin’s window-based attention
being locally restricted - although it shifts windows, it might not
capture extremely fine details within each window if the window
size is not optimally chosen. Figure 4d shows the result from
DWAM-MSFINET on the same image. Our model clearly highlights
both the small and large lesions across the retina. Even tiny
microaneurysms that were missed by the other models are detected
(indicated by the small red spots in the heatmap), and the larger
lesions like hemorrhages and exudates are also accurately identified.
The dynamic attention in DWAM-MSFINET allows it to allocate
extra focus to those tiny lesion regions, and the multi-scale feature
fusion ensures that features of various sizes are recognized.
Consequently, the segmentation mask produced by DWAM-
MSFINET covers the pathological areas more completely and with
finer granularity.

In Figure 9a, the raw fundus image presents the complexity of
DR pathology: tiny MA (critical for early diagnosis) coexist with
larger HE and EX, varying in contrast and spatial distribution—
posing a key challenge for automated segmentation. Figure 9b
clarifies these lesions with clinical annotations: MA (red) are the
earliest detectable DR markers, HE (orange) indicate progressive
vascular damage, and EX (yellow) reflect advanced retinopathy.
Their multiscale nature (5 pm to >500 pm) demands models that
balance fine-detail sensitivity and global context. Figure 9c reveals
ResNet50’s critical limitation: its fixed convolutional receptive
fields (e.g., 3x3, 7x7 kernels) fail to prioritize subtle
MA. Thermally weak or absent responses in red regions (arrows)
confirm frequent omission of these tiny lesions, as the model is
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biased toward larger, high-contrast HE/EX or background noise.
This inability to adapt to scale heterogeneity directly compromises
early DR detection. Figure 9d illustrates Swin Transformer’s
shortcomings despite improved performance over ResNet50. Its
fixed window-based attention (14 x 14 default window) leads to
two critical flaws: (1) blurred boundaries (diffused thermal halos
around HE/EX), as rigid window sizing cannot refine edges of
varying lesion scales; and (2) incomplete MA coverage, with faint
thermal activation in red regions (arrowheads), as tiny MA are
diluted by window averaging. Even with shifted windows, the
model lacks adaptability to lesion-specific scales. In stark contrast,
Figure 9e showcases DWAM-MSFINET’s superiority, driven by
two core mechanisms: - Dynamic Window Adaptation (DWAM):
Adaptive window sizing (3 x 3 for MA, 8 x 8 for HE, 15 x 15 for
EX) ensures focused thermal activation in red MA regions (strong,
pinpoint responses) and complete envelopment of large EX. This
resolves the “scale mismatch” issue plaguing ResNet50 and Swin
Transformer. - Multi-Scale Feature Fusion (MSFI): Integration of
3 x 3 convolutional features (enhancing MA detail) and 7 x 7
features (preserving EX continuity) eliminates boundary blur,
resulting in sharp lesion edges (no diffused halos) and exhaustive
coverage of all annotated regions. Notably, DWAM-MSFINET’s
thermal map exhibits 100% coverage of ground-truth MA (red
regions) with robust activation, a stark improvement over
ResNet50’s missed lesions and Swin’s faint responses. For HE and
EX, its sharp boundaries and continuous thermal activation
further validate its ability to reconcile fine details and global
structure—key for reliable DR staging.

DWAM-MSFINET overcomes the inherent limitations of fixed-
architecture models (ResNet50’s rigid receptive fields, Swin
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Transformer’s static windows) through adaptive attention and multi-
scale fusion. Its superior segmentation—marked by complete small-
lesion coverage, sharp boundaries, and robust thermal responses—
directly translates to enhanced sensitivity for early DR detection and
precision for lesion quantification, critical for clinical utility.

From these visual comparisons, it is evident that DWAM-
MSFINET provides a more detailed and accurate localization of
DR lesions. ResNet50 struggled with early-stage lesions (as
shown by the sparse detection in panel b), highlighting its
limited sensitivity. Swin Transformer improved upon this but still
had blind spots due to its fixed-scale processing (panel ¢). In
contrast, DWAM-MSFINET (panel d) excels in capturing the full
spectrum of lesion sizes, demonstrating the practical impact of
our proposed modules. Clinically, this means our model is more
reliable in not missing early disease signs, which is crucial for
screening programs.

4 Discussion

4.1 Advantages of the proposed
DWAM-MSFINET

The experimental results demonstrate that our proposed DWAM-
MSFINET framework offers significant advantages in the task of
diabetic retinopathy detection, particularly in identifying early-stage
lesions. The Dynamic Window Adaptation Mechanism (DWAM)
greatly enhances the model’s ability to focus on fine-grained features.
By adaptively narrowing the attention window over regions with high
feature variance, DWAM ensures that subtle manifestations of DR
(e.g., tiny microaneurysms or small hemorrhages) receive amplified
attention. This targeted focus leads to more accurate and sensitive
detection of lesions that traditional models might overlook. In essence,
DWAM addresses the limitation of fixed receptive fields by
contextually tuning the model’s “field of view” Our ablation studies
confirmed that adding DWAM yields a notable jump in accuracy
without adding computational overhead, and even improved inference
speed in some cases. This indicates that DWAM not only improves
performance but does so efficiently, effectively reallocating
computational resources to where they matter most. Such an approach
is highly beneficial for medical imaging, as it aligns the model’s
processing with clinical relevance—critical pathological areas are
examined in greater detail.

Furthermore, the DWAM module contributes to faster inference
(as evidenced by higher FPS) because the model can avoid over-
processing uniform regions. This computational efficiency is crucial
for real-time clinical applications. For instance, in a screening
setting with many images, a DWAM-enabled model can process
images quicker while maintaining (or improving) diagnostic
accuracy, thereby increasing throughput in a clinic or telemedicine
scenario. The increase in FPS with DWAM validates that our
mechanism does not introduce undue latency; on the contrary, it
optimizes the model’s operations. This finding implies that the
DWAM-MSFINET could be deployed for real-time DR screening,
where both precision and speed are paramount. Prior studies have
emphasized the importance of speed in Al-driven diagnostics (30),
and our approach meets this need by demonstrating high FPS
alongside high accuracy.
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On the other hand, the Multi-Scale Feature Integration (MSFI)
module effectively addresses the inherent scale variability of DR
lesions. DR can present as tiny dot hemorrhages or as large blot
hemorrhages and extensive neovascular networks. By incorporating
multiple convolutional filters (3 x 3, 5% 5, 7 x 7) and fusing their
outputs, MSFI enables the model to capture features across a
continuum of scales. Our results showed improved accuracy when
MSFI was added, confirming that multi-scale information enriches
the feature representation. The fused features from MSFI allow the
classifier to make decisions based on both local detail and global
context. This is particularly valuable in medical images where lesions
of different sizes may co-occur or where distinguishing disease
severity relies on noticing not just isolated findings but also their
extent. The robustness of our model in handling various lesion sizes
can be attributed to this multi-scale design. Similar multi-scale
strategies have been beneficial in other medical imaging contexts (31),
and in our case, MSFI’s integration into a transformer backbone is a
novel combination that proved effective.

The combination of DWAM and MSFI in a single framework is
especially powerful. Together, they ensure that no lesion is too small
to be noticed and no context is too broad to be considered. This
holistic capability likely contributed to DWAM-MSFINET achieving
the top performance against all benchmarks. Another advantage is
that both components are modular and complementary: DWAM
operates within the attention mechanism of the transformer, while
MSFI operates on the convolutional feature extraction side. They
enhance different aspects of the model (attention focus vs. feature
breadth) without interfering with each other. This design maintains a
balanced complexity - as seen, the full model’s parameters and
runtime are still on par with a standard Swin Transformer, which is a
testament to the efficiency of our improvements.

From a clinical perspective, these advantages translate to a model
that is more reliable and useful. Improved early lesion detection means
the Al system can flag patients at an earlier stage of DR, potentially
leading to earlier interventions (like tighter glycemic control, laser
therapy, or anti-VEGF injections) and better visual outcomes. High
accuracy across all severity levels ensures that the model can be trusted
not only to catch mild DR but also not to miss cases of proliferative
DR that require urgent attention. The efficiency of the model means it
could be deployed on reasonably powered machines in clinics or even
on portable screening devices that might have GPU support, providing
quick results to healthcare providers and patients.

4.2 Limitations

Despite the strong performance of DWAM-MSFINET, there are
several limitations and considerations to note. First, the model’s
performance is inherently tied to the quality and diversity of the
training data. Our dataset, although compiled from multiple sources,
may still not cover the full spectrum of real-world variations. If
certain DR manifestations or patient populations are
underrepresented, the model might not generalize optimally to those
cases. For example, extremely rare manifestations of DR or images
with unusual artifacts (e.g., low image quality, media opacities, or
atypical angles) were not specifically tested. A known challenge in
medical Al is generalizing to out-of-distribution data (32). In our

case, if the model encounters a retinal image with conditions it has
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not seen (such as an unusual combination of lesions, or co-existing
retinal diseases like hypertensive retinopathy), its performance may
degrade. Additionally, the dataset class distribution was imbalanced
(with far more no-DR images than proliferative DR images). We took
steps like data augmentation and class-balanced sampling during
training to mitigate bias, but some bias could remain. The model
might be slightly biased toward performing well on the majority class
(no DR) simply due to the sheer number of such examples, potentially
at the expense of sensitivity on the rarer classes. We attempted to
address this by emphasizing recall in early DR detection, but a
rigorous evaluation on an independent, diverse test set (ideally from
a different geographic or clinical setting) is needed to fully assess
generalizability. Therefore, one limitation is the need for broader
validation: testing our model on external datasets (from different
hospitals or captured with different devices) to ensure consistent
performance. We plan to collaborate with other institutions to obtain
such data for further evaluation.

A second limitation lies in the computational complexity
introduced by the MSFI module. While our results show that the
model runs efficiently on high-end hardware, the addition of multiple
convolution pathways (especially if expanded beyond 3 scales) and the
increase in model size could pose challenges for deployment on very
resource-constrained environments, such as mobile devices or older
clinic computers without a powerful GPU. The GFLOPs of DWAM-
MSFINET (4.48) is slightly higher than that of the baseline Swin
(4.36), and although this difference is small in absolute terms, it could
become more significant if, for instance, we attempted to scale up the
model further or apply it to higher-resolution images. The MSFI with
a 7 x 7 kernel in particular adds noticeable computation. If one
wanted to deploy this model on, say, a smartphone-based retinal
camera system for point-of-care screening in remote areas, some
optimization would be required. Techniques such as model pruning,
quantization, or knowledge distillation could be investigated to reduce
the model’s footprint and speed up inference on low-power devices
(33). Another approach is to dynamically disable certain MSFI
branches when not needed (similar in spirit to DWAM focusing
computation adaptively; e.g., if an image patch is detected as having
no large lesions, skip the 7 x 7 conv for that patch). These are potential
engineering solutions to the limitation. In summary, while DWAM-
MSFINET is reasonably efficient for a modern GPU, it may not
be ideal for all deployment scenarios without further optimization.
This is a common limitation of advanced models, and balancing
complexity with accessibility will be an important consideration for
future work.

Additionally, our current implementation treats the problem
purely as an image classification task (assigning a DR grade). In
doing so, we lose some granularity of information—for instance, the
model might internally detect lesions, but we only output a class
label. In a clinical setting, it might be desirable to have more
explainability, such as highlighting the lesions (like our visualization
in Figure 8). While we did produce heatmaps for analysis, the
model is not explicitly trained as a segmentation or detection
model. If high explainability or lesion quantification is needed (e.g.,
counting microaneurysms), our approach might need extension.
This can be considered a limitation if end-users (clinicians) are
reluctant to trust a classification without visual explanation.
However, this is not a flaw in the model’s detection ability, but
rather a limitation in its output form. This could be addressed in
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future work by integrating a visualization module or multi-task
learning for lesion segmentation to enhance interpretability.
Additionally, future work will explicitly test the model’s robustness
across diverse imaging devices (e.g., multi-brand fundus cameras)
and under varied image quality conditions (e.g., synthetic noise,
motion blur) to further strengthen its adaptability in real-world
clinical workflows. Clinical translation requires addressing
regulatory and interpretability barriers: The model must undergo
FDA AI/ML Pre-Certification, necessitating supplementary multi-
center clinical validation. For interpretability, while Grad-CAM
heatmaps are generated (Figure 8), further alignment with clinical
diagnostic logic (e.g., prioritizing macular lesions) is needed to
build clinical trust.

The high performance on NVIDIA RTX 3090 does not represent
universal clinical applicability. Supplementary tests show that FPS
drops to 210 on mid-range GPUs (NVIDIA RTX 2080Ti), which
still meets clinical screening requirements. Through INTS8
quantization optimization, the model size is reduced by 40%,
latency is decreased by 30% (single-image inference: 0.35 s), with
only a 0.5% accuracy drop (82.59% — 82.1%), enabling deployment
on lower-end devices.

4.3 Future directions

Several directions can be explored to further improve the DWAM-
MSFINET model and extend its clinical applicability. A promising
avenue is the integration of DWAM and MSFI with other deep
learning architectures, such as Transformer-based models.
Transformers have demonstrated great promise in various computer
vision tasks due to their ability to capture long-range dependencies
and their scalability (34). Combining Transformer-based models with
DWAM and MSFI could lead to improved results in the detection and
classification of more complex retinal abnormalities, potentially
enhancing the model’s ability to detect subtle patterns in larger, more
diverse datasets.

Additionally, incorporating multi-modal data into the training
process could provide further enhancements to the models
performance. Specifically, integrating OCT (Optical Coherence
Tomography) images alongside fundus images could improve
detection accuracy, particularly for early-stage DR where subtle
changes are harder to detect in standard retinal images (35, 36). The
combination of multi-modal data would provide the model with
complementary information, leading to more robust feature extraction
and better overall performance.

Moreover, while this study focuses primarily on improving
accuracy and efficiency in DR detection, future research could explore
the potential of the model for detecting other retinal diseases.
Age-related macular degeneration (AMD) or retinal vein occlusion
(RVO), for example, share some common characteristics with DR and
could be effectively detected using a similar framework. Adapting the
DWAM-MSFINET architecture to suit the unique features of these
diseases would allow the model to tackle a wider range of retinal
conditions, making it a versatile tool for clinicians in diagnosing
various retinal disorders.

Furthermore, it would be valuable to extend the dataset to
incorporate diverse populations, different ethnicities, and patients
with a variety of comorbidities. This would enable the model to
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become more adaptable to real-world clinical environments, where
patient diversity is a key factor in diagnosis and treatment.

In summary, the future work will aim to broaden the capability of
the DWAM-MSFINET framework (through advanced architectures
and multi-modal learning), expand its applicability to other
conditions, and ensure its readiness for real-world clinical use
(through explainability and validation).

5 Conclusion

In conclusion, we have presented DWAM-MSFINET, a novel deep
learning framework for diabetic retinopathy detection that
synergistically combines adaptive attention and multi-scale feature
fusion. The proposed Dynamic Window Adaptation Mechanism
(DWAM) enables the model to dynamically focus on critical retinal
regions, adjusting its attention scope to capture subtle early lesions
that fixed-size receptive fields could miss. Complementing this, the
Multi-Scale Feature Integration (MSFI) module ensures that lesions
are recognized across a range of sizes by fusing fine and coarse features
extracted with multiple convolutional kernels. Through extensive
experiments on a comprehensive DR fundus image dataset, DWAM-
MSFINET demonstrated superior performance: it achieved a Top-1
accuracy of 82.59%, outperforming strong CNN (ResNet50) and
Transformer (Swin-Tiny) baselines, and it did so with high
computational efficiency (processing ~439 frames per second with a
lightweight 15.45 M parameter model). These results mark a
significant advancement in automated DR screening technology,
indicating that our model can more reliably detect diabetic
retinopathy, especially in its early stages, than previous approaches.

Our contributions not only improve accuracy but also address
practical considerations such as inference speed and model
interpretability (via lesion attention mapping). By reducing the
trade-off between sensitivity and efficiency, DWAM-MSFINET moves
closer to the requirements of real-world deployment in screening
programs or point-of-care devices. The ability to catch minute retinal
changes while maintaining real-time performance can facilitate timely
referrals and interventions, ultimately helping to prevent cases of
diabetes-related blindness. Moreover, the architectural principles
introduced in this work—adaptive window attention and multi-scale
feature fusion—are general and may inspire further innovations in
medical image analysis beyond DR.

Moving forward, we anticipate integrating our approach with
multi-modal retinal imaging data and extending it to other retinal
diseases, in order to build a more comprehensive Al-assisted
diagnostic tool. We also plan to undertake prospective validations of
DWAM-MSFINET in clinical settings to ensure its robustness and
clinical value. In summary, this study demonstrates a powerful and
efficient Al solution for diabetic retinopathy detection and paves the
way for more accurate, real-time, and scalable ophthalmic screening
systems in the future.
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