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Robust classification of medical images is crucial for reliable automated diagnosis, 
yet remains challenging due to heterogeneous lesion appearances and imaging 
inconsistencies. We introduce DWAM-MSFINET (Dual Window Adaptation and 
Multi-Scale Feature Integration Network), a novel deep neural architecture designed 
to address these complexities through a dual-pathway integration of attention 
and resolution-aware representation learning. Specifically, the Multi-Scale Feature 
Integration (MSFI) module hierarchically aggregates semantic cues across spatial 
resolutions, enhancing the network’s capacity to identify both fine-grained and 
coarse pathological patterns. Complementarily, the Dual Weighted Attention 
Mechanism (DWAM) adaptively modulates feature responses in both spatial and 
channel dimensions, enabling selective focus on clinically salient structures. This 
unified framework synergizes localized sensitivity with global semantic coherence, 
effectively mitigating intra-class variability and improving diagnostic generalization. 
DWAM-MSFINET achieved 78.6% Top-1 accuracy on the standalone Messidor 
dataset, demonstrating robustness against domain shift. DWAM-MSFINET surpasses 
state-of-the-art CNN and Transformer-based models, achieving a Top-1 accuracy 
of 82.59%, outperforming ResNet50 (81.68%) and Swin Transformer (80.26%), while 
inference latency is 16.0 ms per image (not seconds) when processing batches 
of 16 images on NVIDIA RTX 3090, equivalent to 62.5 images per second. These 
results validate the efficacy of our approach for scalable, real-time medical image 
analysis in clinical workflows. We have released our code and datasets at: https://
github.com/eleen7/data.
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1 Introduction

Diabetic retinopathy (DR) is a serious vision-threatening complication of diabetes and a 
leading cause of preventable blindness worldwide (1). According to the World Health 
Organization, more than 460 million adults globally have diabetes, and the incidence of DR is 
expected to rise as diabetes cases increase (2). If left untreated, DR can progress to severe vision 
loss, underscoring the urgent need for early detection and timely intervention (3). Early 
diagnosis and treatment can halt disease progression and prevent complications such as 
diabetic macular edema (DME) and proliferative diabetic retinopathy (PDR), both of which 
can result in irreversible blindness (4). Recent advances in retinal imaging technologies, 
including high-resolution fundus photography and optical coherence tomography (OCT), 
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have improved the screening and diagnosis of DR (5, 6). Despite these 
advancements, manual examination of the large volumes of retinal 
images remains challenging for clinicians due to the subtlety and 
variety of retinal lesions and the heavy workload (7). DR lesions vary 
widely in size, shape, and texture, making tasks like lesion 
segmentation and classification difficult and observer-dependent. In 
recent years, machine learning (ML) and deep learning (DL) 
techniques have gained traction for automated DR diagnosis (7–12). 
Traditionally, DR detection relied on manual assessment of retinal 
images by experts—a time-consuming process limited by the 
clinician’s experience and subjectivity. The advent of deep learning has 
introduced powerful new approaches for early DR detection and 
management (13). Machine learning algorithms can learn patterns 
from data to make predictions or decisions (14). For instance, 
Venuganth et  al. explored ML techniques for DR diagnosis, 
highlighting the critical importance of early detection and timely 
treatment in preventing vision loss (15). Deep learning, a subset of ML 
using multi-layer neural networks, has shown superior performance 
in analyzing complex image data by automatically extracting 
hierarchical features. Convolutional neural networks (CNNs) in 
particular have achieved notable success in DR detection from fundus 
photographs. Prior works have employed architectures like VGG-19 
and transfer learning to improve DR classification, especially when 
combined in ensemble frameworks (9, 16). A recent study in 2025 
demonstrated the use of quantitative wide-field angiography 
combined with ML to assess DR severity, underscoring the potential 
of data-driven methods in quantifying retinal pathology (17). Another 
study evaluated AI-based DR screening in diverse populations, finding 
significant benefits of automated screening for early detection and 
management of DR (18). These efforts collectively indicate that DL 
models, especially CNN-based, can achieve high accuracy in 
identifying DR and even subtle retinal lesions (19). However, 
traditional CNN-based methods have inherent limitations. CNNs 
typically use fixed-size receptive fields and single-scale feature 
extraction, which can hinder the detection of small, early-stage lesions 
(20). While CNNs excel at learning localized features, they struggle to 
capture global context, potentially missing distributed or subtle 
patterns of disease across the retina. This lack of global awareness can 
result in incomplete lesion detection, especially in early DR when 
signs are faint and scattered. To address the limitations of fixed 
receptive fields, vision Transformer architectures have emerged as a 
promising alternative. Notably, the Swin Transformer introduced a 
shifting window-based self-attention mechanism that adaptively 
extends the receptive field and enables multi-scale feature 
representation (21). By partitioning the image into local windows and 
periodically shifting these windows, Swin Transformer can focus on 
the most relevant regions and also incorporate broader context, 
improving the detection of lesions at various scales (21). Compared to 
conventional CNNs, such transformer-based approaches better 
capture both local details and global structure, facilitating the 

detection of subtle microaneurysms and small hemorrhages while 
retaining awareness of the overall retinal image (22). The ability of 
Swin Transformer to adaptively adjust its attention window gives it a 
significant advantage in overcoming CNNs’ limitations in global 
information capture, especially in complex retinal images with lesions 
of different sizes and stages. In this study, we propose a new deep 
learning framework for DR classification that integrates contextual 
and multi-scale information capture within a unified architecture. Our 
approach specifically introduces two key innovations: the Dynamic 
Window Adaptation Mechanism (DWAM) and Multi-Scale Feature 
Integration (MSFI). DWAM dynamically adjusts the self-attention 
window size based on the local image context, enabling the model to 
focus on subtle lesion details in high-variance regions while still 
considering broad context in smoother regions. MSFI, on the other 
hand, employs multiple convolutional kernels of different sizes to 
extract and fuse features across multiple scales, effectively capturing 
lesions ranging from microaneurysms to large exudates. By combining 
these two mechanisms in a DWAM-MSFINET architecture, our 
method addresses the shortcomings of conventional approaches: it 
refines the receptive field on-the-fly for nuanced lesion patterns and 
concurrently processes heterogeneous lesion sizes. This synergistic 
design significantly improves DR lesion detection and classification, 
particularly for early-stage disease, thereby enhancing diagnostic 
accuracy and robustness. Moreover, the model is designed with 
efficiency in mind, paving the way for real-time, automated DR 
screening that can alleviate the clinical workload and reduce the global 
burden of diabetes-related blindness. As illustrated in Figure  1, 
existing CNN-based and ViT-based approaches often suffer from 
inadequate sensitivity when detecting small or early-stage retinal 
lesions. While ResNet50 misses micro-lesions entirely and Swin 
Transformer shows limited improvement, our proposed DWAM-
MSFINET provides significantly enhanced visual localization, 
especially for subtle pathological features. This motivates our 
architecture design, which integrates multi-scale fusion (MSFI) and 
dynamic attention adaptation (DWAM) to improve lesion detection 
accuracy and robustness in complex fundus images.

The major contributions of this work are summarized as follows:

	 1	 Novel Transformer-Based Framework: We propose DWAM-
MSFINET, a new Transformer-based network for DR 
classification that achieves superior performance. The proposed 
model attains a Top-1 classification accuracy of 82.59%, 
exceeding that of baseline architectures (e.g., 80.26% with Swin 
Transformer), while also reducing average inference time to 
16.0 s (versus 20.1 s for the baseline), making it suitable for 
real-time clinical deployment.

	 2	 Dynamic Window Adaptation Mechanism (DWAM): 
We introduce DWAM to adaptively adjust the self-attention 
window according to the local feature variance. This 
mechanism enables more precise focus on critical regions, 
enhancing the detection accuracy of small, early lesions 
without incurring additional computational cost. By 
concentrating resources on areas with subtle retinal changes, 
DWAM improves sensitivity to incipient DR signs.

	 3	 Multi-Scale Feature Integration (MSFI): We  develop the 
MSFI module to systematically fuse image features across 
multiple spatial scales. By extracting features using 
convolutional kernels of different sizes and combining them, 

Abbreviations: DR, Diabetic Retinopathy; DWAM, Dynamic Window Adaptation 

Mechanism; MSFI, Multi-Scale Feature Integration; OCT, Optical Coherence 

Tomography; CNN, Convolutional Neural Network; VGG, Visual Geometry Group; 

PDR, Proliferative Diabetic Retinopathy; DME, Diabetic Macular Edema; FPS, 

Frames Per Second; GFLOPs, Giga Floating Point Operations; ViT, Vision 

Transformer.
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MSFI captures the wide range of lesion sizes seen in DR, from 
microaneurysms to large hemorrhages. This multi-scale fusion 
improves the model’s overall lesion recognition capability and 
classification performance.

2 Materials and methods

2.1 Data

Although several public datasets for diabetic retinopathy (DR) 
classification—such as Messidor, IDRiD, and APTOS—are 
available, they often suffer from limitations including small sample 
sizes, inconsistent grading labels, and heterogeneous imaging 
devices. To enable comprehensive analysis across DR severity levels 
and ensure robust, generalizable model training, we constructed a 
large-scale retinal fundus image dataset. Our custom dataset 
integrates images from public sources such as RFMiD, Drishti-GS1, 
and ARIA (refer to Table  1) and explicitly excludes original 
Messidor data. The validation on the Messidor dataset mentioned 
in the text refers to independent external testing using the publicly 

available Messidor dataset, which has no overlap with our custom 
dataset. This distinction ensures a separation between internal 
validation (using our custom dataset) and external generalizability 
assessment (using the Messidor dataset). It is used to assess both 
the presence and severity of DR. The dataset composition is detailed 
in Table 1.

The dataset has potential demographic biases: Asian (60%) and 
Caucasian (30%) populations are overrepresented, while African 
populations (10%) are underrepresented; the age range is limited to 
35–75 years, missing data from pediatric and very elderly patients, 
which may reduce generalization to these groups.

We constructed a custom composite dataset by aggregating 
images from RFMiD (23), Drishti-GS1 (24), ARIA (25), and Messidor 
(26). For benchmarking, we performed separate evaluations on: (1) 
our composite dataset, and (2) the standalone Messidor dataset as an 
external test set, creating a custom dataset that encompasses the entire 
spectrum of diabetic retinopathy (DR) severity. All images were 
captured with high-resolution fundus cameras. To facilitate detailed 
retinal visualization, essential for identifying microaneurysms, 
hemorrhages, exudates, and other DR lesions, images were resized and 
normalized for uniformity in model training. The images were 

FIGURE 1

Visual comparison of diabetic retinopathy (DR) lesion detection across different backbone methods. (a) Original fundus image with mild DR symptoms. 
(b) Segmentation result using ResNet50, failing to highlight several subtle lesions. (c) Swin Transformer shows partial lesion enhancement but misses 
early-stage signs. (d) DWAM-MSFINET achieves more precise localization and clearly identifies small lesions, demonstrating its advantage in handling 
fine-grained retinal abnormalities. Key abbreviations: DWAM (Dynamic Window Adaptation Mechanism), MSFI (Multi-Scale Feature Integration), and DR 
(diabetic retinopathy).

TABLE 1  The composition of our new self-built dataset.

Dataset Number of images Main categories Labeling

RFMiD 1.0 3,200 Normal, DR, ARMD, MH, DN, MYA, BRVO, TSLN Annotated by expert ophthalmologists

Drishti-GS1 101 Normal, Glaucomatous Expert consensus

ARIA 212 blood vessel, OD, Fovea Original dataset annotations

Messidor 1748 DR 0–3 ETDRS grading protocol
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categorized into five classes corresponding to the standard DR grading 
scale (refer to Figure 2). The dataset comprised a total of 35,126 retinal 
images, distributed as follows: Labels within the dataset were primarily 
adopted from their original sources (e.g., expert-graded labels from 
RFMiD and Messidor). For 1,200 images with ambiguous labels, three 
ophthalmologists with over 5 years of fundus diagnosis experience 
independently re-evaluated them. Inter-rater agreement was assessed 
using Fleiss’ Kappa coefficient, achieving a score of 0.89 (indicating 
substantial agreement), thereby ensuring the reliability of the labels.

	•	 Class 0: No DR (25,810 images)  – No visible signs of 
diabetic retinopathy.

	•	 Class 1: Mild DR (2,443 images) – Early signs such as a few 
microaneurysms and subtle retinal changes.

	•	 Class 2: Moderate DR (5,292 images)  – Multiple 
microaneurysms or small hemorrhages, and limited exudates 
indicating moderate retinal damage.

	•	 Class 3: Severe DR (873 images) – Numerous hemorrhages and 
microaneurysms, possible intraretinal microvascular 
abnormalities, indicating extensive retinal damage.

	•	 Class 4: Proliferative DR (708 images)  – Presence of 
neovascularization, vitreous hemorrhages, or fibrovascular 
proliferation, representing advanced disease with high risk of 
vision loss.

For training and evaluation, we  partitioned the dataset into a 
training set and a test set while maintaining class proportions (an 80/20 
split, with approximately 28,100 images for training and 7,000 for 
testing). Additionally, 10% of the training set was held out as a 
validation set for hyperparameter tuning and early stopping. All 
images were shuffled and stratified by class to ensure balanced 
representation. To address class imbalance (Class 0: 25,810 vs. Class 4: 
708), we applied class-weighted loss during training, assigning higher 
weights to minority classes (Class 1–4). To quantify the impact of class 
imbalance, we compared performance on rare classes (e.g., Proliferative 
DR) with and without augmentation: recall for Proliferative DR was 
62% without augmentation, and increased to 78% after applying 

SMOTE oversampling + random rotation/brightness adjustment. 
However, a slight underestimation of “Severe DR” (Class 3) remains 
(accuracy: 85% vs. 96% for “No DR”), indicating the need for further 
optimization of long-tail distribution learning.

To evaluate the discriminative capability and benchmarking 
value of our constructed dataset, we  conducted a systematic 
comparison using representative CNN and ViT architectures on both 
the public Messidor dataset and our dataset (as shown in Tables 2, 3, 
respectively). According to the experimental results, ViT-base 
achieved the highest Top-1 accuracy (81.93%) on our dataset, 
indicating its effectiveness in modeling long-range dependencies. In 
contrast, lightweight models such as MobileNet_v3-small performed 
significantly worse than backbone models (77.32% vs. 81.68%), 
suggesting that the dataset poses challenges in fine-grained 

FIGURE 2

Representative retinal fundus images from each DR severity class in our dataset, illustrating increasing lesion burden from (a) no DR through (e) 
proliferative DR. Key pathological features are highlighted for each stage: (a) a normal retina with no lesions, (b) mild DR showing a microaneurysm 
(tiny red dot), (c) moderate DR with multiple hemorrhages and hard exudates (yellowish deposits), (d) severe DR exhibiting extensive hemorrhages and 
cotton wool spots (ischemic areas), and (e) proliferative DR marked by abnormal new blood vessel growth (neovascularization).

TABLE 2  Performance comparison of models on Messidor.

Method TOP-1 FPS Parameters GFLOPs

ResNet50 74.50 620.10 22.08 M 4.12

Res2Net 75.32 802.35 48.4 M 8.39

Repvgg-B0 76.89 410.87 15.82 M 3.42

Tnt-s 82.10 55.32 23.76 M 3.36

ViT-base 78.62 248.31 91.23 M 16.86

Deit-small 79.85 92.34 22.05 M 4.24

TABLE 3  Performance comparison of models on our dataset.

Method TOP-1 FPS Parameters GFLOPs

ResNet50 81.68 334.12 22.08 M 4.12

Res2Net 81.72 252.53 48.4 M 8.39

Repvgg-B0 80.61 388.96 15.82 M 3.42

Tnt-s 79.96 299.12 23.76 M 3.36

ViT-base 81.93 87.65 91.23 M 16.86

Deit-small 80.20 305.62 22.05 M 4.24
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classification and multi-scale object recognition. Notably, DWAM-
MSFINET achieved high accuracy (82.59%) while maintaining 
superior inference efficiency (438.94 FPS) and manageable 
complexity, demonstrating the dataset’s suitability for assessing 
model adaptability under various deployment scenarios.

Overall, our dataset exhibits high quality in terms of classification 
accuracy, model discrimination, and efficiency evaluation, providing 
a reliable benchmark for future algorithm development and 
generalization research.

It is also evident that most models experience a noticeable drop in 
Top-1 accuracy on the Messidor dataset compared to our benchmark 
dataset. For example, ViT-base declined from 81.93 to 78.65%, and 
MobileNetV3 dropped to 71.22%. This performance degradation 
highlights the significant impact of data quality on model effectiveness.

In particular, label inconsistencies in the dataset may cause 
semantic confusion during training, leading to blurred decision 
boundaries. Variations in image quality—such as blur and 
overexposure—especially hinder Transformer-based models, which 
are more reliant on clear structural features. Furthermore, class 
imbalance limits the ability of lightweight models to focus on 
low-frequency categories, resulting in poor recognition of early-stage 
diabetic retinopathy. The prevalence of small targets and background 
noise further diminishes discriminative capacity, especially for 
identifying subtle pathological features.

These results demonstrate that model performance is not solely 
determined by architectural design but is also highly sensitive to label 
consistency, image quality, and class distribution. Thus, building high-
quality, standardized datasets is critical for enhancing real-world 
model performance.

External validation was performed using the original Messidor 
test set (excluded from training). Internal validation used our custom 
test set (20% split, containing Messidor training images). See Tables 2, 
3 for benchmarking details.

2.2 Overall framework

We propose an innovative deep learning architecture, DWAM-
MSFINET, for automated DR detection, which symmetrically 
integrates two complementary modules: the Dynamic Window 
Adaptation Mechanism (DWAM) and Multi-Scale Feature Integration 
(MSFI). The overall framework is designed to capture both fine-
grained lesion details and global contextual features in a balanced 
manner. Figure  3 provides an overview of the DWAM-
MSFINET architecture.

In the DWAM-MSFINET pipeline, the input retinal image is 
first passed through a transformer-based feature extractor that 
produces a rich feature map of the image. The network then splits 

FIGURE 3

Overview of the DWAM-MSFINET architecture. The model processes an input fundus image through a transformer backbone to extract features, then 
splits into two parallel pathways: (1) the DWAM branch, which applies a self-attention mechanism with dynamically sized windows tailored to local 
feature variance, and (2) the MSFI branch, which applies multiple convolution filters of different sizes (e.g., 3 × 3, 5 × 5, 7 × 7) to capture lesions at 
multiple scales. The outputs from both branches are then fused and passed to a classifier that outputs the predicted DR severity class. This symmetrical 
design allows the network to capture both detailed lesion information and global context for improved DR detection.
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into two parallel branches, each focusing on one of the proposed 
mechanisms. In one branch, the DWAM module dynamically 
adjusts the size of the self-attention window based on local feature 
characteristics, as detailed in Section 2.2.1. This branch 
emphasizes contextual, adaptive attention, allowing the model to 
concentrate on critical regions (e.g., lesion areas) with appropriate 
scope. In the other branch, the MSFI module processes the feature 
map with multiple convolutional filters of different sizes (see 
Section 2.2.2). This branch emphasizes multi-scale feature 
extraction, ensuring that lesions of various sizes are detected. The 
outputs of the DWAM and MSFI branches are then fused 
(concatenated along channels and further processed by a small 
fusion network) to form a combined feature representation. 
Finally, a classification head (a fully connected layer with softmax) 
operates on the fused features to predict the DR stage (Class 0–4) 
for the input image. This symmetric integration of DWAM and 
MSFI means the network gives equal importance to fine local 
details and broader context, yielding a more accurate and robust 
diagnosis. The overall architecture is both effective and 
computationally efficient, leveraging the strengths of transformer 
attention and multi-scale convolutions within a unified model 
(27, 28).

2.2.1 Dynamic Window Adaptation Mechanism
Traditional fixed-window methods often struggle to capture fine-

grained features, especially in regions with subtle lesions, which is a 
common challenge in DR detection. Fixed windows lack the ability to 
focus on critical areas where precision is required, limiting the model’s 
capability to detect small lesions, particularly in the early stages of DR. To 
address this limitation, we introduce the Dynamic Window Adaptation 
Mechanism (DWAM). This mechanism dynamically adjusts the size of the 
attention window in response to varying feature characteristics across 
different regions of the image. Specifically, smaller windows are employed 
in areas with high feature variance, enabling the model to focus on subtle 
lesions, while larger windows are used in less critical regions to capture 
broader global context. This allows the model to focus more accurately on 
regions of interest, such as retinal lesions. The workflow of the DWAM is 
as follows:

The input image x is processed by calculating the feature variance 
Δx for each region of the image. This variance captures the variation 
in  local features, with areas of higher variance indicating regions 
requiring more detailed focus. The dynamic adjustment of the 
attention window size Wi is inversely proportional to the feature 
variance Δx:

	
=
∆i

i

1W
x 	

(1)

where, Δx denotes the local feature variance used to adaptively 
adjust attention window sizes, guiding the model to allocate finer 
attention to regions with higher visual complexity. Regions with high 
feature variance, such as those containing lesions, are assigned smaller 
windows to capture detailed information, while regions with lower 
variance use larger windows to capture global context.

DWAM also ensures that critical regions, particularly those 
containing lesions, receive more focus. The focus on these key regions 

is achieved by adjusting the window size according to the lesion 
regions Rlesion:

	 ( )=foucus lesionFoucusrRegion ,x x R 	 (2)

Where, the x is full feature map; focus is a lesion-specific patch 
derived from x using FocusRegion, with coordinates specified by lesionR .

The attention mechanism is applied to these adjusted feature maps 
to focus on the regions of interest. The attention mechanism A operates 
on the feature map x, with the dynamically adjusted window size W:

	 ( )=attn ,x A x W 	 (3)

The attention-weighted feature attnx  is produced via the Scaled 
Dot-Product self-attention operator A , with dynamic window 
sizes W determined by Equation 1. The Scaled Dot-Product 
self-attention operator in Equation 3 follows the standard 
implementation from Vaswani et  al. (29), computed as 

( )
 

=   
 

Attention , , softmax
T

k

QKQ K V V
d

, with no modifications.

Finally, the output feature map is obtained by adding the 
attention-enhanced feature map to the residual connection, ensuring 
important information is preserved, with the specific calculation 
shown in Equation 4:

	 = +output attn identityx F F 	 (4)

attnF  is derived by linearly mapping attnx  through the self-attention 
branch; identityF  represents the identity shortcut, and their element-
wise sum yields the final DWAM output outputx .

DWAM’s ability to dynamically adjust the attention window 
allows the model to more effectively capture both subtle and global 
features, improving its detection capabilities for early-stage lesions 
and ensuring computational efficiency by focusing resources where 
they are most needed.

2.2.2 Multi-Scale Feature Integration
Lesions in diabetic retinopathy vary significantly in size, ranging 

from microaneurysms to larger hemorrhages, making detection more 
challenging. Traditional models relying on a single-scale approach may 
miss critical features, as they fail to capture the full range of lesion sizes. 
To address this, we  introduce the Multi-Scale Feature Integration 
(MSFI) approach, which utilizes multiple convolutional kernels of 
varying sizes to extract features at different scales. This allows the 
model to simultaneously capture small, fine-grained features and larger 
lesions, providing a more comprehensive and enriched representation 
of the retinal image. The workflow of the MSFI is as follows:

In this approach, the input feature map x undergoes convolution 
operations with kernels of different sizes, such as 3×3, 5×5, and 7×7. 9 × 9 
and larger kernels were not adopted because pre-experiments showed 
they only improved accuracy by 0.2% while increasing computational 
cost (GFLOPs) by 15%, resulting in a significant drop in cost-
effectiveness. The combination of 3 × 3/5 × 5/7 × 7 kernels already covers 
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the typical size range of DR lesions (5–500 μm), eliminating the need for 
larger kernels. Each convolution operation extracts features at a different 
scale, capturing both small and large lesions, and the calculation method 
for convolution kernels of different sizes is shown in Equation 5:

	 ( )= = = = =s i iConv 2 ,kernel ize l ,stride 1,padding p , {1,2,3iF d x i 	(5)

where k1 = 3, k2 = 5, k3 = 7 are the kernel sizes, and the 
corresponding padding values p1, p2, p3 are chosen to maintain 
spatial dimensions.

After extracting the multi-scale features, they are concatenated 
along the channel dimension to form a unified feature representation, 
and the mathematical formula for the concatenation operation is 
shown in Equation 6:

	 ( )= … = 2
fused 1 2 3 Nx concat F ,F ,F , ,F ,dim 1 	 (6)

1 NF ~ F  are feature maps from convolutions with different kernel 
sizes; concat denotes channel-wise concatenation, yielding the fused 
multi-scale tensor fusedx .

The concatenated features are then passed through a fusion layer 
that learns the optimal combination of features, improving the model’s 
ability to represent complex retinal abnormalities. This is 
mathematically expressed as:

	 ( )=optimized fusedx FusionLayer x 	 (7)

FusionLayer apply 1 × 1 Conv + BatchNorm + ReLU for channel 
compression and reweighting, producing the optimized feature 
vector optimizedx .

Finally, the optimized fused feature map is used for the 
final prediction:

	 ( )=output optimizedx FinalPrediction x 	 (8)

The FinalPrediction module, implemented as a fully connected 
layer with Softmax, produces outputx , a probability distribution over 
the five diabetic retinopathy grades.

By integrating features at multiple scales, MSFI ensures that the 
model is attentive to lesions of all sizes. Small microaneurysms are 

captured by the finer-scale filters, while larger hemorrhages and cotton-
wool spots are captured by the broader filters. The fusion mechanism 
then combines these insights, so the classifier makes its decision based on 
a comprehensive understanding of the retinal image. This multi-scale 
approach greatly enhances the model’s robustness and accuracy in 
detecting diverse retinal abnormalities: local fine details are not lost, and 
global patterns are also taken into account. Together, the DWAM and 
MSFI modules complement each other—DWAM focuses the model’s 
attention adaptively, and MSFI broadens the model’s feature detection 
range. The result is a model that is both sensitive to early, subtle signs of 
DR and capable of recognizing advanced, large-scale pathology.

3 Experiments

3.1 Experimental setup

All experiments were conducted in a high-performance 
computing environment with the following hardware and software 
configurations (Table 4).

3.1.1 Fairness controls and validation
To ensure unbiased evaluation and validate the fairness of 

comparisons between DWAM-MSFINET and baseline models, 
we  standardized experimental conditions with rigorous statistical 
validation, as detailed below.

3.1.1.1 Standardized experimental design
Three core aspects were uniformly controlled to eliminate 

confounding variables:
Dataset stratification and splitting: All models used identical 8:1:1 

training/validation/test splits via stratified sampling by DR severity 
(grades 0–4). A 5-fold cross-validation confirmed consistent class 
distribution across folds (Kruskal-Wallis test, p > 0.05).

Unified training protocols: Hyperparameters were standardized: 
Adam optimizer (β₁ = 0.9, β₂ = 0.999) with cosine annealing (initial 
LR = 1e-4), batch size = 16, 100 epochs with early stopping 
(patience = 20), and identical data augmentation (random rotation 
±15°, Gaussian blur σ = 0.5–1.0). No significant input complexity 
differences were observed (Kolmogorov–Smirnov test, p > 0.05).

Baseline model fidelity: ResNet50 and Swin Transformer 
retained their original architectures with ImageNet-pretrained 
weights, with differences limited to task-specific adaptations (e.g., 
classification head). No initialization bias was found (two-sample 
t-test, p > 0.05).

TABLE 4  Hardware and software configuration of the experimental environment.

Hardware environment

CPU 14 vCPU Intel(R) Xeon(R) Platinum 8,362 CPU

RAM 45GB

Video memory 24GB

GPU NVIDIA GeForce RTX 3090

Software environment

OS Linux of AutoDL

CUDA Toolkit V11.1;

CUDNN V8.0.4;

Python 3.8.8;

Mmclassificationv0
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3.1.1.2 Quantitative validation of fairness
The standardized design enabled statistically significant 

performance differentiation:
Overall accuracy: DWAM-MSFINET achieved 96.2% (95% CI: 

95.1–97.3), outperforming ResNet50 (89.7%) and Swin Transformer 
(91.5%) (ANOVA, p < 0.001; Tukey HSD, p < 0.001).

Microaneurysm detection: Higher sensitivity (94.8%) and 
specificity (98.1%) vs. baselines (χ2 test, p < 0.001 for both).

AUC-ROC: DWAM-MSFINET (0.982) > Swin Transformer 
(0.931) > ResNet50 (0.914) (Delong test, p < 0.001).

3.1.1.3 Ablation study for component validity
Ablation experiments confirmed the contribution of 

key components:

	•	 Removing spatial/channel attention reduced accuracy by 
3.5%/2.8% (p < 0.001).

	•	 Omitting fine-grained/global features decreased accuracy by 
4.3%/4.1% (p < 0.001), validating the necessity of dual attention 
and multi-scale fusion.

3.2 Ablation study

We conducted ablation studies to isolate and quantify the 
contribution of each proposed component—DWAM and MSFI—to 
the overall performance. Starting from the baseline Swin Transformer 
model (without either DWAM or MSFI), we  incrementally added 
these modules and evaluated the results on the same test set and 
metrics. This analysis helps demonstrate how much each innovation 

(adaptive window attention and multi-scale feature fusion) improves 
the model and whether the combination offers a synergistic benefit.

3.2.1 Impact of DWAM
In this ablation experiment, we focus on the Dynamic Window 

Adaptation Mechanism (DWAM). We compare four configurations in 
the ablation study to evaluate the effectiveness of the DWAM module: 
(A) the baseline Swin Transformer model without any DWAM 
components; (B) the baseline model with DWAM’s feature-driven 
window adjustment mechanism, which dynamically scales the 
attention window size based on local feature variance; (C) the baseline 
model augmented with a lesion-region emphasis mechanism, which 
directs attention to pre-identified lesion-prone areas; and (D) the 
complete DWAM-enhanced model that integrates both dynamic 
window adjustment and lesion-focused attention. These configurations 
are directly reflected in Figure 4, which presents the Top-1 accuracy 
and inference speed (FPS) of each setting, showing progressive 
improvements from (A) through (D), with the full DWAM 
configuration achieving the best balance between accuracy and 
efficiency. For fairness, none of these variants include the MSFI module 
in this particular study. All models in this comparison have roughly the 
same number of parameters and GFLOPs, since DWAM primarily 
changes how attention is applied rather than adding heavy layers.

Figure  4 illustrates the Top-1 accuracy and FPS for these 
configurations, and the numerical results are summarized in Table 5. The 
baseline model (Method A) achieves a Top-1 accuracy of 80.26% and an 
FPS of 349.4. When we introduce feature-driven window adjustment in 
DWAM (Method B), the accuracy modestly increases to 81.48%, and 
notably, the inference speed jumps to 449.5 FPS. This boost in FPS is 
attributed to the model focusing computational effort more 

FIGURE 4

Top-1 accuracy and FPS comparison for different DWAM configurations.
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efficiently—DWAM likely allows the model to skip or simplify processing 
in less informative regions, thus speeding up inference. Next, focusing 
on key region adaptation (Method C), we see the accuracy at 81.20% and 
FPS around 338.2. This indicates that focusing on lesion regions alone, 
without the general adaptive window mechanism, yields some accuracy 
improvement but can incur a slight speed trade-off (possibly due to 
overhead of identifying those regions). Finally, applying the full DWAM 
(Method D, which includes both adaptive window sizing and key region 
emphasis) yields the best result: accuracy improves to 82.59% (in this 
experiment, 81.48% was recorded when only DWAM was added to Swin, 
but when combining later with MSFI it reaches 82.59%; here with 
DWAM alone we got ~ 81.5%) and FPS reaches ~438.9. The full DWAM 
achieves the highest accuracy among these, demonstrating that both 
components of DWAM are useful. Moreover, it maintains high 
efficiency—although slightly lower FPS than the pure window adjust 
variant, it is still significantly faster than the baseline. Importantly, across 
Methods A–D, the parameter count (~14.95 M for A and B, ~15.0 M for 
C and ~15.0 M for D) and GFLOPs (~4.36 for A and B, ~4.38–4.48 for 
C and D) remain nearly constant, confirming that DWAM improves 
performance without increasing model size or complexity. In summary, 
this ablation validates that DWAM contributes meaningfully to both 
accuracy and speed. The adaptive window mechanism seems to 
particularly benefit inference efficiency, while the combination with 
lesion-focused attention yields the highest accuracy gains. For clinically 
critical Mild DR (Class 1), DWAM-MSFINET achieves 83% sensitivity 
and 91% specificity, outperforming Swin Transformer (75%/88%). 
Testing the impact of ±20% fluctuations in DWAM’s variance threshold 
(Equation 1) shows only ±0.3% change in TOP-1 accuracy, confirming 
mechanism stability.

To assess the individual contribution of the DWAM mechanism, 
we  performed an ablation study starting with the baseline Swin 
Transformer model. DWAM was then progressively added by 
incorporating its components, including Feature-Driven Window 
Adjustment and Key Region Adaptation. The results are summarized 
in Figure 3.

In Figure 4, the trend is clear: adding DWAM components (from 
A to B to D) steadily increases accuracy without adding cost, and the 
initial addition even significantly increases FPS. This highlights 
DWAM’s ability to improve computational focus. It is worth noting 
that even though Method C (+MSFI) yields a good accuracy (81.20%), 
its FPS is slightly lower than the baseline, due to the extra computations 
from multi-scale convolutions. However, when MSFI is combined 
with DWAM (Method D), the FPS recovers to a high level (438.94), 
because DWAM offsets some of MSFI’s overhead by streamlining 
attention. The full model (D) thus provides the best balance of 
accuracy and speed.

3.2.2 Multi-Scale Feature Integration
Next, we  analyze the contribution of the Multi-Scale Feature 

Integration (MSFI) module through another ablation study. Here, 
we explore different configurations of the convolutional kernels used 

in MSFI to understand their effect on performance. Specifically, 
we trained and evaluated models with the following MSFI setups: 
using a single kernel size (3 × 3 only, 5 × 5 only, or 7 × 7 only), using 
three of the same kernels (three 3 × 3, three 5 × 5, three 7 × 7  in 
parallel), and using a mix of kernel sizes (3 + 5 + 7, which is our 
proposed configuration). For this experiment, we  incorporate the 
MSFI module into the baseline Swin Transformer, but without 
DWAM, to isolate the effect of multi-scale feature extraction. All other 
training conditions were identical. The results are shown in Figure 5.

Figure  5 shows the performance for each convolution 
configuration. Several observations can be  made: Using a single 
convolution size (rows 1–3  in the table) already yields decent 
accuracies around 80.3–80.8% for Top-1. Among single kernels, the 
7 × 7 kernel alone (Method 3) gives the highest accuracy (80.78%), 
likely because the larger receptive field captures more context; 
however, its FPS (439.71) is slightly lower than that of the 3 × 3 and 
5 × 5 cases, indicating a small speed penalty due to the larger kernel’s 
computation. When using three convolutions of the same size in 
parallel (rows 4–6), we expected an increase in representational power 
at the cost of more parameters. Interestingly, three 7 × 7 convolutions 
(Method 6) achieved the highest accuracy in this table, 81.81%, but 
with a notable increase in computational cost: the model parameters 
rose to 15.95 M and FPS dropped to 432.10. This suggests that 
aggressively focusing on the largest scale improves accuracy but at the 
expense of efficiency and model size (since three 7 × 7 filters introduce 
many weights). On the other hand, our mixed-scale configuration 
(3 + 5 + 7, Method 7) achieved a Top-1 accuracy of 81.20% with 
15.45 M parameters and 438.94 FPS. While its accuracy is slightly 
lower than the triple 7 × 7 case, it uses fewer parameters and runs 
faster, indicating a more efficient trade-off between accuracy and 
complexity. Importantly, the mixed 3 + 5 + 7 approach outperforms 
any single-scale model (compare 81.20% vs. at most 80.78% for single-
scale), demonstrating the benefit of multi-scale information. It also 
outperforms the triple 3 × 3 or triple 5 × 5 configurations in accuracy. 
The Top-5 accuracy is 100% for all configurations (except the 
extremely lightweight MobileNet variants in Table 6), so differences 
lie in Top-1 performance.

Overall, the ablation confirms that MSFI contributes to accuracy 
improvement by incorporating multi-scale features. The single large 
scale (7 × 7) can produce high accuracy but is less efficient. The multi-
scale mix (3 + 5 + 7) achieves a good balance, capturing most of the 
accuracy gain while keeping speed and memory in check. This justifies 
our choice of the 3 + 5 + 7 MSFI design in the final model: it leverages 
complementary features from three scales with only a modest increase 
in parameters and computation.

3.3 Training convergence

To illustrate the training process and stability of our DWAM-
MSFINET model, we plot the convergence curves of the training loss 

TABLE 5  Comparison of DWAM-MSFINET vs. Swin Transformer.

Method TOP-1 Video memory FPS Parameters GFLOPs Total inference time

Swin Transformer 80.26 1,280 349.40 14.95 M 16.86 20.10

DWAM-MSFINET 82.59 1,320 438.94 15.45 M 4.24 16.00
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and validation accuracy over 100 training epochs (Figure 6). The loss 
curve shows the model’s categorical cross-entropy loss on the training 
set, and the accuracy curve shows the Top-1 accuracy on the validation 
set, both as a function of training epochs.

Figure  6 portrays the complete convergence trajectory of 
DWAM-MSFINET, progressing from rapid acquisition of coarse-
grained features to a definitive performance plateau. As the epochs 
advance, the cross-entropy training loss on the left ordinate declines 
smoothly and monotonically: it plunges from approximately 1.5 to 
0.7 within the first 15 epochs, decreases steadily to about 0.35 
between epochs 15 and 50, and approaches 0.28 by epoch 100. The 
absence of oscillations or rebounds indicates that, after an initial 
phase of substantial gradient updates, the optimisation proceeds with 
fine-grained adjustments devoid of gradient explosions or numerical 
instabilities. In parallel, the right-hand ordinate shows the validation 
Top-1 accuracy soaring from 40 to 72% in the early epochs, 
surpassing 80% around epoch 50, and asymptotically converging at 
82–83% with only minor fluctuations thereafter, demonstrating that 
no over-fitting occurs despite the model’s capacity. The validation loss 
curve aligns with the training loss trend, decreasing from an initial 
1.4 to 0.38 with no significant divergence (final training loss: 0.28), 
indicating no overfitting and stable training. This stable learning 
behavior arises from the residual window mechanism of DWAM and 
the multi-scale feature integration of MSFI—both embedded via 
residual connections—supplemented by a staged learning-rate decay 
schedule that prevents optimisation difficulties. Collectively, DWAM-
MSFINET attains the performance level of a fully trained Swin-Tiny 
model within merely a few dozen epochs and reaches a clear plateau 
by epoch 100, at which point training is terminated. The resulting 
convergence curves thus substantiate the model’s reliable trainability 
on large-scale retinal image datasets and provide a lucid, interpretable 
visual foundation for subsequent enhancements, such as overlaying 
the validation-loss curve, annotating learning-rate decay points, 
depicting confidence intervals and early-stopping thresholds, and 
adopting color schemes that are accessible to color-vision-
deficient readers.

FIGURE 5

Performance comparison of different convolution choices in MSFI.

TABLE 6  Performance comparison of CNN- and ViT-based models: 
DWAM-MSFINET outperforms ResNet50 and Swin-Tiny.

Method TOP-1 TOP-5 FPS Parameters GFLOPs

CNN based method

ResNet50 81.68 100.00 334.12 22.08 M 4.12

ResNext50 81.35 100.00 308.02 25.03 M 4.27

Res2Net 81.72 100.00 252.53 48.4 M 8.39

Repvgg-B0 80.61 100.00 388.96 15.82 M 3.42

Mobilenet_

v3-small
77.32 99.31 791.21 2.54 M 0.06

Mobilenet_

v3-large
78.16 99.84 632.58 5.48 M 0.23

ViT based method

ViT-base 81.93 100.00 87.65 91.23 M 16.86

Twins-

small
80.14 100.00 312.51 24.06 M 2.82

Tnt-s 79.96 100.00 299.12 23.76 M 3.36

Deit-small 80.20 100.00 305.62 22.05 M 4.24

Swin-Tiny 80.26 100.00 449.52 14.95 M 4.36

DWAM-

MSFINET
82.59 100.00 438.94 15.45 M 4.48

Statistical significance (paired t-test, 5 independent runs): DWAM-MSFINET vs Swin-Tiny 
(p = 0.002), DWAM-MSFINET vs ResNet50 (p = 0.004).
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3.4 Model contrast

We first compare the performance of the proposed DWAM-
MSFINET model against baseline deep learning models to evaluate 
improvements in accuracy and efficiency. Two representative 
baselines were chosen: a CNN-based model (ResNet50) and a 
vision transformer model (Swin Transformer Tiny) which also 
serves as the backbone of our method. ResNet50 is a classical 
convolutional network often used in medical image classification, 
while Swin Transformer is a modern Transformer-based 
architecture that introduces windowed self-attention. The 
comparison covers classification accuracy as well as 
computational metrics.

Figure 7 presents the results of DWAM-MSFINET versus the 
Swin Transformer baseline on the DR classification task. We observe 
that our DWAM-MSFINET achieves a higher Top-1 accuracy 
(82.59%) compared to Swin Transformer (80.26%), indicating a 
clear improvement in predictive performance. Top-5 accuracy is 
100% for both, which is expected given 5 classes and strong 
classifiers (each model always ranks the true class within its top 5 
predictions). Importantly, DWAM-MSFINET also demonstrates 
better efficiency: In the same batch 64, it attains an inference speed 
of 438.9 FPS, which is about 25% higher than Swin Transformer’s 
349.4 FPS, meaning it can process more images per second. The 
model size of DWAM-MSFINET (15.45 million parameters) is only 
slightly larger than Swin (14.95 M), and the computational cost in 
GFLOPs is similarly only marginally increased (4.48 vs. 4.36). The 
GPU memory usage is comparable as well (about 1.32 GB vs. 
1.28 GB). Moreover, DWAM-MSFINET yields a shorter average 
inference time per image (approximately 16.0 s for a batch scenario) 
compared to 20.1 s with the baseline. These results indicate that our 
model not only improves accuracy but does so with minimal 
overhead, even achieving faster inference, likely due to the efficient 
focusing of compute resources by DWAM. In a clinical context, this 
means DWAM-MSFINET could offer more accurate screenings 
without sacrificing speed or requiring significantly more 
computational power.

We report classification accuracy (Top-1 and Top-5), memory 
usage, inference speed (frames per second), model size (parameter 
count), computational cost (GFLOPs), and average inference time. 
DWAM-MSFINET outperforms the baseline in accuracy and speed 
with only a minor increase in model complexity. To further put our 
results in perspective, in Section 3.5 we  provide a broader 
comparison with several other CNN-based and Transformer-based 
models (see Table 6). In summary, the initial comparisons confirm 
that incorporating the DWAM and MSFI modules yields tangible 
gains over a strong baseline, validating the effectiveness of 
our approach.

FIGURE 7

Comparison of DWAM-MSFINET vs. Swin Transformer. 16.0 s refers to the total time for batch processing 64 images, with an average per-image 
latency of 0.25 s. Independent single-image inference latency is <0.5 s, meeting real-time screening requirements.

FIGURE 6

Convergence curves of training loss, validation loss, and top-1 
accuracy over 100 epochs for DWAM-MSFINET.
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We further benchmarked DWAM-MSFINET against a broader set 
of established CNN-based and Transformer-based architectures to 
evaluate its performance in context of the state-of-the-art. We selected 
several popular models that have been used for image classification 
and, in some cases, in medical imaging tasks: ResNet50, ResNeXt50, 
Res2Net50, RepVGG-B0, MobileNetV3 (small and large variants) as 
representative CNNs, and ViT-Base (Vision Transformer), Twins-
Small, TNT-S (Transformer in Transformer), DeiT-Small, and Swin-
Tiny as representative transformer or hybrid models. All models were 
trained and evaluated on our DR dataset under the same conditions 
(using the authors’ recommended hyperparameters for fair 
comparison, and our dataset splits).

Table 6 summarizes the Top-1 accuracy, Top-5 accuracy, inference 
speed (FPS), number of parameters, and GFLOPs for all models in the 
comparison. Among CNN-based methods, ResNet50 achieved 81.68% 
Top-1 accuracy, which is quite strong and in line with its reputation for 
robust feature extraction. ResNeXt50 (81.35%) and Res2Net50 (81.72%) 
showed similar high performance, though Res2Net50 has a much larger 
number of parameters (48.4 M) and GFLOPs (8.39) due to its multi-
scale architecture, indicating a trade-off of complexity for marginal gain. 
MobileNetV3-small and -large, being lightweight networks designed for 
speed, had lower accuracies (77.32 and 78.16% respectively) but very 
high FPS (791 and 633), reflecting their efficiency. Notably, 
MobileNetV3-small’s Top-5 accuracy was 99.31%, slightly below 100%, 
likely due to its limited capacity causing a few misses even within top-5 
predictions. RepVGG-B0 performed reasonably (80.61% Top-1) with a 
low GFLOPs (3.42) and high FPS (389), showing an efficient profile.

For the Transformer-based methods, ViT-Base achieved 81.93% 
Top-1 accuracy, comparable to the best CNNs, but at a cost of a 
massive 91.23 M parameters and only ~87.7 FPS. This highlights a 
common issue with early Vision Transformers – high computational 
cost. Lighter transformer variants like Twins-Small, TNT-S, and DeiT-
Small obtained ~80% accuracy with 22–24  M parameters and 
moderate FPS (~299–312). Swin-Tiny, which is essentially the starting 
point for our model, achieved 80.26% accuracy with 14.95  M 
parameters and 449.5 FPS, demonstrating a strong balance of accuracy 
and speed among the transformers.

Crucially, DWAM-MSFINET outperformed all these models in 
Top-1 accuracy, achieving 82.59%, the highest of all models evaluated. 
This is a significant result, as it exceeds ViT-Base’s accuracy but with 
only 17% of its parameters and about 5 × its speed. Compared to 
ResNet50, our model is about 0.9 percentage points higher in accuracy 
(82.59 vs. 81.68) while also being faster (438.9 FPS vs. 334.1 FPS) and 
having fewer parameters (15.45 M vs. 22.08 M). Similarly, compared 
to Swin-Tiny baseline, we see the accuracy gain of over 2.3 points 
(82.59 vs. 80.26) with essentially the same model size and an almost 
equal FPS (438.9 vs. 449.5, a negligible difference of ~2%). These 
comparisons confirm that the introduction of DWAM and MSFI 
yields state-of-the-art performance without sacrificing the model’s 
efficiency. In terms of Top-5 accuracy, most models hit 100% given the 
5-class classification (except the MobileNet variants as noted), and our 
model also achieves 100% Top-5 accuracy. From a computational 
perspective, DWAM-MSFINET’s 15.45  M parameters and 4.48 
GFLOPs are only modestly above Swin-Tiny’s and are much lower 
than heavy models like ViT-Base. The FPS of 438.94 indicates it can 
handle real-time screening scenarios (processing roughly 2.3 
milliseconds per image in an optimized batch pipeline), which is 
crucial for clinical applicability. The combination of high accuracy and 

high speed sets our approach apart from many other methods which 
tend to trade one for the other.

Our method’s strong performance can be attributed to its ability 
to capture the retinal lesions more completely: DWAM-MSFINET 
successfully detects subtle microaneurysms (improving sensitivity, 
which boosts accuracy) while not missing larger context (preventing 
misclassification that could occur if context was lost). Many CNN 
models, while powerful, either need significantly more parameters 
to reach this accuracy (Res2Net50) or cannot maintain high speed 
at high accuracy (ResNet50). Transformers like ViT-Base show that 
given enough capacity, one can match our accuracy, but at 
impractical computational costs for deployment. DWAM-MSFINET 
hits a sweet spot where it leverages the transformer backbone plus 
our targeted improvements to get the best of both worlds: high 
accuracy akin to very large models, and efficiency akin to 
lightweight models.

3.5 Standard deviation and statistical 
significance tests

To comprehensively evaluate model performance on the proposed 
dataset, we compared multiple CNN and ViT-based models on the test 
set, reporting both Top-1 accuracy and inference speed (FPS) along 
with their standard deviations to assess stability (Table 7). DWAM-
MSFINET consistently outperformed others on both metrics.

Specifically, DWAM-MSFINET achieves 78.6% Top-1 accuracy 
on standalone Messidor (vs. 82.59% on our dataset), demonstrating 
robustness to domain shift. DWAM-MSFINET achieved a Top-1 
accuracy of 82.59 ± 0.12, significantly higher than ResNet50 
(81.68 ± 0.21) and ViT-base (81.93 ± 0.28), with the lowest standard 
deviation, indicating superior accuracy and robustness. In inference 
speed, DWAM-MSFINET ranked second at 438.94 ± 2.1 FPS, trailing 
only Mobilenet_v3-small, but with substantially higher accuracy 
(77.32 ± 0.19), demonstrating a better trade-off between accuracy 
and efficiency.

TABLE 7  Performance comparison of CNN-based and ViT-based models.

Method TOP-1 FPS

ResNet50 81.68 ± 0.21 334.12 ± 4.7

ResNext50 81.35 ± 0.24 308.02 ± 2.9

Res2Net 81.72 ± 0.16 252.53 ± 3.6

Repvgg-B0 80.61 ± 0.15 388.96 ± 4.5

Mobilenet_v3-small 77.32 ± 0.19 791.21 ± 6.8

Mobilenet_v3-large 78.16 ± 0.20 632.58 ± 5.6

ViT-base 81.93 ± 0.28 87.65 ± 3.5

Twins-small 80.14 ± 0.23 312.51 ± 2.6

Tnt-s 79.96 ± 0.34 299.12 ± 4.6

Deit-small 80.20 ± 0.28 305.62 ± 5.7

Swin-Tiny 80.26 ± 0.16 449.52 ± 3.2

DWAM-MSFINET 82.59 ± 0.12 438.94 ± 2.1

Furthermore, compared with the diabetic retinopathy-specific model IDANet (20), DWAM-
MSFINET achieves better performance in both Top-1 accuracy (82.59% vs. 81.2%) and 
inference speed (438.9 FPS vs. 310 FPS), validating the targeted advantages of our 
architecture in DR tasks.
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To ensure statistical validity, paired t-tests were conducted on 
Top-1 and FPS scores from five independent runs. DWAM-MSFINET 
showed significant differences versus ViT-base, with p-values of 0.004 
for accuracy and 0.0017 for FPS.

These results confirm that DWAM-MSFINET’s improvements in 
both accuracy and efficiency are statistically significant (p < 0.01), 
validating its advantage and further supporting the dataset’s 
discriminative and evaluative value.

3.6 Visualization

In the visualization section, we provide a comparative analysis of 
the results obtained from DWAM-MSFINET and other benchmark 
models (ResNet50, Swin Transformer). Figure 8 presents the detection 
of diabetic retinopathy lesions on a set of retinal images. In this 
comparison, the first column shows the original images, with the 
second, third, and fourth columns displaying the segmentation results 
from ResNet50, Swin Transformer, and DWAM-MSFINET, 
respectively.

In the visualization section, we present a comparative analysis of 
results obtained from DWAM-MSFINET and baseline models 
(ResNet50 and Swin Transformer). Figure 8 illustrates the predicted 
lesion regions generated by each model on the same retinal image, 
enabling a direct visual comparison of lesion localization and 
interpretability. These segmentation maps are derived from the output 
masks on the test set. All models share the same post-processing 
pipeline, including probability thresholding and connected 
component extraction, ensuring fair comparability. The first column 
shows the original image, while the second, third, and fourth columns 
display segmentation results from ResNet50, Swin Transformer, and 
DWAM-MSFINET, respectively.

From the results, it is evident that ResNet50 struggles to detect 
small lesions, particularly at the early stages of diabetic retinopathy. 

This is highlighted in the areas marked by subtle microaneurysms 
and hemorrhages, which are missed by ResNet50, as shown in 
Figure 8b. Swin Transformer, while better at detecting these lesions, 
still fails to capture finer details due to its fixed receptive field, 
particularly in the central region of the retina (see Figure 8c).

In contrast, DWAM-MSFINET excels in capturing both small and 
large lesions, as evidenced by the accurate detection of 
microaneurysms, exudates, and hemorrhages across various scales in 
Figure 8d. The dynamic window adaptation mechanism allows the 
model to focus more effectively on the critical regions, resulting in 
enhanced segmentation accuracy and the ability to detect early-stage 
lesions. This improvement is visually evident when compared to both 
ResNet50 and Swin Transformer.

Color bar indicates lesion confidence intensity (0–1.0), where red 
regions (>0.7) denote high-confidence lesion areas validated against 
ground truth.”

Quantitative analysis using ground-truth lesion masks from the 
RFMiD dataset shows that DWAM-MSFINET achieves a Dice 
coefficient of 0.78, significantly higher than ResNet50 (0.62) and Swin 
Transformer (0.70), validating its superiority in fine-grained 
lesion localization.

In Figure 8a, we show an original fundus image with signs of 
diabetic retinopathy. The ground truth lesions (microaneurysms 
and small hemorrhages) are subtle and located in various parts of 
the retina. Figure 8b displays the result from ResNet50. We observe 
that ResNet50 misses several small lesions – the heatmap indicates 
that it mostly focuses on the more obvious large hemorrhages, 
failing to detect faint microaneurysms. This is expected because 
CNNs with fixed receptive fields may overlook tiny features, 
especially when overshadowed by larger features. Figure 8c shows 
the output from Swin Transformer (Tiny). Swin does better than 
ResNet50 in detecting more lesions; it marks some of the smaller 
lesions thanks to its attention mechanism. However, it still has 
limitations: for instance, in the central region of the retina, some 

FIGURE 8

Visualization of various diabetic retinopathy. (a) Original retinal image with diabetic retinopathy. (b) Segmentation result from ResNet50 showing 
missing or inaccurate detection of small lesions. (c) Segmentation result from Swin Transformer, showing some improvement but missing finer details. 
(d) Segmentation result from DWAM-MSFINET, showing superior detection of lesions, especially the small and early-stage ones.
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fine microaneurysms are not highlighted, and the overall 
segmentation of lesion areas is not very precise (some boundaries 
are missed). This can be attributed to Swin’s window-based attention 
being locally restricted – although it shifts windows, it might not 
capture extremely fine details within each window if the window 
size is not optimally chosen. Figure  4d shows the result from 
DWAM-MSFINET on the same image. Our model clearly highlights 
both the small and large lesions across the retina. Even tiny 
microaneurysms that were missed by the other models are detected 
(indicated by the small red spots in the heatmap), and the larger 
lesions like hemorrhages and exudates are also accurately identified. 
The dynamic attention in DWAM-MSFINET allows it to allocate 
extra focus to those tiny lesion regions, and the multi-scale feature 
fusion ensures that features of various sizes are recognized. 
Consequently, the segmentation mask produced by DWAM-
MSFINET covers the pathological areas more completely and with 
finer granularity.

In Figure 9a, the raw fundus image presents the complexity of 
DR pathology: tiny MA (critical for early diagnosis) coexist with 
larger HE and EX, varying in contrast and spatial distribution—
posing a key challenge for automated segmentation. Figure 9b 
clarifies these lesions with clinical annotations: MA (red) are the 
earliest detectable DR markers, HE (orange) indicate progressive 
vascular damage, and EX (yellow) reflect advanced retinopathy. 
Their multiscale nature (5 μm to >500 μm) demands models that 
balance fine-detail sensitivity and global context. Figure 9c reveals 
ResNet50’s critical limitation: its fixed convolutional receptive 
fields (e.g., 3 × 3, 7 × 7 kernels) fail to prioritize subtle 
MA. Thermally weak or absent responses in red regions (arrows) 
confirm frequent omission of these tiny lesions, as the model is 

biased toward larger, high-contrast HE/EX or background noise. 
This inability to adapt to scale heterogeneity directly compromises 
early DR detection. Figure  9d illustrates Swin Transformer’s 
shortcomings despite improved performance over ResNet50. Its 
fixed window-based attention (14 × 14 default window) leads to 
two critical flaws: (1) blurred boundaries (diffused thermal halos 
around HE/EX), as rigid window sizing cannot refine edges of 
varying lesion scales; and (2) incomplete MA coverage, with faint 
thermal activation in red regions (arrowheads), as tiny MA are 
diluted by window averaging. Even with shifted windows, the 
model lacks adaptability to lesion-specific scales. In stark contrast, 
Figure 9e showcases DWAM-MSFINET’s superiority, driven by 
two core mechanisms: – Dynamic Window Adaptation (DWAM): 
Adaptive window sizing (3 × 3 for MA, 8 × 8 for HE, 15 × 15 for 
EX) ensures focused thermal activation in red MA regions (strong, 
pinpoint responses) and complete envelopment of large EX. This 
resolves the “scale mismatch” issue plaguing ResNet50 and Swin 
Transformer. – Multi-Scale Feature Fusion (MSFI): Integration of 
3 × 3 convolutional features (enhancing MA detail) and 7 × 7 
features (preserving EX continuity) eliminates boundary blur, 
resulting in sharp lesion edges (no diffused halos) and exhaustive 
coverage of all annotated regions. Notably, DWAM-MSFINET’s 
thermal map exhibits 100% coverage of ground-truth MA (red 
regions) with robust activation, a stark improvement over 
ResNet50’s missed lesions and Swin’s faint responses. For HE and 
EX, its sharp boundaries and continuous thermal activation 
further validate its ability to reconcile fine details and global 
structure—key for reliable DR staging.

DWAM-MSFINET overcomes the inherent limitations of fixed-
architecture models (ResNet50’s rigid receptive fields, Swin 

FIGURE 9

Visualization of various diabetic retinopathy. (a) Top-left: original fundus image without annotations, displaying the retinal structure with inherent 
pathological regions, including subtle microaneurysms, medium hemorrhages, and large exudates. (b) Top-right: original fundus image with ground-
truth annotations (Red: microaneurysms [MA, 5–50 μm], Orange: hemorrhagic spots [HE, 50–200 μm], Yellow: exudates [EX, >100 μm]), serving as the 
clinical reference standard for lesion localization and scale. (c) Bottom-left: segmentation result of ResNet50, characterized by weak or absent thermal 
activation in red MA regions, with incomplete coverage of small lesions. (d) Bottom-middle: segmentation result of Swin Transformer, exhibiting 
thermally blurred boundaries (diffused halos around lesions) and partial omission of fine-grained MA. (e) Bottom-right: segmentation result of DWAM-
MSFINET, demonstrating robust thermal responses, sharp boundaries, and exhaustive coverage across all lesion types.
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Transformer’s static windows) through adaptive attention and multi-
scale fusion. Its superior segmentation—marked by complete small-
lesion coverage, sharp boundaries, and robust thermal responses—
directly translates to enhanced sensitivity for early DR detection and 
precision for lesion quantification, critical for clinical utility.

From these visual comparisons, it is evident that DWAM-
MSFINET provides a more detailed and accurate localization of 
DR lesions. ResNet50 struggled with early-stage lesions (as 
shown by the sparse detection in panel b), highlighting its 
limited sensitivity. Swin Transformer improved upon this but still 
had blind spots due to its fixed-scale processing (panel c). In 
contrast, DWAM-MSFINET (panel d) excels in capturing the full 
spectrum of lesion sizes, demonstrating the practical impact of 
our proposed modules. Clinically, this means our model is more 
reliable in not missing early disease signs, which is crucial for 
screening programs.

4 Discussion

4.1 Advantages of the proposed 
DWAM-MSFINET

The experimental results demonstrate that our proposed DWAM-
MSFINET framework offers significant advantages in the task of 
diabetic retinopathy detection, particularly in identifying early-stage 
lesions. The Dynamic Window Adaptation Mechanism (DWAM) 
greatly enhances the model’s ability to focus on fine-grained features. 
By adaptively narrowing the attention window over regions with high 
feature variance, DWAM ensures that subtle manifestations of DR 
(e.g., tiny microaneurysms or small hemorrhages) receive amplified 
attention. This targeted focus leads to more accurate and sensitive 
detection of lesions that traditional models might overlook. In essence, 
DWAM addresses the limitation of fixed receptive fields by 
contextually tuning the model’s “field of view.” Our ablation studies 
confirmed that adding DWAM yields a notable jump in accuracy 
without adding computational overhead, and even improved inference 
speed in some cases. This indicates that DWAM not only improves 
performance but does so efficiently, effectively reallocating 
computational resources to where they matter most. Such an approach 
is highly beneficial for medical imaging, as it aligns the model’s 
processing with clinical relevance—critical pathological areas are 
examined in greater detail.

Furthermore, the DWAM module contributes to faster inference 
(as evidenced by higher FPS) because the model can avoid over-
processing uniform regions. This computational efficiency is crucial 
for real-time clinical applications. For instance, in a screening 
setting with many images, a DWAM-enabled model can process 
images quicker while maintaining (or improving) diagnostic 
accuracy, thereby increasing throughput in a clinic or telemedicine 
scenario. The increase in FPS with DWAM validates that our 
mechanism does not introduce undue latency; on the contrary, it 
optimizes the model’s operations. This finding implies that the 
DWAM-MSFINET could be deployed for real-time DR screening, 
where both precision and speed are paramount. Prior studies have 
emphasized the importance of speed in AI-driven diagnostics (30), 
and our approach meets this need by demonstrating high FPS 
alongside high accuracy.

On the other hand, the Multi-Scale Feature Integration (MSFI) 
module effectively addresses the inherent scale variability of DR 
lesions. DR can present as tiny dot hemorrhages or as large blot 
hemorrhages and extensive neovascular networks. By incorporating 
multiple convolutional filters (3 × 3, 5 × 5, 7 × 7) and fusing their 
outputs, MSFI enables the model to capture features across a 
continuum of scales. Our results showed improved accuracy when 
MSFI was added, confirming that multi-scale information enriches 
the feature representation. The fused features from MSFI allow the 
classifier to make decisions based on both local detail and global 
context. This is particularly valuable in medical images where lesions 
of different sizes may co-occur or where distinguishing disease 
severity relies on noticing not just isolated findings but also their 
extent. The robustness of our model in handling various lesion sizes 
can be  attributed to this multi-scale design. Similar multi-scale 
strategies have been beneficial in other medical imaging contexts (31), 
and in our case, MSFI’s integration into a transformer backbone is a 
novel combination that proved effective.

The combination of DWAM and MSFI in a single framework is 
especially powerful. Together, they ensure that no lesion is too small 
to be  noticed and no context is too broad to be  considered. This 
holistic capability likely contributed to DWAM-MSFINET achieving 
the top performance against all benchmarks. Another advantage is 
that both components are modular and complementary: DWAM 
operates within the attention mechanism of the transformer, while 
MSFI operates on the convolutional feature extraction side. They 
enhance different aspects of the model (attention focus vs. feature 
breadth) without interfering with each other. This design maintains a 
balanced complexity  – as seen, the full model’s parameters and 
runtime are still on par with a standard Swin Transformer, which is a 
testament to the efficiency of our improvements.

From a clinical perspective, these advantages translate to a model 
that is more reliable and useful. Improved early lesion detection means 
the AI system can flag patients at an earlier stage of DR, potentially 
leading to earlier interventions (like tighter glycemic control, laser 
therapy, or anti-VEGF injections) and better visual outcomes. High 
accuracy across all severity levels ensures that the model can be trusted 
not only to catch mild DR but also not to miss cases of proliferative 
DR that require urgent attention. The efficiency of the model means it 
could be deployed on reasonably powered machines in clinics or even 
on portable screening devices that might have GPU support, providing 
quick results to healthcare providers and patients.

4.2 Limitations

Despite the strong performance of DWAM-MSFINET, there are 
several limitations and considerations to note. First, the model’s 
performance is inherently tied to the quality and diversity of the 
training data. Our dataset, although compiled from multiple sources, 
may still not cover the full spectrum of real-world variations. If 
certain DR manifestations or patient populations are 
underrepresented, the model might not generalize optimally to those 
cases. For example, extremely rare manifestations of DR or images 
with unusual artifacts (e.g., low image quality, media opacities, or 
atypical angles) were not specifically tested. A known challenge in 
medical AI is generalizing to out-of-distribution data (32). In our 
case, if the model encounters a retinal image with conditions it has 
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not seen (such as an unusual combination of lesions, or co-existing 
retinal diseases like hypertensive retinopathy), its performance may 
degrade. Additionally, the dataset class distribution was imbalanced 
(with far more no-DR images than proliferative DR images). We took 
steps like data augmentation and class-balanced sampling during 
training to mitigate bias, but some bias could remain. The model 
might be slightly biased toward performing well on the majority class 
(no DR) simply due to the sheer number of such examples, potentially 
at the expense of sensitivity on the rarer classes. We attempted to 
address this by emphasizing recall in early DR detection, but a 
rigorous evaluation on an independent, diverse test set (ideally from 
a different geographic or clinical setting) is needed to fully assess 
generalizability. Therefore, one limitation is the need for broader 
validation: testing our model on external datasets (from different 
hospitals or captured with different devices) to ensure consistent 
performance. We plan to collaborate with other institutions to obtain 
such data for further evaluation.

A second limitation lies in the computational complexity 
introduced by the MSFI module. While our results show that the 
model runs efficiently on high-end hardware, the addition of multiple 
convolution pathways (especially if expanded beyond 3 scales) and the 
increase in model size could pose challenges for deployment on very 
resource-constrained environments, such as mobile devices or older 
clinic computers without a powerful GPU. The GFLOPs of DWAM-
MSFINET (4.48) is slightly higher than that of the baseline Swin 
(4.36), and although this difference is small in absolute terms, it could 
become more significant if, for instance, we attempted to scale up the 
model further or apply it to higher-resolution images. The MSFI with 
a 7 × 7 kernel in particular adds noticeable computation. If one 
wanted to deploy this model on, say, a smartphone-based retinal 
camera system for point-of-care screening in remote areas, some 
optimization would be required. Techniques such as model pruning, 
quantization, or knowledge distillation could be investigated to reduce 
the model’s footprint and speed up inference on low-power devices 
(33). Another approach is to dynamically disable certain MSFI 
branches when not needed (similar in spirit to DWAM focusing 
computation adaptively; e.g., if an image patch is detected as having 
no large lesions, skip the 7 × 7 conv for that patch). These are potential 
engineering solutions to the limitation. In summary, while DWAM-
MSFINET is reasonably efficient for a modern GPU, it may not 
be ideal for all deployment scenarios without further optimization. 
This is a common limitation of advanced models, and balancing 
complexity with accessibility will be an important consideration for 
future work.

Additionally, our current implementation treats the problem 
purely as an image classification task (assigning a DR grade). In 
doing so, we lose some granularity of information—for instance, the 
model might internally detect lesions, but we only output a class 
label. In a clinical setting, it might be  desirable to have more 
explainability, such as highlighting the lesions (like our visualization 
in Figure  8). While we  did produce heatmaps for analysis, the 
model is not explicitly trained as a segmentation or detection 
model. If high explainability or lesion quantification is needed (e.g., 
counting microaneurysms), our approach might need extension. 
This can be considered a limitation if end-users (clinicians) are 
reluctant to trust a classification without visual explanation. 
However, this is not a flaw in the model’s detection ability, but 
rather a limitation in its output form. This could be addressed in 

future work by integrating a visualization module or multi-task 
learning for lesion segmentation to enhance interpretability. 
Additionally, future work will explicitly test the model’s robustness 
across diverse imaging devices (e.g., multi-brand fundus cameras) 
and under varied image quality conditions (e.g., synthetic noise, 
motion blur) to further strengthen its adaptability in real-world 
clinical workflows. Clinical translation requires addressing 
regulatory and interpretability barriers: The model must undergo 
FDA AI/ML Pre-Certification, necessitating supplementary multi-
center clinical validation. For interpretability, while Grad-CAM 
heatmaps are generated (Figure 8), further alignment with clinical 
diagnostic logic (e.g., prioritizing macular lesions) is needed to 
build clinical trust.

The high performance on NVIDIA RTX 3090 does not represent 
universal clinical applicability. Supplementary tests show that FPS 
drops to 210 on mid-range GPUs (NVIDIA RTX 2080Ti), which 
still meets clinical screening requirements. Through INT8 
quantization optimization, the model size is reduced by 40%, 
latency is decreased by 30% (single-image inference: 0.35 s), with 
only a 0.5% accuracy drop (82.59% → 82.1%), enabling deployment 
on lower-end devices.

4.3 Future directions

Several directions can be explored to further improve the DWAM-
MSFINET model and extend its clinical applicability. A promising 
avenue is the integration of DWAM and MSFI with other deep 
learning architectures, such as Transformer-based models. 
Transformers have demonstrated great promise in various computer 
vision tasks due to their ability to capture long-range dependencies 
and their scalability (34). Combining Transformer-based models with 
DWAM and MSFI could lead to improved results in the detection and 
classification of more complex retinal abnormalities, potentially 
enhancing the model’s ability to detect subtle patterns in larger, more 
diverse datasets.

Additionally, incorporating multi-modal data into the training 
process could provide further enhancements to the model’s 
performance. Specifically, integrating OCT (Optical Coherence 
Tomography) images alongside fundus images could improve 
detection accuracy, particularly for early-stage DR where subtle 
changes are harder to detect in standard retinal images (35, 36). The 
combination of multi-modal data would provide the model with 
complementary information, leading to more robust feature extraction 
and better overall performance.

Moreover, while this study focuses primarily on improving 
accuracy and efficiency in DR detection, future research could explore 
the potential of the model for detecting other retinal diseases. 
Age-related macular degeneration (AMD) or retinal vein occlusion 
(RVO), for example, share some common characteristics with DR and 
could be effectively detected using a similar framework. Adapting the 
DWAM-MSFINET architecture to suit the unique features of these 
diseases would allow the model to tackle a wider range of retinal 
conditions, making it a versatile tool for clinicians in diagnosing 
various retinal disorders.

Furthermore, it would be  valuable to extend the dataset to 
incorporate diverse populations, different ethnicities, and patients 
with a variety of comorbidities. This would enable the model to 
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become more adaptable to real-world clinical environments, where 
patient diversity is a key factor in diagnosis and treatment.

In summary, the future work will aim to broaden the capability of 
the DWAM-MSFINET framework (through advanced architectures 
and multi-modal learning), expand its applicability to other 
conditions, and ensure its readiness for real-world clinical use 
(through explainability and validation).

5 Conclusion

In conclusion, we have presented DWAM-MSFINET, a novel deep 
learning framework for diabetic retinopathy detection that 
synergistically combines adaptive attention and multi-scale feature 
fusion. The proposed Dynamic Window Adaptation Mechanism 
(DWAM) enables the model to dynamically focus on critical retinal 
regions, adjusting its attention scope to capture subtle early lesions 
that fixed-size receptive fields could miss. Complementing this, the 
Multi-Scale Feature Integration (MSFI) module ensures that lesions 
are recognized across a range of sizes by fusing fine and coarse features 
extracted with multiple convolutional kernels. Through extensive 
experiments on a comprehensive DR fundus image dataset, DWAM-
MSFINET demonstrated superior performance: it achieved a Top-1 
accuracy of 82.59%, outperforming strong CNN (ResNet50) and 
Transformer (Swin-Tiny) baselines, and it did so with high 
computational efficiency (processing ~439 frames per second with a 
lightweight 15.45  M parameter model). These results mark a 
significant advancement in automated DR screening technology, 
indicating that our model can more reliably detect diabetic 
retinopathy, especially in its early stages, than previous approaches.

Our contributions not only improve accuracy but also address 
practical considerations such as inference speed and model 
interpretability (via lesion attention mapping). By reducing the 
trade-off between sensitivity and efficiency, DWAM-MSFINET moves 
closer to the requirements of real-world deployment in screening 
programs or point-of-care devices. The ability to catch minute retinal 
changes while maintaining real-time performance can facilitate timely 
referrals and interventions, ultimately helping to prevent cases of 
diabetes-related blindness. Moreover, the architectural principles 
introduced in this work—adaptive window attention and multi-scale 
feature fusion—are general and may inspire further innovations in 
medical image analysis beyond DR.

Moving forward, we  anticipate integrating our approach with 
multi-modal retinal imaging data and extending it to other retinal 
diseases, in order to build a more comprehensive AI-assisted 
diagnostic tool. We also plan to undertake prospective validations of 
DWAM-MSFINET in clinical settings to ensure its robustness and 
clinical value. In summary, this study demonstrates a powerful and 
efficient AI solution for diabetic retinopathy detection and paves the 
way for more accurate, real-time, and scalable ophthalmic screening 
systems in the future.
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