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Panvascular diseases represent a spectrum of vascular conditions where atherosclerosis 
plays a central role in the pathophysiology. This study focused on identifying 
differentially expressed genes (DEGs) related to mitochondria and key genes 
associated with peripheral artery disease (PAD) and coronary artery disease (CAD). 
This study identified MPV17 as a key mitochondrial gene bridging peripheral artery 
disease (PAD) and coronary artery disease (CAD). Analysis of GEO datasets revealed 
differentially expressed mitochondrial genes, with MPV17, FADD, HLCS, and PEX3 
highlighted. A diagnostic nomogram, developed using LASSO and Random Forest 
methods, demonstrated high accuracy in predicting PAD and CAD (AUC >0.93). 
Furthermore, the study revealed significant alterations in immune cell infiltration 
associated with both diseases, suggesting a potential role for immune modulation 
in panvascular disease. MPV17 shows promise as a diagnostic marker for early 
identification and differentiation of these vascular conditions.
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1 Introduction

Panvascular diseases include various vascular conditions that share a common underlying 
issue: atherosclerosis. This condition affects vital organs, including the heart, brain, kidneys, and 
limbs (1, 2). Recent advancements in medical specialization have resulted in the categorization of 
panvascular diseases—such as coronary artery disease (CAD), ischemic stroke, and peripheral 
artery disease (PAD)—into separate disciplines. This trend has often resulted in fragmented 
management strategies, which may hinder effective treatment and care for patients with 
interconnected conditions (3). This disciplinary separation tends to emphasize local lesions while 
neglecting systemic vascular changes, which can create significant disparities in diagnostic and 
therapeutic approaches (4). The concept of panvascular medicine promotes a holistic view of the 
body’s structure and function, aiming to understand the mechanisms underlying the emergence 
and progression of atherosclerotic diseases through the application of systems biology and 
multidimensional approaches (3, 5, 6). This paper focuses on the significance of adopting an 
integrated approach to PAD and CAD. It underscores the importance of acknowledging the 
interconnectedness of vascular health across various conditions and medical specialties.

PAD and CAD are two significant cardiovascular conditions that profoundly impact 
patients’ health and quality of life (7–9). These diseases can lead to severe symptoms, including 
limb pain, restricted mobility, and myocardial infarction, which can even endanger patients’ 
lives. As a result, they impose a substantial burden not only on individuals but also on society 
as a whole (10, 11). Current treatment options for PAD and CAD primarily consist of drug 
therapy, interventional therapies, and surgical procedures (12, 13). However, these approaches 
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have inherent limitations regarding their effectiveness, potential side 
effects, and rates of disease recurrence. As a result, exploring 
innovative diagnostic and therapeutic strategies is essential for 
advancing healthcare (14, 15).

Previous research has highlighted the essential role of 
mitochondria in cellular energy metabolism (16), oxidative stress (17), 
and apoptosis (18), all of which are closely linked to the development 
of PAD and CAD (19). Alterations in the expression of genes 
associated with mitochondrial function may play a significant role in 
the development and progression of these conditions (20, 21). 
Consequently, this study aims to investigate mitochondrial-related 
genes to better understand their influence on PAD and CAD, offering 
a novel and promising area of research.

The aim of this study is to conduct a comprehensive analysis of 
datasets associated with PAD and CAD. This includes identifying 
differentially expressed genes (DEGs) associated with mitochondrial 
function and pinpointing key hub genes implicated in these diseases. 
Additionally, we will develop a diagnostic model that offers innovative 
approaches to improve the diagnosis and treatment of 
panvascular diseases.

2 Methods

2.1 Screening of differentially expressed 
genes

We performed a search in the Gene Expression Omnibus (GEO) 
database (22)1 with the keywords “peripheral arterial disease” and 
“coronary artery disease” to identify relevant datasets for both PAD 
and CAD. To explore mitochondrial-related genes, we accessed the 
GeneCards database (23),2 which provides comprehensive information 
on genes, including their functions, pathways, and associated diseases. 
Our selection criteria restricted the datasets to those derived from 
human samples, with each dataset needing to contain a minimum of 
10 samples. We  specifically downloaded the GSE27034 (24) and 
GSE98583 (25) datasets, which correspond to the GPL570-55999 and 
GPL571-17391 platforms, respectively. The GSE27034 dataset 
comprises peripheral blood samples collected from 19 patients 
diagnosed with PAD and 18 healthy individuals serving as controls. 
In contrast, the GSE98583 dataset includes samples from 12 
non-diabetic male patients with stable CAD and six samples from 
individuals with normal coronary angiogram. Figure 1 presents an 
overview of the study’s methodology.

The analysis of differentially expressed genes (DEGs) from the 
GSE27034 and GSE98583 datasets was conducted using the “limma” 
package in R software. For both datasets, the criteria for screening 
DEGs were set to a |log2FC| >0 and adjusted to p < 0.05 (26). 
Following the analysis, visualizations in the form of volcano plots and 
heat maps were generated using the R packages “ggplot2” and 
“ComplexHeatmap” (27). These visualizations help to illustrate the 
expression profiles of the DEGs and allow for an easier comparison 
between the affected and control groups.

1 http://www.ncbi.nlm.nih.gov/geo

2 https://www.genecards.org/

2.2 Screening and identification of 
mitochondria-related DEGs

We identified 2,227 genes associated with mitochondria by 
querying the GeneCard database and using a relevance score threshold 
of greater than 1 as our screening criterion. Subsequently, 
we  conducted a screening for DEGs that displayed consistent 
expression patterns across the datasets. To identify the mitochondria-
related DEGs, we intersected the list of co-expressed DEGs with the 
2,227 mitochondria-related genes we  obtained from the 
GeneCard database.

2.3 Enrichment analysis of DEGs

We performed functional enrichment analyses using Gene 
Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) on the selected differential genes, employing the 
ClusterProfiler package in R. The screening criterion was established 
with a significance threshold of p < 0.05 (28–30).

2.4 Selection and identification of 
mitochondria-related hub DEGs

To effectively select and evaluate key genes associated with 
prognosis, we  utilized the least absolute shrinkage and selection 
operator (LASSO) method, implemented through the “glmnet” 
package in R. This approach involved determining the optimal 
penalty coefficients using 10-fold cross-validation to construct robust 
regression models. Additionally, we developed random forest (RF) 
models with the “randomForest” package in R to enhance our 
analysis and confirm the prognostic significance of the 
identified genes.

2.5 Nomogram development for diagnostic 
models of PAD and CAD

The diagnostic value of mitochondria-associated hub DEGs in 
PAD and CAD datasets was assessed using a nomogram constructed 
with the “rms” package in R. This nomogram allows for the 
visualization of the relationship between the DEGs and the likelihood 
of disease occurrence. In order to evaluate the reliability of this 
diagnostic model, we  employed receiver operating characteristic 
(ROC) curves to measure the model’s sensitivity and specificity, as well 
as calibration curves to assess how well the predicted probabilities 
align with the actual outcomes.

2.6 Evaluation of immune infiltration in 
PAD and CAD

The CIBERSORT program was employed to assess the levels of 
immune infiltration across 22 distinct immune cell types in patients 
with PAD and CAD (31). Additionally, heat maps were utilized to 
illustrate the relationship between the mitochondria-related hub 
DEGs and the 22 immune cell types. To further understand the 
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potential biological pathways and processes linked to these hub genes, 
we performed gene enrichment analysis (32).

3 Results

3.1 Screening of DEGs

By analyzing the GSE27034 dataset, a total of 1,598 DEGs were 
identified, including 716 up-regulated genes and 882 down-regulated 
genes. In contrast, the GSE98583 dataset showed 578 DEGs, with 310 
upregulated genes and 268 downregulated genes. To visually represent 
the expression profiles of the DEGs from both datasets, we created 
volcano plots, where upregulated genes are highlighted in red and 
downregulated genes in blue. Additionally, we utilized heat maps to 
illustrate the top 50 differentially expressed genes from both GSE27034 

and GSE98583, allowing for a comparative overview of the gene 
expression patterns associated with these datasets (see Figure 2). To 
further illustrate the overlap between the identified DEGs, Venn 
diagrams are presented in Figure 3A.

3.2 Screening and identification of 
mitochondria-related DEGs

As a result of screening the genes associated with PAD and 
CAD, we  identified DEGs that exhibited similar expression 
trends. These DEGs were interleaved with genes related to 
mitochondrial function, as presented in Figure 3B. We identified 
four mitochondria-related DEGs: MPV17, FADD, HLCS, and 
PEX3. DEGs with a consistent expression trend in PAD and CAD 
were significantly enriched in multiple biological processes (BP), 

FIGURE 1

Flowchart of the study design.
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primarily in pathways related to mononuclear cell migration, 
positive regulation of leukocyte migration, and regulation of 
mononuclear cell migration. In terms of cellular components 
(CC), these DEGs were enriched in complexes such as the MLL1/2 
complex, MLL1 complex, acetylcholine-gated channel complex, 
and the transcription factor TFTC complex. Additionally, within 
molecular function (MF) analysis, the genes were associated with 
acetylcholine-gated cation-selective channel activity, cytokine 
receptor binding, caspase binding, and acetylcholine binding. The 
KEGG enrichment analysis demonstrated a significant 
enrichment of these genes in the apoptosis pathway, as illustrated 
in Figure 3C. Conversely, the mitochondria-related DEGs showed 
a predominant enrichment for biological processes associated 
with kidney development, urogenital system development, and 
renal system development in the biological process (BP) 
enrichment analysis. For cellular components, these genes were 

related to microbody membrane, peroxisomal membrane, and 
peroxisome. Their molecular functions encompassed receptor 
serine/threonine kinase binding, death receptor binding, and 
caspase binding. The KEGG pathway analysis for these genes 
revealed significant enrichment in the Peroxisome pathway, 
depicted in Figure 3D.

3.3 Identifying mitochondrial-related hub 
genes and assessing their diagnostic values

Using the LASSO regression analysis and the RF method, 
we screened 4 mitochondria-related genes associated with PAD and 
CAD: MPV17, FADD, HLCS, and PEX3 (as shown in Figures 4A–D). 
To assess the diagnostic potential of these four hub genes, 
we  employed Receiver Operating Characteristic (ROC) curve 

FIGURE 2

Identification of differentially expressed genes (DEGs). DEG heatmaps and volcano plots for the (A,B) PAD and (C,D) CAD datasets.
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analysis, the results of which are illustrated in Figure 4E. Among these 
genes, MPV17 was found to be  significantly upregulated in the 
context of PAD and CAD (refer to Figure 5). In contrast, FADD and 
HLCS did not show a significant difference in expression levels 
between PAD patients and healthy individuals. Furthermore, the 
expression levels of PEX3 exhibited inconsistencies between the 
two groups.

3.4 Nomogram development for diagnostic 
models of PAD and CAD

The nomogram model was developed by integrating the points 
of the hub genes of PAD and CAD, as illustrated in Figures 6A,D. The 
bias-corrected calibration curves demonstrated a strong alignment 
with the ideal calibration curve, signifying that our model exhibits 
excellent calibration (shown in Figures  6B,E). Additionally, the 
model’s performance was further validated by evaluating the area 
under the curve (AUC) for the GSE27034 and GSE98583 datasets, 
which yielded values of 0.939 and 0.934, respectively, as depicted 

in Figures  6C,F, indicating that the model demonstrates 
high reliability.

3.5 Evaluation of immune infiltrations in 
PAD and CAD

We employed the CIBERSORT deconvolution algorithm to 
evaluate immune cell infiltrations in cases compared to controls 
within the GSE27034 and GSE98583 datasets. The analysis revealed 
that the PAD group exhibited significantly higher resting memory 
CD4+ T cell numbers (Figure 7A provides a visual representation of 
this). In contrast, patients with CAD demonstrated a significant 
elevation in CD8+ T cells (illustrated in Figure 7B). Additionally, our 
analysis indicated that the identified hub gene, MPV17, had strong 
associations with multiple immune cell types (depicted in 
Figures 7C,D). Further, gene enrichment analysis highlighted that 
MPV17 was predominantly enriched in pathways related to the 
ribosome and eukaryotic translation elongation in the context of 
PAD (as seen in Figure  8A). Conversely, in patients with CAD, 

FIGURE 3

Identification of mitochondria-related DEGs and functional enrichment between PAD and CAD. (A) Venn diagram of the DEGs. (B) Venn diagram of the 
mitochondria-related DEGs. (C) GO and KEGG enrichment analyses of DEGs with the same expression trends. (D) GO and KEGG enrichment analyses 
of the mitochondria-related DEGs.
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MPV17 showed enrichment in the REG GR pathway (shown in 
Figure 8B).

4 Discussion

Panvascular medicine is an emerging discipline that emphasizes 
the multidisciplinary integration of knowledge and practices 
concerning atherosclerotic diseases (3). Over the years, it has 
transitioned from a theoretical framework into clinical practice, 
highlighting the need for an all-encompassing management model 
that encompasses prevention, diagnosis, treatment, and prognosis of 
vascular diseases (1, 5). PAD and CAD are two significant 
cardiovascular conditions that significantly affect patients’ health and 
overall quality of life (33, 34). This study focused on identifying the 

mitochondria-related hub genes of PAD and CAD. Understanding 
these hub genes may facilitate the development of targeted therapies 
and enhance diagnostic accuracy, ultimately improving 
patient outcomes.

The focus on mitochondria-related genes in the context of PAD 
and CAD is vital, as mitochondrial dysfunction has become widely 
acknowledged as a significant factor in the development of diverse 
cardiovascular conditions. Research has shown that impaired 
mitochondrial function can lead to a host of detrimental effects, 
including reduced energy production (35), heightened oxidative 
stress, and altered calcium homeostasis (36). These factors can 
exacerbate endothelial dysfunction, promote inflammation, and 
accelerate atherogenesis, thus playing a crucial role in the onset and 
advancement of vascular diseases (37). This study aims to enhance our 
understanding of the underlying mechanisms of these diseases by 

FIGURE 4

Screening of mitochondria-related hub genes and evaluation of their diagnostic values. (A) LASSO analysis for screening mitochondria-related hub 
genes in GSE27034. (B) Identification of mitochondria-related hub genes according to the importance of variables by random forest (RF) analysis of 
GSE27034. (C) LASSO analysis for screening mitochondria-related hub genes in GSE98583. (D) Identification of mitochondria-related hub genes 
according to the importance of variables by RF analysis of GSE98583. (E) Receiver operating characteristic (ROC) curves of the four hub genes to 
assess their diagnostic values in the GSE27034 and GSE98583 datasets.
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examining specific genes, and identify potential diagnostic markers 
and therapeutic targets.

This study presents a detailed investigation into the molecular 
mechanisms associated with PAD and CAD. Utilizing datasets from 
the GEO and mitochondria-related genes obtained from GeneCard. 
Through differential gene expression analysis, a significant number 
of DEGs were identified in the GSE27034 and GSE98583 datasets. 
The results presented as heat maps and volcano plots facilitated the 

visualization and interpretation of these alterations. Several 
potential biomarkers were highlighted, including MPV17, FADD, 
HLCS, and PEX3, which are of considerable interest in the context 
of PAD and CAD. Notably, only MPV17 demonstrated a consistent 
expression trend across both diseases when analyzing the data. 
MPV17 is a protein located in the inner membrane of mitochondria. 
A deficiency of this protein can result in a reduction of 
mitochondrial DNA (mtDNA) and an increase in the levels of 

FIGURE 5

Expression levels of the four hub genes in the GSE27034 and GSE98583 datasets. (A) Expression level of FADD, MPV17, PEX3 and HLCS in GSE27034. 
(B) Expression level of FADD, MPV17, PEX3 and HLCS in GSE98583. *p < 0.05, **p < 0.01, and ***p < 0.001.

FIGURE 6

Development of the diagnostic nomogram model. (A) Nomogram predicting the probability of PAD. (B) Calibration curves of the PAD risk models. 
(C) ROC curve of the PAD risk model. (D) Nomogram predicting the probability of CAD. (E) Calibration curves of the CAD risk models. (F) ROC curve of 
the CAD risk model.
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FIGURE 7

Immune cell infiltration analyses in PAD and CAD. (A) Boxplot showing the comparison of 22 kinds of immune cells between PAD and the control 
group. (B) Boxplot showing the comparison of 22 kinds of immune cells between CAD and the control group. (C) Heatmap representing the 
associations of the differentially infiltrated immune cells with the four hub genes in PAD for the threshold of p < 0.05, *p < 0.05, **p < 0.01, and 
***p < 0.001. (D) Heatmap representing the associations of the differentially infiltrated immune cells with the four hub genes in CAD for the threshold 
of p < 0.05, *p < 0.05, **p < 0.01, and ***p < 0.001.
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reactive oxygen species (ROS) (38), which contributes to 
atherosclerosis (39). Existing literature supports MPV17’s essential 
function in maintaining mitochondrial genome stability (40) and 
regulating redox homeostasis (41), both critical factors in 
atherosclerotic development. Furthermore, the development of a 
nomogram based on these key mitochondrial-related differential 
genes shows promise as a diagnostic tool for PAD and CAD. The 
high AUC values (0.939 and 0.934 for the two datasets) indicate 
good diagnostic performance.

The functional enrichment analysis of DEGs using GO and KEGG 
provided valuable insights into their biological roles and associated 
pathways (42). Notably, the apoptosis pathway emerged as a significant 
area of enrichment. This pathway is essential for determining cell fate, 
and disruptions in apoptotic processes may significantly exacerbate of 
PAD and CAD (43). Another important pathway identified in the 
analysis is the peroxisome pathway, which is involved in multiple 
metabolic processes. Research suggests that dysfunction in 
peroxisomes contributes to atherosclerosis through various 
mechanisms. For instance, a decreased ability to perform β-oxidation 
can result in the accumulation of very-long-chain fatty acids 
(VLCFAs) (44), which activates the TLR4/NF-κB pathway and 
initiates inflammatory responses (45). Furthermore, disruptions in 
hydrogen peroxide metabolism can activate the NLRP3 inflammasome 
(46), working synergistically with mitochondrial reactive oxygen 
species to promote endothelial apoptosis (47). In addition, the 
pathways related to urogenital system development, renal system 
development, and kidney development—identified in the biological 
process analysis of mitochondria-related DEGs—underscore the 
potential involvement of these systems in the pathogenesis of PAD 
and CAD. These results suggest that disturbances in these 
developmental processes may contribute to the onset and progression 
of both diseases.

We performed a deconvolution analysis using the CIBERSORT 
tool to assess the immune infiltration of 22 immune cells. Firstly, the 
observed significant increase in resting memory CD4+ T cells within 
the peripheral artery disease (PAD) group is noteworthy. These cells 

are a specific subset of T lymphocytes vital for coordinating immune 
responses. Their elevated presence may indicate an enhanced immune 
vigilance in individuals with PAD, suggesting potential adaptations in 
the immune system to address the underlying disease processes (48). 
In the context of PAD, the increased presence of these cells may 
suggest an ongoing immune response within the affected tissues. This 
could potentially be  related to the pathophysiological processes 
underlying PAD, such as inflammation and tissue damage. Secondly, 
the significant elevation of CD8+ T cells in CAD patients is another 
important finding. CD8+ T cells, commonly referred to as cytotoxic T 
lymphocytes, are crucial for the direct elimination of target cells (49). 
Similar to previous findings, CD8+ T cells were significantly elevated 
in CAD (50). Research indicates that CD8+ T cells contribute to 
atherosclerosis through various mechanisms: while the secretion of 
IFN-γ activates pro-inflammatory macrophage phenotypes, which can 
accelerate necrotic core formation (51). Furthermore, single-cell RNA 
sequencing has shown that CD8+ T cells promote the dedifferentiation 
of smooth muscle cells (SMCs), driving them toward macrophage-like 
and osteoblast-like phenotypes that favor calcification (52). Clinical 
data demonstrate that an elevated frequency of CD8+ CD57+ T cells in 
the peripheral blood of patients who have experienced acute 
myocardial infarction (MI) and its correlation with 6-month 
cardiovascular mortality emphasizes the significance of these cells in 
CAD (53). Finally, the gene set enrichment analysis revealed that 
MPV17 is enriched in ribosome and eukaryotic translation elongation 
in PAD, while it is enriched in the REG GR pathway in CAD patients. 
These findings suggest that MPV17 may have distinct functional roles 
in the pathogenesis of PAD and CAD.

This study has several limitations that need to be recognized. First, 
the absence of wet experiments raises concerns regarding the 
reliability and reproducibility of the results. Second, the limited 
sample size may hinder the generalizability of the findings. While the 
chosen datasets offer valuable information for analysis, the limited 
sample count may weaken the strength of the findings. Moreover, the 
selection of the dataset may contain inherent biases, which highlights 
the need for further validation with larger and more diverse samples. 

FIGURE 8

Gene set enrichment analysis (GSEA) for MPV17 in (A) PAD and (B) CAD.
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Additionally, the focus on known mitochondrial-related genes may 
lead to the exclusion of other significant genes. Finally, the model’s 
establishment and validation relied primarily on statistical methods, 
without clinical validation to support its effectiveness.

5 Conclusion

This study significantly advances our understanding of the 
pathophysiological mechanisms of panvascular disease. It offers 
innovative ideas and potential biomarkers for its clinical diagnosis and 
treatment. We identified MPV17 as a mitochondrial-related hub gene 
between CAD and PAD. Its high diagnostic value indicates its 
potential as a biomarker for the early detection and differentiation of 
these vascular disorders. Future research should integrate wet 
experiments with multi-omics data to more comprehensively 
investigate the pathogenesis of panvascular disease, thereby developing 
more accurate and effective diagnostic and therapeutic approaches.
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