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Purpose: This study aimed to evaluate the underlying mechanisms of decitabine 
(DAC) in inhibiting acute T-acute lymphoblastic leukemia (T-ALL) cell proliferation 
and promoting apoptosis.

Methods: Human T-ALL cells (CCRF-CEM) were treated with varying 
concentrations of DAC, and cell proliferation was assessed using a CCK-8 assay. 
Flow cytometry was used to detect apoptosis and cell cycle alterations. The 
expression levels of apoptosis-related genes, including PI3K and miR-92b-3p, 
were quantified using real-time PCR (RT-PCR). Western blotting was used to 
analyze the expression of apoptotic proteins. Furthermore, we  evaluated the 
in  vivo antileukemic activity of DAC using a nude mouse xenograft model, 
monitored the body weight and tumor volume of mice to calculate inhibition 
rates, and examined tumor morphological changes in histological sections.

Results: DAC significantly inhibited the proliferation of CCRF-CEM cells, 
accelerated apoptosis, and effectively downregulated the expression of 
PI3K, AKT, 4EBP1, and mTOR while concurrently upregulating PTEN protein 
expression. Its regulatory efficacy was markedly enhanced by increasing the 
dosage. Animal experimental results indicated that both DAC and doxorubicin 
substantially decreased tumor length, width, volume, and mass; however, 
DAC demonstrated significantly superior efficacy in inhibiting tumor growth 
compared to doxorubicin.

Conclusion: By selectively targeting the regulation of PTEN and 4EBP1, 
along with their associated downstream signaling pathways, DAC effectively 
modulated cellular proliferation, facilitated apoptotic processes, and restrained 
tumor growth, providing a robust theoretical foundation for clinical treatment 
strategies in T-ALL.
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Introduction

Acute lymphoblastic leukemia (ALL) is a malignant tumor of the blood and immune 
system characterized by the abnormal proliferation of immature lymphocytes. It is most 
prevalent in children, comprising approximately 80% of acute leukemia cases. Cure rates vary 
significantly by country, reaching approximately 90% in high-income nations but dropping to 
40–60% in low/middle-income countries due to limited access to intensive chemotherapy and 
supportive care (1–3). Childhood ALL is categorized into B-cell (85%) or T-cell precursor 
types. T-ALL accounts for nearly 15% of cases, exhibits a worse prognosis than B-ALL due to 
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distinct molecular features and limited therapeutic options, 
highlighting the need for targeted strategies. This disease 
predominantly occurs in children aged between 1 and 4 years old, 
after which the incidence rate declines significantly (4). Although the 
exact causes of ALL remain unclear, several risk factors have been 
identified, including environmental factors such as exposure to 
ionizing radiation, certain chemical substances, and infection with 
HTLV-1. Individuals with somatic chromosomal translocations such 
as t(9;22), and those with germline genetic disorders including Down 
syndrome, Bloom syndrome, or neurofibromatosis, are at elevated 
risk. Down syndrome, caused by trisomy 21, is a germline 
chromosomal abnormality, while t(9;22) (BCR-ABL1 fusion) arises 
somatically in hematopoietic cells (5, 6).

Currently, while treatment for ALL has seen some advancements, 
managing therapy according to strict medication schedules poses 
challenges; fluctuations and recovery patterns of blood cell counts are 
difficult to predict precisely, leading to unforeseen, severe infections 
and other adverse effects known as periods of cytopenia (7). To 
address this challenge, frequent adjustments to chemotherapy doses 
and regimens based on empirical evidence and individual patient 
responses have become common practice, particularly for drugs that 
can cause bone marrow suppression, with the aim of minimizing 
cytopenia and infection risk (8). However, nonstandardized treatment 
modifications may undermine therapeutic efficacy, highlighting the 
urgent need to explore new therapeutic targets to optimize treatment 
outcomes and enhance clinical effectiveness in patients with ALL (9).

Decitabine (DAC) is an FDA-approved, 2-deoxycytidine analog 
used to treat myelodysplastic syndrome. As a demethylating agent, DAC 
facilitates leukemia cell differentiation and cancer cell apoptosis while 
inhibiting cell proliferation at low doses. Integrating DNA and depleting 
DNA methyltransferases induces cytotoxicity and suppresses DNA 
synthesis at higher doses, thereby exhibiting a dual mechanism of action 
(10, 11). DAC demonstrates a potent antileukemic potential by 
reversing DNA hypermethylation and activating dormant tumor 
suppressor genes. It has emerged as a pivotal component in bridging 
pretransplant therapy with posttransplant maintenance strategies, 
effectively preventing disease relapse (12–14). Studies have indicated 
that DAC, by enhancing the expression of HLA-DR and FoxP3, can 
concurrently inhibit GVHD and preserve the graft-versus-leukemia 
effect, thereby demonstrating its potential as a novel and efficacious 
treatment for relapse following allo-HSCT (15, 16). This study aimed to 
evaluate the apoptotic effect of DAC on CCRF-CEM leukemia cells and 
further investigate its impact on cell proliferation and apoptosis 
induction. Key genes were selected based on their established roles in 
the PI3K/AKT/mTOR pathway, a central regulator of cell survival and 
apoptosis (17). PI3K and AKT are positive regulators of cell proliferation, 
while PTEN acts as a tumor suppressor by inhibiting PI3K (18, 19). 
4EBP1, a downstream target of mTOR, regulates protein synthesis and 
apoptosis when dephosphorylated (20). Additionally, a xenograft 
mouse model was used to assess the in vivo anti-ALL activity of DAC.

Materials and methods

Cell lines, reagents, and other materials

CCRF-CEM cells (human T-ALL cell line, ATCC CCL-119) carry 
a T-cell receptor β-chain rearrangement and harbor NOTCH1 

mutations, a common genetic alteration in T-ALL associated with 
poor prognosis (21). Karyotyping analysis has shown this line to 
possess a near-diploid genome with chromosomal abnormalities 
including +8 and del(9p), which are frequently observed in high-risk 
T-ALL subsets. Moreover, it harbors mutations in several key genes 
relevant to ALL pathogenesis. For instance, in the p53 tumor 
suppressor gene, two heterozygous mutations have been identified at 
codons 175 and 248  in the DNA-binding domain (22). These 
mutations can potentially disrupt the normal function of p53, which 
is crucial for cell-cycle regulation, DNA repair, and apoptosis 
induction. Additionally, a frameshift mutation in the hypoxanthine-
guanine phosphoribosyltransferase (HGPRT) gene has been reported 
in a sub-population of CCRF-CEM cells. Specifically, an Exon 8 
deletion mutation in the HGPRT gene has been detected, which can 
affect purine salvage pathways and cellular metabolism (23). 
CCRF-CEM cells were obtained from Jiangsu Kaiji Biotechnology Co., 
Ltd. (Jiangsu, China), and DAC (A119533) was supplied by Aladdin 
(China). Pipettes were provided by Eppendorf (Germany). The Cell 
Counting Kit-8 (KGA9305-500), Annexin V-FITC/PI Apoptosis 
Detection Kit, and Cell Cycle Assay Kit (KGA1102-20) were purchased 
from Jiangsu Kaiji Biotechnology Co., Ltd. (Jiangsu, China). The 
cDNA First Strand Synthesis Kit was provided by TAKARA (RR820A; 
Shiga, Japan). The antibody panel comprised rabbit anti-GAPDH 
(KGC6102-1; Jiangsu Kaiji), rabbit anti-PI3K (ab191606; Abcam 
United Kingdom), rabbit anti-AKT (ab179463; Abcam UK), rabbit 
anti-mTOR (ab32028; Abcam United Kingdom), rabbit anti-PTEN 
(60300-1-Ig; Wuhan Sanying), rabbit anti-4EBP1 (60246-1-Ig; Wuhan 
Sanying), goat anti-rabbit IgG-HRP (KGC6202-0.1; Jiangsu Kaiji), and 
goat anti-mouse IgG-HRP (KGC6203-0.1; Jiangsu Kaiji), all from 
Jiangsu Kaiji Biotechnology Co., Ltd. (Jiangsu, China).

Cell culture and drug therapy

Frozen CCRF-CEM cells were retrieved from liquid nitrogen and 
rapidly thawed in a 37°C water bath before being transferred to a 
centrifuge tube containing 4 mL of complete culture medium. 
Following centrifugation at 400 × g for 3 min, the cells were 
resuspended in 1 mL of medium, plated in culture flasks with 
additional medium, and incubated at 37°C under 5% CO2. Cells were 
treated with a range of DAC concentrations (100, 50, 10, 5, 1, 0.5, 0.1, 
0.05, 0.025, 0.0125, and 0.00625 μM) for durations of 24, 48, 72, and 
96 h to ascertain the optimal duration and concentration for activity. 
Cell viability and the effects of DAC were assessed using CCK8 assays, 
quantitative reverse transcription polymerase chain reaction (qRT-
PCR), and flow cytometry.

CCK8 assay to assess cell proliferation

DAC (molecular weight 228.21 g/mol) was dissolved in saline, 
stored at −20°C, and prepared in concentrations ranging from 
0.00625–100 μM. A drug-free control group was established, with five 
replicates set for each concentration. The effect on CCRF-CEM cell 
proliferation was assessed after 24, 48, 72, and 96 h of treatment. 
Briefly, the CCK8 assay procedure involved collecting cells from each 
group, adjusting them to a density of 5 × 104 cells/mL, and plating 
100 μL per well in a 96-well plate, followed by incubation at 37°C 
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under 5% CO2. At specific time points (24, 48, 72, and 96 h), 5 μL of 
CCK8 solution was added to each well, followed by a 2-h incubation 
and 10-min gentle shaking. Absorbance was then measured at 450 nm.

Morphological and structural changes in 
apoptotic features

The cell line CCRF-CEM was treated with varying concentrations 
of DAC—0, 1.00 μmol/L, 10 μmol/L, and 100 μmol/L—for a duration 
of 48 h. Upon completion of the treatment, samples were retrieved 
from culture and subjected to embedding procedures, followed by 
trimming of the embedded blocks. Ultrathin sections (70 nm) were 
prepared using a Leica UC-7 ultramicrotome. These sections were 
then collected on copper grids and subjected to electron staining using 
lead as a staining agent. Finally, the stained sections were imaged 
using a transmission electron microscope (JEM1400, Japanese 
electronics) to observe and analyze the morphological and structural 
changes that occur during apoptosis (morada G3, Münster, Germany).

Flow cytometry to assess cell apoptosis

Initially, cell counting was performed, and the cells were prepared 
to obtain a suspension with a density of 5 × 104 cells/mL. Subsequently, 
2 mL of this cell suspension was inoculated into each well of a six-well 
plate. Depending on the designated experimental groups, 0, 
1.00 μmol/L, 10 μmol/L, and 100 μmol/L DAC solutions were added 
to the culture medium, alongside establishing a negative control group 
without any drug. All groups of cells were then cultured under these 
conditions for 72 h. Following this cultivation period, cells from each 
group were washed twice with PBS, and each wash was centrifuged at 
1,000 rpm for 5 min to collect approximately 1 × 106 cells. Harvested 
cells were resuspended in 500 μL of binding buffer. Sequentially, 5 μL 
of Annexin V-FITC was introduced to the cell suspension and 
thoroughly mixed. Immediately afterwards, 5 μL of propidium iodide 
was added, and the mixture was reincorporated thoroughly. The 
reaction proceeded in the dark at room temperature for 5–15 min to 
ensure accurate cell labeling. Finally, flow cytometry was employed to 
examine cells from all groups, facilitating the assessment and analysis 
of the apoptotic status in cells treated with varying 
concentrations of DAC.

PI single staining method to assess cell 
cycle

After cell counting, a suspension was prepared at a density of 
5 × 104 cells/mL, and 2 mL of this suspension was added to each well 
of a six-well plate. Cells were treated with the respective drug 
concentrations or left untreated as a control. Following 72 h of drug 
treatment, cells were washed twice with PBS (1,000 rpm, 5 min), 
yielding 5 × 105 cells. Cells were then fixed in 70% ethanol (KGF2203-
100, Jiangsu Kaiji Biotechnology Co., Ltd) for 2 h at 4°C prior to 
staining, the fixative was removed by washing with PBS. Subsequently, 
100 μL of RNase A was added, and cells were incubated at 37°C for 
30 min. This was followed by the addition of 400 μL PI for staining 
after thorough mixing, with subsequent incubation in the dark at 4°C 

for another 30 min. Finally, red fluorescence emission at a 488 nm 
excitation wavelength was detected using flow cytometry, and the data 
were recorded.

RT-PCR analysis

Cells were treated with DAC for 72 h prior to RNA extraction for 
RT-PCR analysis. Total RNA was isolated using TRIzol reagent 
(Invitrogen; TRIzol: KGF5101-100, Jiangsu Kaiji Biotechnology Co., 
Ltd) following the manufacturer’s instructions. Briefly, cells were lysed 
in 1 mL TRIzol, mixed with 200 μL chloroform by vortexing for 15 s, 
and incubated at room temperature for 3 min. After centrifugation at 
12,000 × g for 15 min at 4°C, the aqueous phase was collected. RNA 
was precipitated by adding an equal volume of isopropanol, followed 
by centrifugation at 12,000 × g for 10 min at 4°C. The resulting RNA 
pellet was washed with 75% ethanol, air-dried, and dissolved in 
RNase-free water. RNA concentration and purity (OD260/280 ratio) 
were determined using a NanoDrop  2000 spectrophotometer. 
Potential genomic DNA contamination was assessed by PCR 
amplification without reverse transcriptase (RT-minus control). 
Reverse transcription was performed to synthesize cDNA. Quantitative 
RT-PCR was carried out using the prepared cDNA, specific primers, 
TaqMan probes, and PCR reagents (TaKaRa RR036B, Japan) in a 
reaction system that dynamically monitored accumulating 
fluorescence signals over multiple temperature cycles. Genes analyzed 
for their roles in apoptosis regulation included pro-survival factors 
(PI3K, AKT, mTOR), the anti-survival factor PTEN, and mTOR 
effectors (P70S6, 4EBP1). miRNAs (e.g., miR-92b-3p, miR-193a-3p, 
miR-19, miR-21, miR-22, miR-93a, miR-193a, miR-221, miR-223, 
miR-20) were selected based on prior reports linking them to 
apoptosis in ALL. GAPDH and U6 snRNA served as endogenous 
controls for mRNA and miRNA quantification, respectively. 
Amplification efficiency for each primer/probe set (92–105%) was 
confirmed by standard curve analysis using 10-fold serial dilutions of 
cDNA. Relative gene expression levels were calculated using the 2(−

ΔΔCt) method. All primers and probes (sequences provided in Table 1) 
were designed using Primer3 software and synthesized by Sangon 
Biotech (Shanghai, China).

Western blotting

Cells were treated with DAC for 72 h, then lysed to extract total 
proteins. Western blotting was performed in triplicate (biological 
replicates) using independent cell cultures. After extracting the total 
cellular proteins, protein concentrations were determined using a BCA 
kit. Each group loaded 20 μg of protein onto a system with 12% 
resolving gel and 5% stacking gel. Electrophoresis was initially 
performed at 80 V for 40 min to concentrate proteins, followed by 
120 V for 50 min for separation. Subsequently, proteins were transferred 
to a membrane at a constant voltage of 90 V for 1 h and blocked with 
5% non-fat milk at room temperature (or overnight at 4°C). Primary 
antibodies (Bad 1:1,000, Bcl-2 1:1,000, cleaved-caspase-3 1:1,000, and 
GAPDH 1:1,000) were applied to the membrane and incubated at room 
temperature for 1 h. Following membrane washing, the secondary 
antibody goat anti-rabbit IgG (1:10,000) was applied and incubated at 
room temperature for another hour. Thereafter, ECL reagent was used 
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for chemiluminescence development, and images were captured using 
the Bio-Rad ChemiDoc Touch imaging system. Gel-Pro32 software was 
employed for the grayscale analysis of the results, and each experiment 
was repeated three times to ensure reliability.

In vivo studies

A total of 21 five-week-old female BALB/c nude mice were 
obtained from SPF Biotechnology Co., Ltd. (Suzhou, China). Following 
a one-week acclimation period, we harvested cultured human acute 
lymphoblastic T-lymphocyte CCRF-CEM cells, mixed them with high-
concentration matrix gel and PBS at a 1:1 ratio, adjusted the cell 
concentration to 1 × 108 cells/mL, and injected 0.1 mL of this 
suspension into the right axillary subcutaneous tissue of each mouse to 
establish a tumor xenograft model. The diameter of the transplanted 
tumors was monitored using a Vernier caliper. Once they reached 
100 mm3 in size, the mice were randomly divided into three groups. 
The control group received daily intraperitoneal injections of 0.2 mL 
saline, the DAC treatment group was administered 20 mg/kg DAC 
daily via intraperitoneal injection, and the doxorubicin group was 
administered 3 mg/kg doxorubicin intraperitoneally on days 1, 6, and 
12. Every 3 days, the weights of the nude mice were recorded, and the 
long diameter (A) and short diameter (B) of the tumors were measured 
to calculate the tumor volume. Additionally, the overall health status of 
the mice, including skin color and activity levels, was observed and 
documented. Mice were euthanized using carbon dioxide (CO₂) as per 
American Veterinary Medical Association guidelines: animals were 
exposed to 70% CO₂ in air (flow rate 20% chamber volume/min), 
followed by 100% CO₂ until loss of righting reflex and absence of vital 
signs (no respiration, corneal reflex, or paw pinch response). Euthanasia 
was confirmed by 2 additional minutes of 100% CO₂ exposure.

Statistical analysis

Descriptive statistics were presented as the mean ± standard 
deviation (mean ± SD), while multiple-group comparisons were 
conducted using one-way analysis of variance (ANOVA). 
Subsequent explorations of post-ANOVA differences were 
performed using the least significant difference test. All hypothesis 
tests were two-tailed, with statistical significance set at p < 0.05. 
The entire data analysis process was performed using SPSS software 
(version 26.0).

Results

Selection of optimal concentration and 
time of action of DAC

CCRF-CEM cells were treated with various concentrations of 
DAC for 24, 48, 72, and 96 h. To assess the proliferative activity of 
the cells in each group, a CCK8 assay was employed. The results 
demonstrated that as the exposure time to DAC increased along 
with its concentration, the inhibitory effect on cell growth 
increased, manifesting a consistently increasing inhibition rate 
(Figure 1A). Notably, after 72 h of treatment, the IC50 of DAC after 
72 h was 70.704 μM, as illustrated in Figure 1B.

Morphological and structural changes

Following DAC treatment in CCRF-CEM cells, high doses 
resulted in more pronounced morphological and structural 
changes that induced apoptosis. Cells treated with the high dose 

TABLE 1 RT-PCR primers used in this study.

Gene Forward Primer (5′ → 3′) Reverse Primer (5′ → 3′) Amplicon length 
(bp)

PI3K CGAGTGGTTGGGCAATGAAA CTCGCAACAGGTTTTCAGCT 134

AKT TACTACGCCATGAAGATCCTCAA CGTACTCCATGACAAAGCAGAG 166

PTEN ACCCACCACAGCTAGAACTT AGTTCGTCCCTTTCCAGCTT 113

4EBP1 GTGTCGGAACTCACCTGTG CCGCTTATCTTCTGGGCTATTG 136

mTOR GTCAGAATCCAAGTCAAGTCAGG ATGGTGTGATGATGAGAGAGTGA 159

P70S6 ACCTCACACAAGAAGCCAGA GAGCTTGAACTTCTCCAGCG 102

GAPDH CAAATTCCATGGCACCGTCA AGCATCGCCCCACTTGATTT 109

hsa-miR-19a-3p ACACTCCAGCTGGGTGTGCAAATCTATGCAA - (stem-loop RT primer) 71

hsa-miR-20a-3p ACACTCCAGCTGGGACTGCATTATGAGCAC - (stem-loop RT primer) 65

hsa-miR-21–3p ACACTCCAGCTGGGCAACACCAGTCGATG - (stem-loop RT primer) 66

hsa-miR-22-3p ACACTCCAGCTGGGAAGCTGCCAGTTGAAG - (stem-loop RT primer) 74

hsa-miR-92b-3p ACACTCCAGCTGGGTATTGCACTCGTCCCG - (stem-loop RT primer) 82

hsa-miR-93-3p ACACTCCAGCTGGGACTGCTGAGCTAGCAC - (stem-loop RT primer) 71

hsa-miR-193a-3p ACACTCCAGCTGGGAACTGGCCTACAAAGT - (stem-loop RT primer) 76

hsa-miR-221–3p ACACTCCAGCTGGGAGCTACATTGTCTGCTG - (stem-loop RT primer) 87

hsa-miR-223-3p ACACTCCAGCTGGGTGTCAGTTTGTCAAAT - (stem-loop RT primer) 89

U6 CTCGCTTCGGCAGCACA AACGCTTCACGAATTTGCGT -
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displayed heightened nuclear condensation, fragmentation, and 
profusion of apoptotic bodies, accompanied by vesicular 
protrusions on the cellular membrane, which are characteristic 
features of late-stage apoptosis. In contrast, while low-dose DAC 
also initiated apoptosis, these changes were relatively milder, with 
a lower proportion of apoptotic cells and less evident apoptotic 
traits compared to the high-dose treatment. This suggested that 
DAC dosage had a direct impact on the intensity and kinetics of 
apoptosis induction (Figure 2).

Cell apoptosis and cell cycle

The Annexin V-FITC/PI double staining method, when applied 
through flow cytometry for apoptosis detection, revealed a 
significant increase in the apoptotic rate as the DAC concentration 
increased (Figure 3). Our findings further indicated that with an 
increase in DAC dose, there was a notable decrease in the number 
of cells in the G1 phase, whereas in the S and G2 phases, a significant 
increase in cell count was observed as the DAC concentration 
increased (Figure 4).

Expression levels of apoptosis-related 
genes and proteins

The RT-PCR results revealed a significant decline in the 
expression levels of PI3K, P70S6, AKT, miR-19a-3p, miR-221–3p, 
mTOR, miR-21–3p, miR-20a-3p, 4EBP1, miR-93-3p, and 
miR-92b-3p with increasing DAC dosage. Conversely, a marked 
elevation in the expression levels of miR-193a-3p, miR-223-3p, 
PTEN, and miR-22-3p was observed under the same conditions 
(Figure 5). In addition, the protein expression levels of PI3K, AKT, 
4EBP1, and mTOR gradually decreased as DAC dosage increased, 
whereas the expression level of PTEN increased with increasing 
DAC concentration (Figure 6).

In vivo studies

CCRF-CEM cells were implanted into the subcutaneous tissue 
of nude mice. After 40 days of cell cultivation, tumors were formed 
with a size of approximately 100 mm3. Detailed information on the 
subcutaneous tumor formation is shown in Figure 7. Over time, 
tumor volume in the model group gradually increased. In contrast, 
the doxorubicin-treated group exhibited delayed tumor progression, 
whereas the DAC-treated group demonstrated a more pronounced 
inhibitory effect, surpassing that of the doxorubicin group (Figure 8).

Discussion

This study delved into the mechanisms by which DAC operates in 
treating ALL, revealing that high-dose DAC demonstrates significantly 
superior efficacy compared with low-dose DAC in inhibiting tumor cell 
proliferation and promoting tumor cell apoptosis. Further animal 
experiments corroborated that DAC can potently suppress tumor 
growth, with its tumor inhibition efficiency markedly outperforming 
that of the conventional drug doxorubicin. Moreover, our study revealed 
that DAC substantially reduced the expression levels of PI3K, P70S6, 
AKT, miR-19a-3p, miR-221–3p, mTOR, miR-21–3p, miR-20a-3p, 4EBP1, 
miR-93-3p, and miR-92b-3p, and this suppressive effect was augmented 
as the DAC dosage increased. Conversely, DAC facilitated the expression 
of miR-193a-3p, miR-223-3p, PTEN, and miR-22-3p, and its capacity to 
induce expression significantly increased as the dose increased. Notably, 
CCRF-CEM cells exhibit molecular features of the ‘early T-cell precursor’ 
subtype, including CD1a−/CD1b−/CD8− immunophenotype and 
NOTCH1 mutations, which represent 15–20% of T-ALL cases with 
inferior outcomes (24). The observed del(9p) mirrors cytogenetic 
abnormalities in high-risk T-ALL, further validating this model’s 
relevance to aggressive disease subsets. Thus, our findings specifically 
inform T-ALL therapy, warranting validation in B-ALL models.

While previous studies have confirmed that DAC can significantly 
enhance the treatment outcomes of ALL (25–29), a comprehensive 

FIGURE 1

Selection of the optimal concentration and time of action of DAC. (A) Detection of inhibition rate in each group; (B) The threshold concentration of 
DAC required to achieve 50% inhibition of cell growth after 72 h. (A) CCK-8 assay showing dose- and time-dependent inhibition of CCRF-CEM cells by 
DAC. (B) IC50 determination after 72 h of treatment. Data are mean ± standard deviation (SD) of three independent biological replicates (n = 3).
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understanding of its mechanisms of action remains to be achieved. 
DAC notably inhibited the proliferation of CCRF-CEM cells and 
induced apoptosis, with the effect intensifying as the dosage increased 
(30). It exerts diverse effects at various stages of the cell cycle, 
suppressing DNA methyltransferases to facilitate DNA demethylation, 
particularly in abnormally methylated genomic regions such as those in 
tumor suppressor gene promoters. This reactivates silenced tumor 
suppressor genes and restores normal cell growth and apoptotic 
pathways, thereby regulating cell proliferation and apoptosis (31). As a 
cytosine analog, erroneous incorporation of DAC into DNA, 
particularly during replication, can impede DNA synthesis and damage 
DNA. If left unrepaired, the damage accumulates and ultimately induces 
apoptosis (32). Higher doses are more effective at blocking S-phase 
DNA replication and vigorously suppressing proliferation. Lower doses 
may interfere with G1/S or G2/M transitions, disrupting cell cycle 
progression, albeit with a milder apoptotic induction effect (33).

In previous investigation employing the MOLT-4 T-ALL cell line 
(34), the IC50 value for DAC was determined to be 50 μM. In contrast, 
the present study using the CCRF-CEM cell line revealed an IC50 of 
70.7 μM. This variance may be attributed to the distinct molecular 
characteristics of these cell lines. For instance, MOLT-4 cells display 
a defective p21(WAF1) induction mechanism following DNA damage 
despite normal p53 function. This defect is associated with epigenetic 
repression mechanisms, including reduced acetylation of H3K9 in the 
promoter region and increased CpG methylation in the first exon/
intron. In CCRF-CEM cells, the basal levels of key signaling molecules 
and epigenetic regulators might be  different, leading to a higher 
resistance to DAC. Another contributing factor to the difference in 
DAC sensitivity could be the activation of survival pathways. T-ALL 
cell lines are known to rely on different survival signaling pathways, 
and the CCRF-CEM cells may have a more robust activation of 
pathways that counteract the effects of decitabine (35). Additionally, 

FIGURE 2

Morphological and structural changes in each group. Transmission electron microscopy images of CCRF-CEM cells treated with DAC (0, 1, 10, 100 μM) 
for 48 h, showing nuclear condensation and apoptotic bodies. Images are representative of three independent experiments.
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the MOLT-4 cells, with their specific genetic and epigenetic landscape, 
may be  more permissive to the demethylating and anti-leukemic 
effects of DAC. Understanding these differences can provide a more 
comprehensive view of how DAC exerts its effects in T-ALL and may 
inform the development of more targeted treatment strategies.

In the present study, the expression levels of PI3K, P70S6, AKT, 
miR-19a-3p, miR-221–3p, mTOR, miR-21–3p, miR-20a-3p, 4EBP1, 

miR-93-3p, and miR-92b-3p were significantly reduced in the DAC 
group, whereas those of miR-193a-3p, miR-223-3p, PTEN, and 
miR-22-3p were increased. Moreover, DAC significantly reduced PI3K, 
AKT, 4EBP1, and mTOR protein expression levels, whereas PTEN 
protein levels were significantly increased. Previous studies have 
demonstrated that DAC inhibits the PI3K/AKT/mTOR pathway 
through PTEN, partially reducing the viability of MOLT4 cells, 

FIGURE 3

The apoptotic rate in each group. Annexin V-FITC/PI staining results after 72 h of DAC treatment. Apoptotic rates were analyzed by flow cytometry. 
Data are mean ± SD of three biological replicates (n = 3).

FIGURE 4

The cell percentage after DAC treatments in the G1, S, and G2 phases. Cell cycle distribution analyzed by PI staining after 72 h of DAC treatment. Data 
represent mean ± SD of three biological replicates (n = 3). CCRF-CEM vs. CCRF-CEM + Decitabine 1 μM, p < 0.05; CCRF-CEM + Decitabine 1 μM vs. 
CCRF-CEM + Decitabine 10 μM, p < 0.05; CCRF-CEM + Decitabine 10 μM vs. CCRF-CEM + Decitabine 100 μM, p < 0.05.
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FIGURE 5

The apoptosis-related genes expression in each group. (A) PI3K; (B) AKT; (C) mTOR; (D) PTEN; (E) 4EBP1; (F) P70S6; (G) miR-19a-3p; (H) miR-21–3p; 
(I) miR-22-3p; (J) miR-93-3p; (K) miR-193a-3p; (L) miR-221–3p; (M) miR-223-3p; (N) miR-20a-3p; (O) miR-92b-3p. (A–N) Decitabine 1 μM vs. control, 
p < 0.05; Decitabine 10 μM vs. Decitabine 1 μM, p < 0.05; Decitabine 100 μM vs. Decitabine 10 μM, p < 0.05. (O) Decitabine 10 μM vs. Decitabine 1 μM, 
p < 0.05; Decitabine 100 μM vs. Decitabine 10 μM, p < 0.05. RT-PCR analysis of apoptosis-related genes after 72 h of DAC treatment. Data are mean ± 
SD of three biological replicates (n = 3), normalized to GAPDH or U6.
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particularly at low concentrations, which is consistent with the findings 
of the present study (18). However, our study revealed that DAC 
significantly suppresses the expression level of 4EBP1. A marked 
reduction in 4EBP1 expression is a pivotal consequence of DAC 
intervention (36, 37). 4EBP1 modulates the function of eIF4E 
(eukaryotic initiation factor 4E), which is crucial for initiating protein 
synthesis. When 4EBP1 expression is inhibited, eIF4E is no longer 

effectively restrained, leading to its overactivation, which paradoxically 
does not directly stimulate protein synthesis but instead triggers stress 
responses and apoptotic pathways in various cell types (38). 
Consequently, the disruption of protein synthesis due to 4EBP1 
repression, along with subsequent stress reactions, markedly impaired 
the proliferative capacity of CCRF-CEM cells and initiated apoptosis. 
This cascade of events demonstrates how DAC effectively controls 

FIGURE 6

The expression levels of apoptosis-related proteins in each group. Western blotting analysis of apoptotic proteins (72 h post-DAC treatment). Band 
intensities were quantified and normalized to GAPDH. Data are mean ± SD of three biological replicates (n = 3). (A) PI3K; (B) AKT; (C) mTOR; (D) PTEN; 
(E) 4EBP1. Decitabine 1 μM vs. control, p < 0.05; Decitabine 10 μM vs. Decitabine 1 μM, p < 0.05; Decitabine 100 μM vs. Decitabine 10 μM, p < 0.05. 
(F) WB analysis for the expression levels of apoptosis-related proteins in each group.
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FIGURE 7

The subcutaneous tumor formation in each group. Representative images of subcutaneous tumors in nude mice (40 days post-implantation). Mice 
were treated with saline, DAC (20 mg/kg), or doxorubicin (3 mg/kg). Images are from n = 7 mice per group.

FIGURE 8

The inhibitory effect of DAC on tumor volume. Tumor volume kinetics in nude mice (mean ± SD, n = 7 per group). DAC significantly reduced tumor 
growth compared to doxorubicin and control (p < 0.01). Tumor volume was calculated as V = 0.5 × A × B2.
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malignant cell proliferation and promotes apoptosis by precisely 
targeting specific nodes within the epigenetic regulatory network.

A notable limitation of this study is the reliance on a single T-ALL cell 
line (CCRF-CEM), which may not fully capture the genetic heterogeneity 
of clinical T-ALL. Future studies should leverage publicly available 
RNAseq datasets to analyze the expression dynamics of PI3K, AKT, 
4EBP1, mTOR, and PTEN in primary ALL patient samples treated with 
decitabine. Such analyses could identify these genes as potential 
biomarkers for therapeutic response, particularly by comparing 
expression changes in decitabine-sensitive vs. resistant cases.

Conclusion

This study uncovered DAC’s efficacy in inhibiting the proliferation of 
CCRF-CEM cells, accelerating apoptosis, and suppressing tumor growth, 
with its effectiveness increasing as the dose increased. Furthermore, 
we conclusively demonstrated that DAC significantly downregulated the 
expression of PI3K, AKT, 4EBP1, and mTOR proteins, while concurrently 
boosting the levels of PTEN protein; these regulatory effects became more 
pronounced with increasing DAC dosage. Validation of these findings in 
primary ALL patient data and exploration of PI3K/PTEN/4EBP1 as 
therapeutic response markers represent important future directions. These 
findings suggest DAC may be a promising agent for NOTCH1-mutated 
T-ALL subsets, warranting validation in diverse preclinical models.
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