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Background: The relationship between Helicobacter pylori (H. pylori) infection 
and serum uric acid levels remains debated. This study investigates the 
association between H. pylori infection and serum uric acid levels in a Chinese 
community, exploring renal function as a potential modifier.
Methods: We conducted a cross-sectional study involving 8,439 adults who 
underwent health examinations at a hospital in Wuhan from January 2022 to 
January 2024. H. pylori infection was assessed via the 14C-urea breath test, and 
serum uric acid levels were measured by the uricase method. Multivariable linear 
regression models evaluated the associations, and interaction analysis identified 
potential effect modifiers. Subgroup analyses were stratified by estimated 
glomerular filtration rate (eGFR).
Results: The prevalence of H. pylori infection was 21.5% (1,816/8,439). Initial 
analysis showed higher serum uric acid levels in individuals with H. pylori infection 
compared to those without (403.76 ± 102.89 vs. 395.87 ± 102.13 μmol/L, 
p = 0.004). However, after adjusting for age, sex, body mass index, lipid profiles, 
and hepatorenal function, this association was no longer significant in the 
overall cohort (β = 1.92, 95% CI: −2.38 to 6.23, p = 0.381). Interaction analysis 
revealed a significant modification by eGFR (p for interaction = 0.007). Stratified 
analysis showed an inverse association between H. pylori infection and serum 
uric acid in individuals with mild renal impairment (eGFR 60–80 mL/min/1.73m2, 
n = 824; adjusted β = −17.86, 95% CI: −31.28 to −4.44, p = 0.009), while no such 
association was observed in those with normal renal function (eGFR ≥80 mL/
min/1.73m2, n = 7,531; β = 3.92, 95% CI: −0.66 to 8.50, p = 0.094). Sensitivity 
analyses confirmed the robustness of these findings.
Conclusion: Renal function modulates the association between H. pylori 
infection and serum uric acid levels, with an inverse correlation observed in 
individuals with mild renal impairment. These findings suggest that renal function 
may influence the impact of H. pylori infection on uric acid metabolism.
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Introduction

Helicobacter pylori, a Gram-negative bacterium that colonizes the 
human gastric mucosa, infects nearly half of the global population, 
presenting a significant public health concern (1–4). Its prevalence 
varies across regions, with developing countries exhibiting higher 
infection rates (5–7). In China, approximately 50% of the population 
is infected, though regional variations exist due to socioeconomic 
factors, lifestyle choices, and demographic characteristics (8–12). 
Since Warren and Marshall first isolated H. pylori in 1982, research 
has shown that its pathogenic effects extend beyond the 
gastrointestinal tract, contributing to conditions such as peptic ulcers, 
chronic gastritis, gastric cancer, and even neurodegenerative diseases 
(13–17).

Recent studies have highlighted that H. pylori influences host 
metabolic homeostasis through multiple mechanisms. For instance, 
VacA targets mitochondria, leading to Adenosine Triphosphate (ATP) 
depletion and cellular energy stress, which activates AMP-activated 
protein kinase (AMPK) and shifts cellular processes from anabolic to 
catabolic through mechanisms including autophagy induction (18–
20). Chronic low-grade inflammation induced by H. pylori infection 
elevates pro-inflammatory cytokines, such as Tumor Necrosis Factor-
α (TNF-α) and Interleukin-6 (IL-6), impairing insulin signaling and 
contributing to insulin resistance (21, 22). Additionally, H. pylori alters 
the gut microbiota, affecting short-chain fatty acid production and the 
secretion of metabolic hormones such as ghrelin and leptin, which in 
turn influence systemic energy metabolism (23–25). These extra-
gastric effects provide a biological basis for linking H. pylori infection 
with metabolic disorders, including disturbances in uric 
acid metabolism.

Uric acid, the final product of purine metabolism, acts as an 
antioxidant at normal concentrations by scavenging reactive oxygen 
species and protecting against oxidative stress (26–28). However, 
elevated serum uric acid levels are an independent risk factor for 
metabolic and cardiovascular diseases, including diabetes, 
hypertension, and metabolic syndrome (29–31). Uric acid homeostasis 
is closely tied to renal function, with the kidneys playing a central role 
in its clearance. Approximately 70% of uric acid is cleared by the 
kidneys through transporters such as Urate Transporter 1 (URAT1) 
and Glucose Transporter 9 (GLUT9) (32, 33). As renal function 
declines, reduced renal clearance of uric acid triggers compensatory 
excretion via intestinal ATP-Binding Cassette Subfamily G Member 2 
(ABCG2) transporters (33, 34). This interaction between the kidneys 
and gut—referred to as the “kidney-gut axis”—suggests that factors 
such as H. pylori infection may affect uric acid metabolism differently 
depending on renal function, offering a new perspective on the 
variability seen in past studies (34–36).

The relationship between H. pylori infection and serum uric acid 
levels remains contentious. Some studies suggest that H. pylori infection 
is a risk factor for gout, while others report no significant association 
(37, 38). This inconsistency may be attributed to the modifying role of 
renal function. Research has shown that patients with chronic kidney 
disease (CKD) have lower H. pylori infection rates (48.2% vs. 59.3%), 

and the relationship between uric acid and clinical outcomes varies 
significantly across different stages of renal function (39, 40). In the 
early stages of renal decline, uric acid levels are positively correlated 
with cardiovascular risk, while this association weakens or disappears 
in later stages (40, 41). Furthermore, H. pylori’s impact on renal health 
appears to be stage-dependent, suggesting that renal function may 
modulate the interaction between H. pylori infection and uric acid 
metabolism through altered gastrointestinal conditions, inflammatory 
responses, and the function of uric acid transporters (32, 34, 35, 39).

Given the conflicting evidence, the lack of consideration for 
potential effect modifiers, and the scarcity of studies in Chinese 
populations, this study aims to evaluate the relationship between 
H. pylori infection and serum uric acid levels in a large cohort from 
China, with a specific focus on renal function as a modifying factor. 
We hypothesize that the association between H. pylori infection and 
serum uric acid levels will vary depending on renal function status, 
which may help explain the inconsistencies observed in previous 
studies and offer a theoretical framework for more personalized 
infection management and metabolic monitoring strategies.

Methods

Study design and population

This retrospective cross-sectional study utilized health 
examination data from Tianyou Hospital, affiliated with Wuhan 
University of Science and Technology, and its community health 
service centers. Data were collected between January 2022 and January 
2024. The study protocol was approved by the Ethics Committee of 
Tianyou Hospital (approval number: No. LL2024100901), and written 
informed consent was obtained from all participants. Initially, 8,948 
adults (≥18 years) undergoing health examinations were included, 
predominantly asymptomatic individuals with a small proportion 
presenting mild, non-specific gastrointestinal symptoms, such as 
dyspepsia or epigastric discomfort. Inclusion criteria were: (1) 
completion of the 14C-urea breath test (14C-UBT); (2) availability of 
complete demographic and blood biochemistry data; (3) no use of 
proton pump inhibitors, bismuth preparations, antibiotics, or other 
anti-H. pylori medications within 4 weeks prior to testing; (4) 
voluntary participation with consent for data use. Exclusion criteria 
included: (1) missing key test data (14C-UBT, demographic data, or 
blood tests); (2) current or past use of uric acid-lowering medications 
(e.g., allopurinol, febuxostat, benzbromarone); (3) history of gastric 
cancer or gastrectomy; (4) missing data rate >50%. After rigorous 
screening, 8,439 participants were included in the final analysis 
(Figure 1).

Helicobacter pylori infection detection

Helicobacter pylori infection status was assessed using the 
14C-UBT. Participants fasted for at least 8 h before the test. The 
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procedure involved ingesting a capsule containing 1.0 μCi of 
14C-labeled urea, followed by breath sample collection 15 min later 
using a GP1000 breath analyzer (Furui Kang, China). A diagnostic 
threshold of 100 dpm/mmol CO₂ was set, with values ≥100 dpm/
mmol CO₂ considered positive for H. pylori and values <100 dpm/
mmol CO₂ considered negative. This method has demonstrated high 
diagnostic accuracy, with sensitivity and specificity exceeding 95% (42).

Serum uric acid measurement

Venous blood samples were collected after a minimum 8-h fasting 
period. Serum uric acid concentrations were measured using the 
uricase-peroxidase method on an ADVIA 2400 automatic 
biochemistry analyzer (Siemens, Germany). The enzymatic method 
converts uric acid to allantoin and hydrogen peroxide, which then 
reacts with chromogenic substrates for colorimetric quantification. 
The detection range was 0–20 mg/dL (0–1,190 μmol/L), with intra-
assay and inter-assay coefficients of variation (CV) of <2 and <3%, 
respectively. Hyperuricemia was defined as serum uric acid 
>420 μmol/L in males and >360 μmol/L in females (43).

Covariate collection and measurement

Covariates were selected based on existing literature and included 
age, sex, body mass index (BMI), mean arterial pressure (MAP), 
smoking status, alcohol consumption, occupational activity, 
hypertension, diabetes, and various laboratory parameters. Age and 
sex were obtained via structured questionnaires. BMI was measured 
using a standardized electronic height-weight scale (MSG005-H, 
Meilun Medical, China), with BMI calculated as weight (kg)/height2 
(m2). Blood pressure was measured according to American Heart 
Association guidelines, with the average of three measurements taken 
after a 5–10 min rest. MAP was calculated using the formula: 
MAP = diastolic pressure + (systolic pressure - diastolic pressure)/3. 

Smoking and alcohol consumption were classified into three 
categories: (1) never exposed; (2) former exposure (≥1 year cessation); 
(3) current exposure (cessation <1 year). Occupational intensity was 
assessed using metabolic equivalents (METs) based on the 
Compendium of Physical Activities (44). Participants reported their 
occupational type and the activity composition of a typical workday. 
Corresponding METs values were assigned to each activity, and 
participants were classified into three categories: light (<3.0 METs, 
primarily sedentary work, such as office workers); moderate (3.0–6.0 
METs, involving frequent standing or moderate physical activity, such 
as sales staff and nurses); and heavy (>6.0 METs, involving continuous 
heavy physical labor, such as construction workers and porters). 
Hypertension was defined as: (1) prior physician diagnosis; (2) current 
antihypertensive medication; (3) systolic ≥140 mmHg or diastolic 
≥90 mmHg (based on ≥2 measurements). Diabetes was defined as: 
(1) glucose-lowering medications; (2) fasting glucose ≥7.0 mmol/L 
(based on ≥2 measurements); or fasting glucose between 
6.1–6.9 mmol/L (considered as diabetes for binary analysis). Blood 
samples were analyzed for lipid profile, liver function markers (alanine 
aminotransferase, aspartate aminotransferase, bilirubin), fasting 
glucose, and serum creatinine. Renal function was evaluated using the 
estimated glomerular filtration rate (eGFR), calculated via the Chronic 
Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. A 
complete blood count was measured using standard methods. All tests 
were performed within 4 h of blood collection, and laboratory 
procedures adhered to National Center for Clinical Laboratory quality 
control standards.

Statistical analysis

Continuous variables were expressed as means ± standard 
deviation, and categorical variables as frequencies (percentages). 
Baseline characteristics were compared between H. pylori-positive and 
negative groups using one-way Analysis of Variance (ANOVA) for 
continuous variables and chi-square tests for categorical variables. 

FIGURE 1

Study flowchart.

https://doi.org/10.3389/fmed.2025.1615161
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wang et al.� 10.3389/fmed.2025.1615161

Frontiers in Medicine 04 frontiersin.org

Linear regression assumptions were tested, and multicollinearity was 
assessed using variance inflation factors (VIF), excluding variables 
with VIF > 5. The association between H. pylori infection and serum 
uric acid was analyzed using multivariable linear regression in three 
hierarchical models: Model 1 (unadjusted), Model 2 (adjusted for age 
and sex), and Model 3 (fully adjusted for all covariates). Interaction 
analysis was conducted to identify effect modifiers by including 
interaction terms between H. pylori infection and potential modifiers, 
with likelihood ratio tests used to assess statistical significance 
(p < 0.05). For continuous effect modifiers showing significant 
interactions, grid search algorithms were applied to determine optimal 
stratification thresholds based on model fit criteria. Sensitivity analyses 
included logistic regression with hyperuricemia as a binary outcome 
and linear regression using log-transformed uric acid values to account 
for non-normality. All analyses were performed using R version 4.5.1, 
with two-sided p-values <0.05 considered statistically significant.

Results

Characteristics of the study population

A total of 8,439 participants were included in the study, of whom 
6,623 (78.48%) were H. pylori-negative and 1,816 (21.52%) were 
H. pylori-positive. The H. pylori-positive group had a higher 
proportion of males (80.84% vs. 77.65%, p = 0.004), current smokers 
(37.06% vs. 32.09%, p < 0.001), current drinkers (35.35% vs. 32.90%, 
p = 0.036), and individuals engaged in heavy physical labor (45.48% 
vs. 40.45%, p = 0.001). Biochemically, the H. pylori-positive group 
exhibited significantly higher mean arterial pressure (MAP) 
(94.02 ± 13.69 vs. 92.87 ± 12.64 mmHg, p = 0.001), white blood cell 
count (6.60 ± 1.68 vs. 6.28 ± 1.58 × 109/L, p < 0.001), and platelet 
count (246.55 ± 62.27 vs. 241.92 ± 57.80 × 109/L, p = 0.003). 
Conversely, high-density lipoprotein cholesterol (HDL-C) levels were 
significantly lower in the H. pylori-positive group (1.33 ± 0.33 vs. 
1.37 ± 0.34 mmol/L, p < 0.001). Serum uric acid levels were also 
higher in the H. pylori-positive group compared to the negative group 
(403.76 ± 102.89 vs. 395.87 ± 102.13 μmol/L, p = 0.004) (Table 1).

Association between Helicobacter pylori 
infection and serum uric acid

In the unadjusted model (Model 1), H. pylori infection was 
positively associated with serum uric acid levels (β = 7.89, 95% CI: 
2.58 to 13.20, p = 0.004). However, after adjusting for confounders, 
this association weakened. In the age- and sex-adjusted model (Model 
2), the association became marginally significant (β = 4.39, 95% CI: 
−0.27 to 9.05, p = 0.065). In the fully adjusted model (Model 3), which 
accounted for metabolic parameters, the association was no longer 
significant (β = 1.92, 95% CI: −2.38 to 6.23, p = 0.381) (Table 2).

Identification of effect modifiers

Interaction analysis revealed that estimated glomerular 
filtration rate (eGFR) significantly modified the relationship 

TABLE 1  Characteristics of study participants at baseline.

Variables H. pylori 
Negative 

(n = 6,623)

H. pylori 
Positive 

(n = 1816)

p-value

Sex, %

  Female 1,480 (22.35%) 348 (19.16%) 0.004

  Male 5,143 (77.65%) 1,468 (80.84%)

Drinking, %

  Never 3,100 (46.81%) 789 (43.45%) 0.036

  Former 1,344 (20.29%) 385 (21.20%)

  Current 2,179 (32.90%) 642 (35.35%)

Smoking, %

  Never 3,137 (47.37%) 758 (41.74%) <0.001

  Former 1,361 (20.55%) 385 (21.20%)

  Current 2,125 (32.09%) 673 (37.06%)

Occupational intensity, %

  Light 756 (11.41%) 195 (10.74%) 0.001

  Moderate 3,188 (48.14%) 795 (43.78%)

  Heavy 2,679 (40.45%) 826 (45.48%)

Hypertension, %

  No 4,757 (71.83%) 1,262 (69.49%) 0.055

  Yes 1866 (28.17%) 554 (30.51%)

Diabetes, %

  No 5,706 (86.15%) 1,549 (85.30%) 0.372

  Yes 917 (13.85%) 267 (14.70%)

  Age (years) 43.85 ± 12.42 44.14 ± 12.06 0.372

  BMI (kg/m2) 24.67 ± 3.53 24.81 ± 3.57 0.139

  MAP (mmHg) 92.87 ± 12.64 94.02 ± 13.69 0.001

  HDL-C (mmol/L) 1.37 ± 0.34 1.33 ± 0.33 <0.001

  LDL-C (mmol/L) 2.95 ± 0.77 3.01 ± 0.76 0.01

  TC (mmol/L) 4.82 ± 0.93 4.85 ± 0.91 0.226

  TG (mmol/L) 1.86 ± 1.88 1.90 ± 1.72 0.415

  ALT (U/L) 29.39 ± 22.72 29.57 ± 22.72 0.76

  AST (U/L) 23.49 ± 12.40 23.82 ± 13.58 0.335

  TBil (μmol/L) 16.44 ± 6.23 16.13 ± 6.00 0.057

  DBil (μmol/L) 6.11 ± 2.23 6.03 ± 2.08 0.156

 � eGFR (mL/

min/1.73 m2)
101.69 ± 18.92 101.46 ± 19.56 0.642

  UA (μmol/L) 395.87 ± 102.13 403.76 ± 102.89 0.004

  FBG (mmol/L) 5.35 ± 1.36 5.41 ± 1.48 0.067

  RBC (1012/L) 4.89 ± 0.47 4.90 ± 0.48 0.292

  WBC (109/L) 6.28 ± 1.58 6.60 ± 1.68 <0.001

  PLT (109/L) 241.92 ± 57.80 246.55 ± 62.27 0.003

H. pylori, Helicobacter pylori; BMI, BodyMass Index; MAP, Mean Arterial Pressure; HDL-C, 
High-Density Lipoprotein Cholesterol; LDL-C, Low-Density Lipoprotein Cholesterol; TC, 
Total Cholesterol; TG, Triglycerides; ALT, Alanine Aminotransferase; AST, Aspartate 
Aminotransferase; TBil, Total Bilirubin; DBil, Direct Bilirubin; eGRF, estimated Glomerular 
Filtration Rate; UA, Serum Uric Acid; FBG, Fasting Blood Glucose; RBC, Red Blood Cell 
count; WBC, White Blood Cell count; PLT, Platelet count.
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between H. pylori infection and serum uric acid (P for 
interaction = 0.007). Alanine aminotransferase (ALT) also showed 
a significant interaction (p = 0.035). However, traditional effect 
modifiers such as sex, age, and body mass index (BMI) did not 
exhibit significant interactions (Supplementary Table  1). A 
systematic breakpoint analysis identified that the association 
between H. pylori infection and serum uric acid was most significant 
at eGFR = 85 mL/min/1.73m2 (p = 0.002). Based on clinical 
relevance and statistical considerations, a cut-off of 80 mL/
min/1.73m2 was selected for the primary analysis (p = 0.006) 
(Supplementary Table 2).

Stratified analysis by renal function

Stratified analysis revealed heterogeneity in the effect of H. pylori 
infection on serum uric acid across different renal function groups. In 
the mild renal impairment group (eGFR 60–80 mL/min/1.73m2, 
n = 824), H. pylori infection was inversely associated with serum uric 
acid levels (β = −17.86, 95% CI: −31.28 to −4.44, p = 0.009). In 
contrast, in the normal renal function group (eGFR ≥ 80 mL/
min/1.73m2, n = 7,531), the association was positive but not 
statistically significant (β = 3.92, 95% CI: −0.66 to 8.50, p = 0.094). In 
the severe renal impairment group (eGFR < 60 mL/min/1.73m2, 
n = 84), no significant association was observed, likely due to the small 
sample size (β = 25.9, 95% CI: −18.36 to 70.17, p = 0.256) (Table 3).

Sensitivity analyses

Several sensitivity analyses were conducted to verify the 
robustness of the findings. First, logistic regression with hyperuricemia 
as a binary outcome revealed that in the mild renal impairment group 
(eGFR 60–80 mL/min/1.73m2, n = 824), H. pylori infection was 
associated with a 33% reduced risk of hyperuricemia (odds ratio 
[OR] = 0.673, 95% CI: 0.461 to 0.983, p = 0.040) (Table 4). Second, 
analysis using log-transformed serum uric acid values showed that in 
the same group, H. pylori-positive individuals had 4.43% lower serum 
uric acid levels compared to H. pylori-negative individuals (95% CI: 
−7.92% to −1.15%, p = 0.009) (Table 5). These results from different 
statistical approaches further support the main findings. Collinearity 
diagnostics indicated severe multicollinearity for total cholesterol 
(VIF = 21.3) and direct bilirubin (VIF = 8.9) in the initial model. After 
excluding these variables, all VIF values were below 3, confirming no 
multicollinearity issues in the final model. Re-analysis with the 
adjusted variable set yielded unchanged results 
(Supplementary Table 3). Linear regression assumption tests further 

supported the validity of model assumptions 
(Supplementary Figures 1–4).

Collinearity diagnostics indicated severe multicollinearity for total 
cholesterol (VIF = 21.3) and direct bilirubin (VIF = 8.9) in the initial 
model. After excluding these variables, all VIF values were below 3, 
confirming no multicollinearity issues in the final model. Re-analysis 
with the adjusted variable set yielded unchanged results 
(Supplementary Table 3). Linear regression assumption tests further 
supported the validity of model assumptions 
(Supplementary Figures 1–4).

Discussion

In this cross-sectional study of 8,439 Chinese adults, we found 
that the association between H. pylori infection and serum uric acid 
levels varied significantly by renal function. Although unadjusted 
analyses suggested a positive correlation, the association lost statistical 
significance after adjustment for demographic, metabolic, and 
hepatorenal covariates indicating that the observed relationship in the 
general population may reflect shared risk factors rather than a direct 
effect. Notably, stratified analyses identified a significant inverse 
association between H. pylori infection and serum uric acid levels 
among individuals with mild renal impairment (eGFR 60–80 mL/
min/1.73 m2), which remained robust after multivariable adjustment. 
These findings suggest that renal function modulates the systemic 
metabolic effects of H. pylori infection. However, due to the cross-
sectional design, causal inference and temporal directionality cannot 
be established.

The relationship between H. pylori and uric acid metabolism has 
been inconsistently reported in previous studies. Data from the 
U. S. National Health and Nutrition Examination Survey (NHANES) 
demonstrated a positive association, with H. pylori positive individuals 
exhibiting elevated uric acid to HDL cholesterol ratios (OR = 1.15; 
95% CI: 1.02 to 1.30; p = 0.020) (45). In contrast, a large Chinese 
health screening cohort (n = 76,749) reported significantly lower 
serum uric acid concentrations among infected individuals (p < 0.001) 
(46). These conflicting findings remain unresolved. Our results 
provide a potential explanation by identifying renal function as an 
effect modifier. Variability in eGFR distribution across cohorts may 
have contributed to the discrepancies. Importantly, neither of the prior 
studies stratified participants by renal function, which may have 
masked subgroup specific associations. Our finding that H. pylori 
infection is inversely associated with serum uric acid only in those 
with mildly reduced eGFR highlights the critical role of organ-specific 
functional status in modulating systemic consequences of localized 
infections. This insight underscores the importance of renal 

TABLE 2  Association between Helicobacter pylori infection and serum uric acid levels using hierarchical linear regression models.

Variable n (%) Model 1 Model 2 Model 3

β (95% CI) p-value β (95% CI) p-value β (95% CI) p-value

H. Pylori

Negative 6,623 (78.48) Reference 0.004 Reference 0.065 Reference 0.381

Positive 1816 (21.52) 7.89 (2.58, 13.20) 4.39 (−0.27, 9.05) 1.92 (−2.38, 6.23)

Model 1: Unadjusted; Model 2: Adjusted for age and sex; Model 3: Adjusted for all covariates; β: regression coefficient representing the difference in serum uric acid between H. pylori positive 
and negative groups; CI: Confidence Interval; Total cholesterol and direct bilirubin were excluded due to multicollinearity (VIF >5).
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stratification in metabolic epidemiology, particularly in studies of 
chronic infectious exposures.

The observed inverse association in individuals with mild renal 
impairment warrants mechanistic consideration. We hypothesize that 
this finding reflects an interaction between H. pylori induced 
metabolic changes and compensatory extra-renal uric acid 
elimination, which becomes physiologically relevant as renal clearance 
begins to decline. Chronic H. pylori colonization induces low-grade 
systemic inflammation, characterized by increased levels of IL-1β, 
IL-6, and TNF-α (47, 48). These cytokines upregulate xanthine 
oxidoreductase (XOR) activity in gastric and intestinal epithelia, 
enhancing both uric acid production and reactive oxygen species 
(49–51). Concurrently, inflammatory signaling upregulates intestinal 
urate transporters particularly ATP-binding cassette subfamily G 
member 2 (ABCG2) on enterocyte apical membranes, promoting 
urate excretion into the gut lumen (47, 52). In addition, H. pylori 
urease activity raises local ammonia concentrations and alters pH, 
potentially enhancing the expression and function of these 
transporters (53, 54). In individuals with normal renal function (eGFR 

>90 mL/min/1.73 m2), such intestinal adaptations are likely of limited 
systemic consequence, as renal clearance responsible for 70% of urate 
elimination remains efficient (55). However, when eGFR declines into 
the 60–80 mL/min/1.73 m2 range, modest reductions in renal 
excretory capacity may render these intestinal compensatory 
mechanisms biologically significant. In this setting, H. pylori driven 
inflammatory and transporter mediated effects may enhance gut-renal 
axis activity, leading to a net reduction in serum uric acid levels (34, 
52). This hypothesis is supported by the specificity of our finding to 
this eGFR category, where impairment is sufficient to trigger 
compensation but not yet severe enough to overwhelm it. Despite 
statistical significance, the absolute magnitude of urate reduction 
observed was modest and unlikely to influence clinical decision-
making thresholds for pharmacological intervention, which typically 
begin at 360–420 μmol/L. Nevertheless, the biological relevance 
remains compelling. Our findings reveal a previously unrecognized 
interaction between gastrointestinal infection and uric acid 
homeostasis, particularly under conditions of early renal dysfunction. 
The renal function–dependent gradient observed in our stratified 

TABLE 3  Association between Helicobacter pylori infection and serum uric acid stratified by renal function.

Renal function category N β (95% CI)ᵃ p-value

Severe impairment (eGFR <60 mL/min/1.73m2) 84 25.90 (−18.36, 70.17) 0.256

Mild impairment (eGFR 60–80 mL/min/1.73m2) 824 −17.86 (−31.28, −4.44) 0.009

Normal function (eGFR ≥80 mL/min/1.73m2) 7,531 3.92 (−0.66, 8.50) 0.094

CI, confidence interval; eGFR, estimated glomerular filtration rate.
a, β represent the difference in serum uric acid levels between H. pylori-positive and H. pylori-negative participants. Models were adjusted for age, sex, body mass index, mean arterial pressure, 
smoking, drinking, occupational intensity, hypertension, diabetes, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, alanine aminotransferase, aspartate 
aminotransferase, total bilirubin, estimated glomerular filtration rate, fasting blood glucose, red blood cell count, white blood cell count and platelet count. Total cholesterol and direct bilirubin 
were excluded due to multicollinearity (VIF >5).

TABLE 4  Association between Helicobacter pylori infection and hyperuricemia risk stratified by renal function: logistic regression analysis.

Renal function category Total (n) Hyperuricemiaa n (%) OR (95% CI)b p-value

Severe impairment eGFR <60 mL/min/1.73m2 84 32 (38.1) 6.78 (0.63, 72.76) 0.114

Mild impairment eGFR 60–80 mL/min/1.73m2 824 350 (42.5) 0.67 (0.46, 0.98) 0.040

Normal function eGFR ≥80 mL/min/1.73m2 7,531 3,125 (41.5) 1.03 (0.91, 1.17) 0.595

CI, confidence interval; eGFR, estimated glomerular filtration rate; OR, odds ratio.
a, Hyperuricemia defined as serum uric acid >420 μmol/L for males and >360 μmol/L for females, according to Chinese guidelines for diagnosis and treatment of hyperuricemia and gout.
b, Odds ratios adjusted for age, sex, body mass index, mean arterial pressure, smoking, drinking, occupational intensity, hypertension, diabetes, high-density lipoprotein cholesterol, low-
density lipoprotein cholesterol, triglycerides, alanine aminotransferase, aspartate aminotransferase, total bilirubin, estimated glomerular filtration rate, fasting blood glucose, red blood cell 
count, white blood cell count and platelet count. Total cholesterol and direct bilirubin were excluded due to multicollinearity (VIF >5).

TABLE 5  Sensitivity analysis: association between Helicobacter pylori infection and log-transformed serum uric acid levels stratified by renal function.

Renal function category Total (n) βa Percent change (%)  
(95% CI)b

p-value

Severe impairment eGFR<60 mL/min/1.73m2 84 0.063 6.45 (−4.88, 17.37) 0.275

Mild impairment eGFR 60–80 mL/min/1.73m2 824 −0.045 −4.43 (−7.92, −1.15) 0.009

Normal function eGFR ≥80 mL/min/1.73m2 7,531 0.008 0.83 (−0.35, 2.01) 0.168

CI, confidence interval; eGFR, estimated glomerular filtration rate.
a, β represent the difference in log-transformed serum uric acid levels between H. pylori-positive and H. pylori-negative groups, adjusted for age, sex, body mass index, mean arterial pressure, 
smoking, drinking, occupational intensity, hypertension, diabetes, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, alanine aminotransferase, aspartate 
aminotransferase, total bilirubin, estimated glomerular filtration rate, fasting blood glucose, red blood cell count, white blood cell count and platelet count. Total cholesterol and direct bilirubin 
were excluded due to multicollinearity (VIF >5).
b, Percent change calculated as (eβ – 1) × 100%, representing the relative difference in serum uric acid levels.
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analyses further supports this interpretation. Among participants with 
normal renal function (eGFR ≥80 mL/min/1.73 m2), no significant 
association was detected. In contrast, a clear inverse relationship 
emerged in the mildly impaired group. Among those with severe renal 
dysfunction (eGFR <60 mL/min/1.73 m2), no association was found 
(β = 25.90; p = 0.256), and the wide confidence interval (−18.36 to 
70.17) suggests substantial imprecision. Several explanations may 
account for this null finding. The subgroup sample size was limited 
(n = 84), with a relatively low prevalence of H. pylori infection, 
reducing statistical power. Furthermore, advanced CKD is associated 
with elevated systemic urea, altered gastric acid profiles, and frequent 
antibiotic exposure factors that may suppress H. pylori colonization. 
At this stage of renal decline, uric acid homeostasis is often severely 
dysregulated due to impaired excretion, transporter dysfunction, and 
polypharmacy (56–58). Thus, the compensatory mechanisms 
operative in early CKD may be  either saturated or disrupted in 
advanced disease. This gradient, from null association in normal 
function, to significant inverse association in mild impairment, to 
absence of effect in severe CKD supports our central hypothesis: 
H. pylori influences uric acid metabolism through renal intestinal 
compensatory pathways that are active within a specific window of 
declining renal function.

Our findings carry several important implications. First, they 
suggest that the metabolic impact of H. pylori infection is modulated 
by renal function, underscoring the need for individualized 
consideration in both H. pylori eradication strategies and 
hyperuricemia management. In individuals with mild renal 
impairment, infection status may influence serum urate levels and 
should be integrated into metabolic risk assessments. Furthermore, 
future investigations into H. pylori associated metabolic effects should 
incorporate renal function stratification to avoid obscured associations 
and more accurately capture biological heterogeneity.

This study possesses several notable strengths. The large, 
community-based cohort enhances external validity, while 
standardized assessments of H. pylori status and renal function 
support measurement reliability. Importantly, this work introduces 
renal function as a novel and clinically meaningful effect modifier 
within the framework of host microbe metabolism interactions. 
Adjustment for a wide range of demographic, metabolic, and 
hepatorenal covariates further strengthens internal validity and 
mitigates confounding.

Nonetheless, several limitations should be  considered when 
interpreting the findings. First, we  did not assess strain level 
characteristics or bacterial load. H. pylori is genetically heterogeneous, 
with virulence factors such as CagA, VacA, and urease activity 
influencing host inflammatory responses and potentially affecting 
systemic metabolism (59–61). Without molecular characterization, 
we  cannot determine whether specific bacterial phenotypes 
contributed to the observed associations. Second, the cross-sectional 
design precludes conclusions regarding causality or temporal 
direction. The 14C-UBT reflects current infection status but provides 
no insight into infection duration or cumulative exposure. Given the 
typically chronic nature of H. pylori colonization, infection duration 
may play a pivotal role in host metabolic adaptation (60). Prospective 
studies incorporating seroconversion data and serial uric acid 
measurements are needed to elucidate temporal dynamics. Third, 
although H. pylori is anatomically confined to the gastric mucosa, its 

systemic metabolic effects may be  mediated through several 
established pathways, including low-grade systemic inflammation, 
altered gastric acidity affecting intestinal transporter expression, and 
modulation of the gut-kidney axis (34, 52, 62). While the effect size 
observed in this study was modest and unlikely to affect clinical 
thresholds for urate lowering therapy, the biological relevance 
remains noteworthy particularly in individuals with early renal 
dysfunction, where cumulative metabolic burden may evolve over 
time. Fourth, residual confounding cannot be  excluded. Data on 
dietary purine intake, alcohol consumption, and use of uric acid 
modulating medications were not available. Endoscopic or 
histological markers of gastric pathology were also lacking, 
precluding correlation between mucosal inflammatory severity and 
systemic metabolic outcomes. Additional unmeasured variables such 
as prior H. pylori eradication, bacterial density, and host microbiome 
interactions may have influenced the findings. Finally, the subgroup 
with severe renal impairment (eGFR <60 mL/min/1.73 m2) was 
relatively small (n = 84) and exhibited a low prevalence of H. pylori 
infection (20.2%), limiting statistical power and resulting in wide 
confidence intervals. The reduced infection rate in this subgroup may 
itself have biological significance, as advanced chronic kidney disease 
is associated with elevated urea, altered gastric pH, and frequent 
antibiotic use factors that may inhibit H. pylori colonization. 
Moreover, the findings may not be  generalizable to non-Chinese 
populations, in whom genetic variation in urate transporters and 
microbial susceptibility may differ.

In conclusion, this study identifies renal function as a key modifier 
of the association between H. pylori infection and serum uric acid levels. 
A significant inverse relationship was observed exclusively in individuals 
with mild renal impairment, likely reflecting synergistic interactions 
between H. pylori induced intestinal adaptations and compensatory 
urate excretion pathways. These findings provide mechanistic insight 
into the gut-kidney axis and illustrate how localized infections may exert 
systemic metabolic effects in the context of subclinical organ dysfunction. 
Although not yet practice changing, these results contribute to a growing 
framework in which host microbe interactions are interpreted through 
the lens of organ specific physiology. Given the inherent limitations of 
cross-sectional observational design, these findings should be regarded 
as hypothesis generating and warrant validation through prospective, 
mechanistic studies with longitudinal follow up.

Conclusion

Our results suggest that serum uric acid levels in the Chinese 
population studied are influenced by Helicobacter pylori infection, 
with renal function appearing to modify this relationship. While an 
initial positive association was observed, this became non-significant 
after adjusting for confounders. Notably, an inverse association was 
found in individuals with mild renal impairment. These findings 
highlight the potential role of renal function in the relationship 
between H. pylori infection and uric acid metabolism. Further 
longitudinal studies with more detailed renal assessments and 
molecular characterization of H. pylori are needed to better 
understand the underlying mechanisms and temporal dynamics of 
this association.
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