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Sepsis remains a life-threatening condition worldwide, causing significant morbidity 
and mortality across diverse patient populations. Among the various organs adversely 
affected by sepsis, the lung is particularly vulnerable, often succumbing to acute 
lung injury (ALI) or its more severe form, acute respiratory distress syndrome 
(ARDS). Recent basic and translational research has highlighted the importance 
of multiple regulated cell death (RCD) pathways beyond traditional apoptosis 
in the pathogenesis of septic lung injury. Three such RCDs, termed ferroptosis, 
cuproptosis, and disulfidptosis, are increasingly studied for their relevance to 
critical illnesses. Ferroptosis involves iron-driven lipid peroxidation, cuproptosis 
depends on copper ion imbalance and mitochondrial protein aggregation, and 
disulfidptosis emerges from dysregulated sulfide metabolism leading to excessive 
disulfide bond formation. This review provides an extensive discussion of these 
RCD pathways within the context of sepsis-induced lung injury. We begin by 
summarizing the current state of knowledge in septic lung injury, emphasizing 
inflammatory, immunological, and oxidative stress mechanisms. We then provide 
a detailed overview of ferroptosis, cuproptosis, and disulfidptosis, illustrating their 
molecular underpinnings and how they intersect with established sepsis pathways, 
such as tumor necrosis factor (TNF), nuclear factor kappa B (NF-κB), and mitogen-
activated protein kinase (MAPK) signaling cascades. We also discuss emerging 
findings on the crosstalk among these RCD modes, potential biomarkers for 
early detection, and therapeutic targets for modulating these pathways. Although 
many of these findings remain in the early stages of translational research, they 
collectively underscore the complexity of septic lung injury and offer new directions 
for improving clinical management. Future investigations, bolstered by integrative 
“omics” approaches, refined animal models, and well-designed clinical trials, will 
be pivotal to fully realize the diagnostic and therapeutic potential of ferroptosis, 
cuproptosis, and disulfidptosis in sepsis. We  further propose a “redox stress-
metal homeostasis-sulfur metabolism” triangular network, centered on Nrf2’s dual 
regulation of iron/copper transporters and glutathione synthesis, as a unifying 
framework for RCD modulation in sepsis. A signaling interaction diagram highlights 
actionable targets for combinatorial therapies.
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Introduction

Sepsis is a severe, life-threatening syndrome arising from the 
host’s dysregulated immune response to infection, leading to tissue 
damage, organ failure, and high mortality rates (1–3). In recent 
decades, significant progress in recognizing sepsis as a heterogeneous 
condition has spurred the development of refined definitions and 
clinical guidelines. Even so, global mortality remains alarmingly high, 
ranging from 20% to over 40% depending on resource availability and 
comorbidities (4, 5). The lung is among the first and most frequently 
affected organs in sepsis, with sepsis-induced acute lung injury often 
precipitating respiratory failure, which can progress to acute 
respiratory distress syndrome (ARDS).

While apoptosis, necroptosis, and pyroptosis are well-documented 
in sepsis-induced organ injury, this review focuses on ferroptosis, 
cuproptosis, and disulfidptosis due to their emerging roles in septic 
lung damage and their unique mechanistic underpinnings. These 
pathways driven by iron/copper overload and dysregulated sulfide 
metabolism represent novel therapeutic targets distinct from classical 
RCD modes. Their shared intersection with oxidative stress and 
inflammation in sepsis further justifies a dedicated discussion, as 
recent studies highlight their potential for selective modulation to 
improve outcomes. In this review, we synthesize current findings on 
these three RCD pathways, with a focus on their molecular 
mechanisms and therapeutic potential in septic lung injury. 
We propose an integrated model where ferroptosis, cuproptosis, and 
disulfidptosis interact with classical inflammatory pathways (e.g., 
NF-κB, MAPKs) to exacerbate tissue damage. By evaluating 
biomarkers and emerging therapies, we aim to highlight translational 
opportunities and key knowledge gaps.

Molecular to tissue-level pathogenesis 
of septic lung injury

The pathophysiology of septic lung injury progresses through 
interconnected molecular, cellular, and tissue-level disruptions. At the 
molecular level, sepsis triggers TLR4/NF-κB and NLRP3 
inflammasome activation in alveolar macrophages, driving a cytokine 
storm characterized by TNF-α and IL-1β-mediated upregulation of 
endothelial adhesion molecules (ICAM-1/VCAM-1) and IL-6-
induced JAK-STAT3 signaling, which collectively exacerbate vascular 
permeability (1, 6). Concurrent oxidative stress from mitochondrial 
ROS and NADPH oxidase (NOX2/4) inactivates surfactant proteins 
(SP-A/SP-D) via thiol oxidation (7).

Cellular dysfunction follows, with PAD4-mediated neutrophil 
extracellular traps (NETs) damaging alveolar-capillary barriers (8) and 
mitochondrial failure reducing Complex I/III activity by 
approximately 50%, leading to epithelial apoptosis (77). Endothelial 
injury is compounded by heparanase-mediated glycocalyx shedding, 
increasing vascular permeability (Ang-2/VE-cadherin ratio increased 
threefold) (9).

Tissue-level manifestations include alveolar edema (BALF 
albumin exceeding 3.5 g/dL) and microthrombosis, where tissue 
factor (TF)-dependent fibrin deposition (D-dimer exceeding 5 μg/
mL) occludes 20 to 30% of pulmonary capillaries (10, 11). Recent 
single-cell RNA-seq studies reveal alveolar type II cell senescence 
(increased p21/p16 expression) and macrophage polarization to M1 

(iNOS-positive) or M2 (CD206-positive) phenotypes (12) Emerging 
therapies targeting gasdermin D (reducing IL-18 by approximately 
60%) and mitophagy inducers (e.g., urolithin A, improving survival 
by approximately 40%) show promise in preclinical models (13, 14).

Beyond classical apoptosis and necrosis, recent advances have 
identified novel regulated cell death (RCD) pathwaysferroptosis, 
cuproptosis, and disulfidptosis that contribute to septic organ injury 
through distinct metabolic disruptions (Figure 1). Ferroptosis, driven 
by iron-dependent lipid peroxidation, exacerbates alveolar damage 
when glutathione peroxidase 4 (GPX4) activity is compromised (15). 
Cuproptosis emerges from mitochondrial copper overload and 
aggregation of lipoylated enzymes (16), while disulfidptosis results 
from dysregulated sulfide metabolism and pathological protein 
crosslinking (17). These pathways intersect with sepsis-associated 
inflammation and oxidative stress, offering new diagnostic and 
therapeutic opportunities.

Emerging role of regulated cell death 
in sepsis

In the past decade, the RCD landscape has expanded beyond 
apoptosis, pyroptosis, and necroptosis to include several distinct and 
mechanistically defined forms. Ferroptosis has attracted notable 
attention due to its reliance on iron-dependent lipid peroxidation and 
its apparent involvement in various degenerative and inflammatory 
diseases (15, 18). Cuproptosis, discovered more recently, involves 
mitochondrial dysfunction driven by excess copper binding to specific 
metabolic enzymes (16). Disulfidptosis, on the other hand, is 
characterized by dysregulated sulfide metabolism and excessive 
disulfide bond formation, culminating in altered protein structure and 
function (17, 19, 20).

In septic lung injury, oxidative stress, nutrient dysregulation, and 
heightened inflammatory signaling converge to create an environment 
that may favor these specialized RCD mechanisms (21). Emerging 
experimental evidence suggests that ferroptosis, cuproptosis, and 

FIGURE 1

Molecular mechanisms of ferroptosis in septic lung injury.
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disulfidptosis each can modulate the severity and duration of lung 
damage in animal models of sepsis (22–24). Clarifying how these 
pathways integrate with known mediators of sepsis—such as NF-κB, 
MAPKs, and TGF-β/SMAD3 will help identify new therapeutic or 
diagnostic targets.

It is important to note that other RCD pathways, such as 
pyroptosis (mediated by gasdermin D) and necroptosis (dependent 
on RIPK3/MLKL), also contribute to sepsis-induced lung injury. 
However, their mechanisms have been extensively reviewed elsewhere 
(25, 26). Here, we  emphasize ferroptosis, cuproptosis, and 
disulfidptosis due to their understudied roles in sepsis and their 
shared reliance on metabolic dysregulation (e.g., metal ion toxicity, 
sulfide stress), which offers new avenues for intervention.

To contextualize the distinct mechanisms and therapeutic 
potential of ferroptosis, cuproptosis, and disulfidptosis within the 
broader landscape of sepsis-induced cell death, we  provide a 
comparative summary of key RCD pathways in Table 1. This table 
highlights the unique triggers, molecular hallmarks, and clinical 
relevance of these pathways, underscoring why the three less-studied 
RCD modes merit focused discussion in septic lung injury.

This review systematically evaluates three understudied RCD 
pathways in septic lung injury with three objectives: (1) elucidate 
molecular mechanisms linking ferroptosis, cuproptosis, and 
disulfidptosis to alveolar-capillary barrier dysfunction; (2) assess 
clinically translatable biomarkers (e.g., 4-HNE for ferroptosis, FDH 
aggregates for cuproptosis); and (3) critically analyze emerging 
therapeutic strategies, including iron chelators, copper-lowering 
agents, and sulfide metabolism modulators. We further propose a 
‘redox-metal-sulfur’ axis as a unifying framework for RCD modulation 
in sepsis.

Ferroptosis: mechanisms and links to 
septic lung injury

Core biochemical features of ferroptosis

Ferroptosis is distinct from apoptosis and necrosis in that it relies 
on iron-catalyzed peroxidation of polyunsaturated fatty acids (PUFAs) 
in cellular membranes (27). Morphologically, ferroptotic cells exhibit 
smaller and denser mitochondria, with reduced or absent cristae (15). 
Biochemically, the hallmark is overwhelming lipid peroxidation, 

which often correlates with suppressed glutathione peroxidase 4 
(GPX4) activity and depletion of glutathione (GSH) (28).

Two principal factors drive ferroptosis: the first is intracellular 
iron overload, which occurs when iron import via transferrin 
receptors (TfR) or divalent metal transporter 1 (DMT1) is excessive 
or when ferritin storage is compromised. This leads to increased free 
iron that generates ROS through the Fenton reaction (29). The second 
factor is antioxidant defense failure, in which GPX4 activity is 
inhibited or GSH is depleted, allowing peroxides to accumulate and 
trigger ferroptotic damage (30).

Beyond the canonical GPX4/GSH axis, recent studies have 
identified the ferroptosis suppressor protein 1 (FSP1)-CoQ10 system 
as a parallel protective pathway against ferroptosis. FSP1, an NAD(P)
H-dependent oxidoreductase, regenerates reduced coenzyme Q10 
(CoQ10), which acts as a lipophilic radical-trapping antioxidant to 
inhibit lipid peroxidation independently of GPX4 (31, 32). In sepsis, 
mitochondrial FSP1 may mitigate ferroptotic damage by preserving 
respiratory chain integrity and reducing ROS propagation (33). This 
pathway is particularly relevant in alveolar epithelial cells, where 
GPX4 activity is often compromised by inflammatory stress (34).

Signaling pathways that regulate 
ferroptosis

Multiple signaling axes influence ferroptosis, including nuclear 
factor erythroid 2-related factor 2 (Nrf2) and NF-κB. Nrf2 can 
upregulate genes encoding antioxidant enzymes (e.g., heme 
oxygenase-1, glutamate-cysteine ligase) that reduce oxidative damage 
(35). Meanwhile, NF-κB activation in sepsis can amplify inflammatory 
gene expression, indirectly enhancing ROS production (36). 
Ferroptosis is governed by a complex interplay of signaling pathways 
that converge on iron metabolism, lipid peroxidation, and antioxidant 
defense, with distinct relevance to septic lung injury. The Nrf2 pathway 
serves as a central antioxidant regulator, upregulating genes like HO-1 
and GCLM to counteract oxidative stress, though its activity is often 
suppressed in sepsis due to NF-κB-driven inflammation (35, 37). The 
NF-κB pathway, activated by proinflammatory cytokines such as 
TNF-α, exacerbates ferroptosis by repressing Nrf2 and upregulating 
iron transporters like TFR1 (38). Recent studies highlight the Hippo/
YAP pathway as a critical modulator, where YAP activation in alveolar 
epithelial cells promotes ferroptosis through TFR1 and ACSL4 

TABLE 1 Key features of regulated cell death (RCD) pathways in sepsis-induced lung injury.

RCD type Key triggers Hallmark mechanisms Therapeutic targets Relevance to sepsis

Apoptosis Caspase activation, DNA 

damage

Caspase-3/7 cleavage, 

phosphatidylserine exposure

Caspase inhibitors (e.g., Z-VAD-

FMK)

Well-established; promotes 

immunothrombosis

Pyroptosis Inflammasomes, LPS Gasdermin D pore formation, 

IL-1β release

NLRP3 inhibitors (e.g., 

MCC950)

Drives cytokine storm

Ferroptosis Iron overload, lipid ROS GPX4 inhibition, lipid 

peroxidation

Iron chelators (e.g., 

deferoxamine)

Exacerbates oxidative lung injury

Cuproptosis Copper overload FDH aggregation, mitochondrial 

dysfunction

Copper chelators (e.g., TTM) Linked to metabolic collapse in 

sepsis

Disulfidptosis Sulfide stress, ROS Protein disulfide aggregation, 

SQR dysfunction

NAC, H2S donors Disrupts alveolar protein function
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induction, while Hippo signaling (via MST1/2) exerts protective 
effects (39). The p53-SLC7A11 axis further amplifies ferroptosis in 
sepsis, as oxidative stress stabilizes p53, leading to SLC7A11 repression 
and subsequent glutathione depletion (40). Metabolic reprogramming 
via the AMPK pathway attenuates ferroptosis by phosphorylating 
ACC to inhibit PUFA synthesis, a mechanism exploited by 
therapeutics like metformin in sepsis models (41). Hypoxia in septic 
lungs stabilizes HIF-1α, which transcriptionally upregulates TFR1 
while suppressing GPX4, synergizing with iron overload to drive 
ferroptotic cell death (42). These pathways exhibit extensive crosstalk 
for instance, TNF-α/NF-κB not only suppresses Nrf2 but also activates 
HIF-1α, creating a vicious cycle of oxidative damage (43). Targeting 
these interconnected nodes (e.g., with AMPK activators or YAP 
inhibitors) may offer novel strategies to mitigate ferroptosis in septic 
lung injury (44).

Additionally, p53 has been shown to regulate ferroptosis by 
altering cystine import (via SLC7A11), linking tumor suppressor 
networks to iron-driven cell death (45).

Experimental evidence in septic lung injury

Ferroptosis has been robustly implicated in septic lung injury 
across preclinical and clinical studies. In LPS-challenged mice, iron 
chelation with deferoxamine significantly reduced alveolar 
inflammation and lipid peroxidation (measured by 4-HNE), while 
restoring GPX4 activity and improving oxygenation (46). Similarly, 
genetic ablation of GPX4 exacerbated lung injury in CLP models, 
whereas Nrf2 activation (via Keap1 knockdown) attenuated ferroptosis 
and mortality (47). In vitro, LPS-treated alveolar epithelial cells 
exhibited mitochondrial shrinkage and lipid ROS accumulation, 
reversible by ferroptosis inhibitors (e.g., ferrostatin-1) or Nrf2 agonists 
(e.g., sulforaphane) (48). Clinically, sepsis patients with elevated serum 
iron and decreased GPX4 activity demonstrated worse pulmonary 
outcomes (e.g., lower PaO2/FiO2 ratios) (49), while transcriptomic 
analyses of septic lung tissue revealed upregulation of ferroptosis 
drivers (ACSL4, TFR1) and downregulation of GPX4 (50). Therapeutic 
strategies like combined deferoxamine/N-acetylcysteine or metformin 
(an AMPK activator) have shown promise in simultaneously targeting 
ferroptosis and inflammation in sepsis models (51, 52).

In sepsis models, in  vivo data have shown that ferroptosis 
contributes significantly to lung damage. For instance, one study 
reported that in an LPS-induced murine sepsis model, iron chelation 
with deferoxamine significantly reduced alveolar inflammation and 
improved oxygenation (46). Furthermore, direct inhibition of lipid 
peroxidation using ferrostatins (e.g., Ferrostatin-1) reduced 
histopathological signs of lung injury and decreased proinflammatory 
cytokine release in rodent models (39).

Clinical relevance for ferroptosis in septic lung injury remains under 
investigation, but accumulating data from small cohort studies indicate 
that sepsis patients with high serum iron levels and lower GPX4 activity 
show worse pulmonary outcomes (49). Notably, FSP1 upregulation has 
been observed in septic lung models, suggesting a compensatory role in 
mitochondrial protection. For example, a 2023 study demonstrated that 
FSP1 expression increases in alveolar epithelial cells during LPS-induced 
sepsis, correlating with reduced lipid peroxidation and improved 
survival (53, 54). Combined targeting of GPX4 (e.g., via GSH 
replenishment) and FSP1 (e.g., using CoQ10 analogs like idebenone) 

may offer synergistic benefits in mitigating sepsis-induced ferroptosis. 
These preliminary clinical findings warrant larger-scale investigations to 
confirm ferroptosis-related biomarkers as prognostic indicators in sepsis.

Crosstalk with inflammatory and oxidative 
pathways

Emerging experimental evidence demonstrates extensive 
molecular crosstalk between ferroptosis and inflammatory/oxidative 
pathways in septic lung injury. TNF-α and IL-6 drive ferroptosis 
through NF-κB-mediated suppression of Nrf2 antioxidant responses, 
with LPS-challenged alveolar epithelial cells showing 60% reduced Nrf2 
nuclear translocation (36) and IL-6 knockout mice exhibiting 50% less 
alveolar damage (49). Mitochondrial dysfunction creates a vicious 
cycle, as sepsis-induced mtROS increases 2.5-fold to upregulate iron 
transporters like TFR1 while simultaneously activating NF-κB (55), 
with iron chelation reducing both mtROS and IL-1β levels by over 45% 
in preclinical models. Hypoxia further amplifies this network, with 
HIF-1α stabilization in septic lungs showing 4-fold increases that 
correlate with GPX4 suppression and elevated TFR1 expression (27). 
DAMPs released from ferroptotic cells, particularly HMGB1, 
exacerbate inflammation by triggering 3-fold greater TNF-α production 
in macrophages via TLR4 (56), while NOX4-derived superoxide 
directly oxidizes PUFA phospholipids in human lung organoids (57). 
This interconnected pathophysiology is clinically relevant, as ARDS 
patients with high TNF-α show 40% lower expression of Nrf2-target 
genes like HO-1 (58), suggesting biomarker potential.

Ferroptosis is tightly interwoven with inflammation: the release of 
damage-associated molecular patterns (DAMPs) from ferroptotic cells 
can trigger or sustain an inflammatory response (59). In sepsis, 
alveolar macrophages and neutrophils produce excessive ROS, further 
potentiating iron-driven lipid peroxidation. This vicious cycle—ROS 
production begetting more cell death—can accelerate lung injury and 
facilitate alveolar-capillary barrier disruption.

Therapeutically, targeting ferroptosis might be  synergistic with 
immunomodulatory approaches, as dampening the inflammatory milieu 
(e.g., through selective cytokine blockade) could lower ROS production 
and curb further ferroptotic damage (57). In septic lung injury, 
ferroptosis amplifies tissue damage through iron-dependent lipid 
peroxidation in alveolar epithelial cells. Recent studies reveal that sepsis-
induced hypoxia upregulates hypoxia-inducible factor-1α (HIF-1α), 
which increases cellular iron uptake via transferrin receptor 1 (TfR1) 
(60). Concurrently, sepsis depletes glutathione (GSH) by downregulating 
the xCT transporter, impairing GPX4 activity (61). This dual hit iron 
overload + antioxidant failure explains the prominence of ferroptosis in 
septic lungs. While these mechanisms are increasingly well-characterized, 
key questions remain regarding cell-type specific responses and the 
temporal sequence of these interactions during sepsis progression.

Cuproptosis: emerging insights in the 
context of sepsis

Core concept and copper homeostasis

Cuproptosis, a recently described form of regulated cell death, is 
induced by the intracellular accumulation of copper ions, which bind 
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to specific mitochondrial enzymes (particularly fatty acid 
dehydrogenases [FDHs]) and force them into stable protein aggregates 
(16, 62). When the copper load is excessive, these aggregates 
precipitate mitochondrial dysfunction, oxidative stress, and eventually 
cell death.

Copper is an essential trace element involved in redox reactions, 
electron transport, and iron metabolism (63). Under normal 
conditions, copper levels in cells are tightly regulated by transporters, 
such as copper transporter 1 (CTR1), and ATP-binding cassette 
proteins like ATP7A/B, which export copper when it becomes 
excessive. Dysregulation can happen if the homeostatic network is 
compromised by genetic or pathophysiological factors.

Mechanistic underpinnings of cuproptosis

Cuproptosis differs from ferroptosis in that it centers on copper-
dependent protein aggregation within mitochondria rather than on 
iron-catalyzed lipid peroxidation. Elevated copper uptake or impaired 
efflux raises intracellular copper to cytotoxic levels, which then bind 
to FDHs in a manner that forces these enzymes into insoluble 
oligomeric complexes, disrupting metabolic flux and enhancing 
oxidative stress. Beyond FDH aggregation, copper ions also induce 
cytotoxicity by disrupting protein homeostasis via direct inhibition of 
molecular chaperones, particularly HSP70. Excess copper binds to 
HSP70’s substrate-binding domain, impairing its ability to facilitate 
proper protein folding and aggregate dissolution (54). In sepsis, this 
interaction may exacerbate organelle stress, as HSP70 is critical for 
mitigating misfolded protein accumulation in alveolar epithelial cells 
under inflammatory conditions (54). The dual pathways of cuproptosis 
FDH aggregation and HSP70 inhibition collectively amplify 
proteotoxic stress, suggesting that copper chelators combined with 
HSP70 activators (e.g., YM-1) could synergistically mitigate lung 
injury (64). The mitochondrial electron transport chain becomes less 
efficient, producing even more ROS that worsen cellular damage (65).

Cuproptosis and septic lung injury

Although cuproptosis has been extensively characterized in 
in  vitro systems and in certain cancer models, its role in sepsis, 
particularly septic lung injury, is under active investigation. 
Preliminary rodent data show that septic animals may develop hepatic 
and pulmonary copper overload, potentially due to cytokine-mediated 
changes in ATP7B expression (66). Excess copper then accumulates 
in mitochondria, impairing respiratory function and driving oxidative 
stress, culminating in alveolar epithelial cell death.

Recent in vivo studies demonstrate that septic lung injury disrupts 
copper homeostasis through multiple validated mechanisms. Cecal 
ligation and puncture (CLP) models show 38% higher hepatic copper 
levels (p < 0.01) due to TNF-α-mediated downregulation of the 
copper exporter ATP7B (66). This copper overload induces 
mitochondrial protein aggregation, with fatty acid dehydrogenase 
(FDH) oligomerization increasing 2.1-fold in alveolar epithelial cells 
(p < 0.05) via direct copper binding to lipoylated TCA cycle enzymes 
(16). Clinically, serum copper levels correlate strongly with SOFA 
scores (r = 0.72, p < 0.01) in sepsis patients, while tetrathiomolybdate 
treatment reduces lung injury severity by 50% (p < 0.05) in murine 

models by restoring copper efflux (67). These findings establish 
cuproptosis as a mechanistically distinct yet therapeutically targetable 
pathway in septic lung injury (Figure 2).

Early proof-of-concept experiments have demonstrated that 
administering copper chelators (e.g., tetrathiomolybdate, 
penicillamine) can partially reverse lung injury severity in 
LPS-challenged mice, implying that cuproptosis blockade represents 
a promising intervention (67). However, copper is also vital for 
numerous enzymes, such as cytochrome c oxidase (COX) and 
superoxide dismutase (SOD), so therapeutic strategies must balance 
copper removal with preserving essential copper-dependent pathways.

Potential diagnostic and therapeutic 
challenges

Measuring copper levels in blood or tissue is relatively 
straightforward, but determining the onset of cuproptosis may require 
specific biomarkers (e.g., FDH aggregates, mitochondrial respiration 
deficits, or unique proteomic signatures) (68). Further complicating 
matters, sepsis patients can have highly variable serum copper 
concentrations depending on nutritional status, preexisting liver 
disease, and other factors. Thus, additional prospective studies should 
focus on correlating cuproptosis markers with clinical severity scores 
(e.g., SOFA score) and lung function indices (e.g., PaO2/FiO2 ratio).

Therapeutic challenges include dose optimization for copper 
chelators, potential toxicity, and the presence of competing 
pathophysiological factors in critically ill patients. Despite these 
hurdles, cuproptosis remains an attractive area for further research in 
sepsis, offering a mechanistically distinct target compared to other 
forms of RCD.

FIGURE 2

Molecular mechanisms of cuproptosis in septic lung injury.
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In sepsis, hepatic copper overload [due to cytokine-driven ATP7B 
dysfunction (69)] leads to pulmonary copper accumulation. Excess 
copper binds to lipoylated enzymes in alveolar mitochondria, disrupting 
the TCA cycle and generating superoxide radicals (16). This process is 
exacerbated by sepsis-induced hypoxia, which reduces cytochrome c 
oxidase (COX) activity, further stalling respiration (70). These findings 
position cuproptosis as a metabolic checkpoint in septic lung injury

Disulfidptosis: linking sulfide 
metabolism dysregulation to cell 
death

Basic principles of disulfidptosis

Disulfidptosis is characterized by excessive formation of disulfide 
bonds in proteins due to oxidative stress and impaired sulfide metabolism 
(19). Disulfidptosis involves both physiological and pathological disulfide 
bond formation. While structural disulfide bonds in extracellular matrix 
proteins (e.g., collagen crosslinking) and secreted proteins (e.g., 
surfactant protein SP-A) are essential for normal mechanical stability and 
function, sepsis-induced oxidative stress primarily drives pathological 
disulfide bonds in redox-sensitive compartments. These aberrant intra- 
and inter-protein disulfides, particularly in mitochondrial complex I, 
sulfide:quinone oxidoreductase (SQR), and alveolar epithelial proteins 
(e.g., claudin-4), disrupt protein folding and organelle function, leading 
to pathological aggregation (17, 71). This distinction between protective 
structural disulfides and harmful pathological disulfides is crucial for 
understanding disulfidptosis in septic lung injury. Cysteine residues are 
central to protein folding and function; when ROS levels rise, thiol 
groups are oxidized to form intra- or inter-protein disulfide bonds (72). 
While disulfide bonds can be essential for normal protein conformation, 
excess or aberrant disulfide bonding causes protein misfolding, 
aggregation, and ultimately cell dysfunction.

Sulfide metabolism enzymes, such as sulfide:quinone 
oxidoreductase (SQR), play a major role in buffering cellular redox 
status. When sepsis-driven oxidative stress and inflammatory 
signaling suppress these enzymes, cytosolic and mitochondrial levels 
of reactive sulfur species become imbalanced (73).

Key mediators and pathway regulation

Oxidative stress in sepsis is fueled by factors like NADPH oxidases 
(NOX) and mitochondrial dysfunction, leading to pervasive 
production of ROS (including mt-ROS) (74). Inflammatory cytokines 
such as TNF-α, IL-1β, and IL-6 can also boost ROS by upregulating 
genes involved in oxidation pathways (75). Under these conditions, 
cysteine residues undergo oxidation to disulfides, which in turn drives 
disulfidptosis. The reduced activity of sulfide metabolism enzymes like 
SQR, cystathionine γ-lyase (CSE), and cystathionine β-synthase (CBS) 
may exacerbate this state (20).

Disulfidptosis in septic lung injury

Although not as extensively studied as ferroptosis, disulfidptosis 
could be  highly relevant to sepsis given the intense oxidative 

environment in the lungs. Disulfidptosis in sepsis is driven by 
oxidative dysregulation of sulfide metabolism, with experimental 
evidence showing 45% more disulfide bonds in lung surfactant 
proteins (p < 0.01) in CLP models (76). This results from dual 
mechanisms: (1) NADPH oxidase (NOX4)-derived ROS oxidize 63% 
of cysteine thiols in alveolar proteins (p < 0.001), and (2) sepsis 
suppresses sulfide:quinone oxidoreductase (SQR) activity by 55% 
(p < 0.05), impairing H2S detoxification (77). Clinically, ARDS 
patients exhibit 3.2-fold higher plasma disulfide/thiol ratios 
(p < 0.001), which inversely correlate with PaO2/FiO2 ratios 
(r = −0.65). Investigations in cecal ligation and puncture (CLP) 
models, which closely mimic human polymicrobial sepsis, suggest 
that alveolar proteins such as surfactant proteins and tight junction 
proteins undergo aberrant disulfide bonding (76). This leads to 
structural alterations, impaired alveolar stability, and dysregulated 
fluid clearance.

In one experiment, prophylactic administration of 
N-acetylcysteine (NAC), a thiol-replenishing antioxidant, reduced 
disulfide bond formation in the lungs of septic mice and improved 
survival rates (78). Another study found that supplementation with 
hydrogen sulfide (H2S) donors could partially restore sulfide 
metabolism and mitigate protein aggregation in alveolar epithelial 
cells (77).

Sepsis-triggered oxidative stress [e.g., via NADPH oxidase 
activation (79)] overwhelms sulfide: quinone oxidoreductase (SQR) 
in alveolar cells. This thiol imbalance causes aberrant disulfide 
bonding in surfactant proteins (e.g., SP-A, SP-D) and tight junction 
proteins (e.g., claudin-4), compromising alveolar integrity (71). 
Murine models show that H2S donors rescue SQR activity, suggesting 
sulfide metabolism as a therapeutic node (80), Figure 3 illustrates the 
molecular mechanisms of disulfidptosis in septic lung injury.

Therapeutic outlook

Potential interventions for disulfidptosis focus on limiting 
oxidative stress and restoring sulfide metabolism. Antioxidants such 
as NAC or vitamin C can scavenge ROS, reducing aberrant cysteine 
oxidation. Meanwhile, H2S donors or modulators of sulfide-
metabolizing enzymes may help stabilize redox balance and minimize 
protein misfolding. However, large-scale trials of broad-spectrum 
antioxidants in sepsis have reported inconsistent results, likely 
reflecting timing, dosage, and the multifactorial nature of sepsis (81). 
A targeted strategy against disulfidptosis specifically may require more 
precise biomarkers to identify patients with extreme redox imbalances.

Crosstalk among ferroptosis, 
cuproptosis, and disulfidptosis in 
sepsis

Overview of shared regulatory nodes

The interplay between ferroptosis, cuproptosis, and disulfidptosis 
in septic lung injury converges through shared molecular hubs that 
create a self-amplifying cycle of cellular damage (16, 36, 46). 
Glutathione (GSH) depletion emerges as a critical linchpin, 
simultaneously disabling GPX4-mediated lipid peroxide detoxification 
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in ferroptosis (46, 49) while permitting copper-induced mitochondrial 
protein aggregation in cuproptosis (2.1-fold increase in FDH 
oligomerization; p < 0.05) (16, 66) and exacerbating disulfide stress 
through thiol imbalance (3.2-fold higher oxidized/disulfide ratios in 
ARDS patients; p < 0.001) (76, 77). The TNF-α/NF-κB axis further 
interconnects these pathways by upregulating iron transporters 
(TFR1) (19, 21) and suppressing copper exporters (ATP7B) (66), 
while simultaneously activating NOX4-derived ROS that oxidize 63% 
of alveolar protein thiols to dysfunctional disulfides (p < 0.001) (76, 
77). Hypoxia-induced HIF-1α stabilization compounds this 
dysregulation by transcriptionally repressing both GPX4 (46, 57) and 
sulfide:quinone oxidoreductase (SQR) (77), creating a perfect storm 
for all three regulated cell death modalities. This vicious cycle is 
exacerbated by pathogen strategies like Pseudomonas-mediated GSH 
theft (46) and perpetuated through DAMPs released from dying cells, 
which feed back into TNF-α activation (49, 66). Therapeutic 
opportunities arise at these nodal points, with combined 
N-acetylcysteine (GSH replenishment) (76), deferoxamine (iron 
chelation) (46, 67), and tetrathiomolybdate (copper chelation) (67) 
demonstrating synergistic efficacy (50–70% reduction in lung injury 
severity, p < 0.01) by concurrently targeting multiple death pathways 
while preserving essential metal-dependent functions, Figure  4 
illustrates the crosstalk of ferroptosis, cuproptosis, and disulfidptosis, 
including shared triggers, pathway-specific mechanisms, and 
convergent effects on alveolar injury.

Although ferroptosis, cuproptosis, and disulfidptosis each have 
distinct triggers and execution mechanisms, they can overlap in sepsis 
through shared oxidative stress pathways and proinflammatory signals 
(82). For example, TNF-α can upregulate both iron and copper 
transporters in certain contexts, thus simultaneously fueling 
ferroptotic and cuproptotic pathways. The same inflammatory 
environment also fosters ROS accumulation, which contributes to 
both lipid peroxidation (ferroptosis) and the formation of excessive 
disulfide bonds (disulfidptosis).

Additionally, GSH deficiency can facilitate both ferroptosis (due 
to loss of GPX4 activity) and disulfidptosis (due to increased thiol 

oxidation). Mitochondrial dysfunction further ties cuproptosis with 
disulfidptosis when hyperinflammatory states alter metabolic flux in 
alveolar cells. These interconnections underscore the complexity of 
multiple RCD pathways in sepsis.

To consolidate the distinct yet interconnected roles of ferroptosis, 
cuproptosis, and disulfidptosis in septic lung injury, Table  2 
summarizes their sepsis-specific triggers, affected cell types, 
downstream consequences, and therapeutic targets. This comparative 
analysis highlights both pathway-specific mechanisms (e.g., iron/
copper overload, sulfide metabolism) and shared nodes (e.g., 
mitochondrial dysfunction, oxidative stress), providing a framework 
for developing multi-target interventions.

Nrf2 as a central regulator of 
redox-metal-sulfur crosstalk

The transcription factor Nrf2 emerges as a pivotal orchestrator of 
the interplay between ferroptosis, cuproptosis, and disulfidptosis in 
sepsis. Under physiological conditions, Nrf2 regulates iron 
homeostasis by suppressing transferrin receptor (TfR1) expression 
and upregulating ferritin heavy chain (FTH1), thereby limiting labile 
iron pools that drive ferroptosis (35). Concurrently, Nrf2 modulates 
copper efflux via transcriptional control of ATP7A/B, preventing 
copper overload and mitochondrial protein aggregation characteristic 
of cuproptosis (83). Crucially, Nrf2 also enhances glutathione (GSH) 
synthesis by activating glutamate-cysteine ligase (GCLC/GCLM), 
which buffers oxidative stress and disulfide bond formation in 
disulfidptosis (76). In sepsis, cytokine-mediated Nrf2 suppression 
(e.g., via TNF-α/NF-κB) exacerbates redox-metal-sulfur dysregulation, 

FIGURE 3

Molecular mechanisms of disulfidptosis in septic lung injury.

FIGURE 4

A schematic diagram illustrating the crosstalk of ferroptosis, 
cuproptosis, and disulfidptosis.
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creating a permissive environment for all three RCD pathways. 
Therapeutic Nrf2 activation (e.g., by sulforaphane) may thus represent 
a multi-target strategy to mitigate septic lung injury.

Beyond Nrf2, the inflammatory milieu of sepsis further integrates 
these RCD pathways through shared stress sensors. For instance, 
NF-κB activation upregulates both TfR1 (promoting ferroptosis) and 
CTR1 (enhancing cuproptosis) in alveolar epithelial cells (66). 
Simultaneously, p53 activated by sepsis-associated DNA damage 
inhibits SLC7A11-mediated cystine uptake, depleting GSH and 
synergizing with disulfidptosis (45). TGF-β/SMAD3 signaling 
exacerbates this cascade by downregulating sulfide:quinone 
oxidoreductase (SQR), impairing sulfide detoxification (84). This 
convergence on redox disruption (via ROS), metal dyshomeostasis 
(iron/copper), and sulfur metabolism failure creates a self-amplifying 
loop that accelerates lung injury (3).

Opportunities for multi-target 
interventions

The convergence of ferroptosis, cuproptosis, and disulfidptosis 
in septic lung injury offers a compelling rationale for multi-target 
therapeutic strategies, as these pathways share common nodes of 
oxidative stress, mitochondrial dysfunction, and inflammatory 
amplification (16, 85). For instance, TNF-α not only upregulates 
iron and copper transporters (e.g., SLC11A2 and CTR1) but also 
exacerbates disulfide stress via NOX activation (86, 87), creating a 
vicious cycle that could be disrupted by combining iron chelators 
(e.g., deferoxamine) with thiol donors like N-acetylcysteine (NAC) 
an approach that reduced both lipid peroxidation and protein 
disulfide aggregation in preclinical studies (88, 89). Similarly, copper 
chelators (tetrathiomolybdate) paired with GPX4 inducers 
(liproxstatin-1) might simultaneously mitigate cuproptosis-driven 
mitochondrial aggregation and ferroptotic membrane damage (89, 
90), while broad-spectrum redox modulators such as dimethyl 
fumarate could target shared oxidative stress pathways downstream 
of Nrf2 and NF-κB (91, 92). Challenges remain in timing 
interventions to avoid compromising early immune defenses, 
necessitating biomarker-guided stratification for example, serum 
iron/copper ratios or disulfide bond assays to identify patients most 
likely to benefit (93, 94). Future work should prioritize high-
throughput screening to optimize drug combinations and adaptive 
clinical trials to evaluate multi-target regimens against sepsis 
heterogeneity, leveraging computational models to predict 

individual RCD pathway dominance (95, 96). By integrating 
mechanistic insights with translational tools, such strategies could 
bridge the gap between preclinical promise and clinical efficacy in 
septic lung injury.

Potential biomarkers and diagnostic 
approaches

Ferroptosis-related biomarkers

Quantifying serum iron levels (total or transferrin-bound), 
measuring GPX4 activity, and detecting lipid peroxidation markers 
such as malondialdehyde (MDA) or 4-hydroxynonenal (4-HNE) 
can indicate ferroptotic pressure (50). Elevated free iron, low 
GPX4, and high lipid peroxidation by-products may suggest 
ferroptosis involvement. Some small studies link these parameters 
to worse clinical outcomes in septic patients (49). Table  3 
summarizes validated and emerging biomarkers, therapeutic 
agents, and associated challenges for targeting ferroptosis, 
cuproptosis, and disulfidptosis in sepsis. This comparative 
framework highlights both pathway-specific and shared diagnostic/
therapeutic opportunities, which may guide clinical 
decision-making.

Cuproptosis-related biomarkers

Evaluation of total serum copper, along with copper-binding 
peptides (such as ceruloplasmin) and measurements of ATP7A/B 
expression, can reveal copper imbalance. Mitochondrial protein 
aggregation or FDH oligomer detection, particularly through 
advanced proteomic platforms, may serve as more specific markers of 
cuproptosis (68).

Disulfidptosis-related biomarkers

In sepsis, plasma disulfide bond content or the ratio of oxidized 
to reduced thiols may reflect the degree of disulfidptotic activity (76, 
77). Measurements of sulfide metabolites (e.g., thiosulfate) and the 
enzymatic activity of SQR or CBS can offer additional insights. 
Implementing these tests in clinical practice remains challenging but 
could enhance the understanding of individual redox states.

TABLE 2 Key molecular events linking ferroptosis, cuproptosis, and disulfidptosis to septic lung injury.

RCD type Sepsis-induced 
trigger

Affected lung cell 
type

Downstream 
consequence

Therapeutic target

Ferroptosis HIF-1α↑ → TfR1-mediated 

Fe2+ overload

Alveolar type II cells Lipid peroxidation → barrier 

rupture

Deferoxamine + liproxstatin-1

FSP1-CoQ10 (Idebenone)

Cuproptosis ATP7B dysfunction → Cu2+ 

retention

Alveolar macrophages FDH aggregation → metabolic 

collapse

Tetrathiomolybdate

HSP70 (YM-1)

Disulfidptosis NOX4↑ → SQR inhibition Pulmonary endothelial cells a Mitochondrial: SQR dysfunction 

→ ROS

Epithelial: SP-A crosslinking → 

alveolar collapse

N-acetylcysteine (NAC)
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Integrative diagnostic strategies

In clinical practice, single biomarkers may be insufficient given 
the multifaceted nature of sepsis. An integrative panel combining 
markers for ferroptosis, cuproptosis, and disulfidptosis would likely 
provide a more comprehensive assessment of septic lung injury. 
Prospective studies should examine how these biomarker panels 
correlate with validated clinical severity scores (SOFA, APACHE II) 
and imaging findings.

Therapeutic strategies and 
translational challenges

Inhibiting ferroptosis

Several classes of ferroptosis inhibitors have been developed, 
including iron chelators (deferoxamine) and lipophilic antioxidants 
(ferrostatins, liproxstatins) (15). GPX4 inducers or GSH replenishment 
therapies could theoretically reduce ferroptotic cell death (27, 28). In 
preclinical sepsis models, these strategies have lowered cytokine 
release and minimized alveolar damage, but clinical trials specifically 
targeting ferroptosis in septic lung injury remain sparse.

Challenges arise because iron is critical for hemoglobin function 
and immune cell proliferation, so excessive chelation may have 
deleterious effects. The timing and dosage of ferroptosis inhibitors also 
matter, given that early-phase sepsis might benefit from certain levels 
of ROS for microbial clearance.

Clinically, serum ferritin levels and lipid peroxidation markers 
(e.g., 4-HNE) correlate with ARDS severity in sepsis patients. A 2023 
phase II trial (NCT04970484) demonstrated that combined 
deferoxamine and vitamin E reduced ventilator days in septic ARDS 
by 30% compared to placebo (p < 0.05), supporting ferroptosis 
inhibition as a viable strategy (97). Future studies should validate 
GPX4 activity as a predictive biomarker, particularly in patients 
with hyperferritinemia.

Targeting cuproptosis

Therapies aimed at reducing intracellular copper overload include 
penicillamine, trientine, and tetrathiomolybdate (16, 67). These 

chelators can restore normal mitochondrial function by preventing 
copper-induced aggregation of FDHs. However, copper deficiency 
might impair enzymes like cytochrome c oxidase and superoxide 
dismutase, highlighting the need for precise therapeutic windows. 
Emerging approaches also target HSP70 to counteract copper-induced 
proteotoxicity. For example, the HSP70 activator YM-1 restored 
chaperone function and reduced lung injury in septic mice with 
copper overload (98, 99), suggesting that combinatorial regimens (e.g., 
tetrathiomolybdate + YM-1) warrant further investigation. This 
strategy may address both arms of cuproptosis: copper-dependent 
protein aggregation (via chelation) and HSP70 inhibition (via 
chaperone activation).

Sepsis heterogeneity further complicates matters, as baseline 
copper levels vary among patients. Personalized approaches that 
incorporate real-time copper assays may be  necessary to identify 
individuals at the greatest risk of cuproptosis-mediated lung injury.

Mitigating disulfidptosis

Disulfidptosis, driven by aberrant disulfide bond formation in 
proteins, contributes significantly to septic lung injury through 
oxidative disruption of alveolar structure and function (88). Current 
strategies to mitigate disulfidptosis primarily target sulfide metabolism 
restoration and thiol redox balance. N-acetylcysteine (NAC), a thiol-
replenishing antioxidant, has shown efficacy in reducing disulfide 
stress in preclinical models, with 150 mg/kg doses lowering alveolar 
protein disulfides by 38% and improving survival in CLP-induced 
sepsis (100). Hydrogen sulfide (H₂S) donors similarly stabilize sulfide-
metabolizing enzymes like SQR, mitigating mitochondrial 
dysfunction (101). Emerging evidence highlights the synergistic 
potential of combining disulfidptosis inhibitors with other 
RCD-targeted therapies. Co-administration of NAC (150 mg/kg) and 
the iron chelator deferoxamine (100 mg/kg) in septic mice reduced 
mortality by 58%, concurrently attenuating disulfidptosis (protein 
disulfide accumulation ↓40%) and ferroptosis (4-HNE ↓50%) (102). 
This aligns with clinical data showing sepsis patients with combined 
disulfidptosis markers (e.g., elevated protein disulfides) and 
ferroptosis/cuproptosis signatures (serum iron ≥30 μmol/L, copper 
≥22 μmol/L) face 3.2-fold higher ARDS risk (102). Challenges remain 
in optimizing the timing of thiol-based therapies, as excessive early 
antioxidant administration may impair microbial clearance.

TABLE 3 Comparative biomarkers and therapeutic approaches for ferroptosis, cuproptosis, and disulfidptosis in septic lung injury.

Category Ferroptosis Cuproptosis Disulfidptosis

Diagnostic biomarkers  • Serum ferritin

 • 4-HNE (lipid peroxidation)

 • GPX4 activity

 • Serum copper

 • Ceruloplasmin

 • FDH oligomers (mitochondrial)

 • Plasma thiosulfate

 • SQR activity

 • Protein disulfide ratio (SH: SS)

Therapeutic agents  • Deferoxamine (iron chelator)

 • Liproxstatin-1 (antioxidant)

 • Vitamin E

 • Tetrathiomolybdate (copper chelator)

 • Penicillamine

 • Copper-lowering diets

 • N-acetylcysteine (NAC)

 • Sodium thiosulfate (H₂S donor)

 • Cystine supplementation

Clinical trial evidence  • Phase II trial: Deferoxamine + 

Vitamin E reduced ARDS 

severity (106)

 • Preclinical: TTM improved survival in 

murine sepsis (67)

 • NAC reduced ventilator days in sepsis (107)

Challenges Risk of anemia with prolonged 

chelation

Copper deficiency (impairs immunity) Timing-dependent efficacy of antioxidants
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Combined or adjunctive therapies

Combination therapies targeting multiple RCD pathways may 
offer superior efficacy. Preclinical studies demonstrate that 
co-administration of deferoxamine (iron chelator) and 
tetrathiomolybdate (copper chelator) reduces alveolar damage more 
effectively than either agent alone in LPS-challenged mice (67). 
Similarly, N-acetylcysteine (NAC) synergizes with ferroptosis 
inhibitors (e.g., liproxstatin-1) by concurrently replenishing GSH 
(countering disulfidptosis) and scavenging lipid ROS (blocking 
ferroptosis) (78). However, timing is critical: early-phase sepsis may 
require preserved ROS for pathogen clearance, whereas late-phase 
interventions could focus on RCD suppression. Personalized 
approaches guided by biomarkers like serum labile iron, FDH 
aggregates, or protein disulfide ratios may optimize this balance.

A multi-pronged approach that addresses multiple RCD pathways 
alongside standard sepsis treatments (antibiotics, fluid resuscitation, 
organ support) may be most logical. For example, combining iron 
chelators and low-dose antioxidants might address both ferroptosis 
and disulfidptosis without severely compromising beneficial ROS in 
pathogen clearance. Ongoing research should explore such synergy in 
both in vitro and in vivo sepsis models.

The potential synergies and temporal considerations between 
conventional sepsis treatments and RCD inhibitors require careful 
evaluation. Early broad-spectrum antibiotics remain critical for 
pathogen clearance but must be temporally coordinated with RCD 
modulation ferroptosis inhibitors (e.g., deferoxamine), while 
protective against tissue damage, may transiently impair neutrophil 
bactericidal activity by limiting iron-dependent ROS production (89), 
suggesting initiation within 6–12 h after antibiotic administration to 
balance microbial killing and tissue protection. Glucocorticoids like 
dexamethasone may synergize with disulfidptosis inhibitors (e.g., 
NAC) by reducing oxidative stress, but concurrent use with 
cuproptosis inhibitors (e.g., tetrathiomolybdate) warrants caution due 
to glucocorticoid-induced upregulation of copper transporters 
(ATP7A) in epithelial cells (103). Preclinical evidence supports a 
phased approach: early antibiotics and immunomodulation (0–24 h) 
followed by RCD-targeted adjuvants (24–48 h post-onset), guided by 
biomarker profiles (e.g., 4-HNE for ferroptosis, FDH aggregates for 
cuproptosis), to optimize outcomes.

Future directions: integrating mechanistic 
insights into sepsis therapeutics

The convergence of ferroptosis, cuproptosis, and disulfidptosis in 
septic organ injury presents a transformative opportunity to redefine 
sepsis therapeutics through precision targeting of regulated cell death 
(RCD) pathways. Emerging evidence highlights shared nodes of 
oxidative stress, metabolic dysfunction, and inflammatory 
amplification across these mechanisms, suggesting that multi-target 
strategies may be  required to disrupt their synergistic pathology. 
Translating these insights will require deeper mechanistic integration 
with sepsis biology, particularly through systems approaches like 
multi-omics profiling to delineate dynamic RCD pathway activation 
in patient subpopulations. Biomarkers such as iron/copper ratios, 
protein persulfidation patterns, or mitochondrial metal accumulation 

could enable real-time stratification to guide therapeutic intervention. 
Combination therapies simultaneously addressing multiple RCD 
pathways for example, iron chelators with thiol donors or copper 
chelators with GPX4 stabilizers show preclinical promise but need 
optimization through high-throughput screening to identify 
synergistic pairs with favorable safety profiles. Clinical translation will 
depend on adaptive trial designs capable of matching these tailored 
regimens to evolving sepsis endotypes, while computational modeling 
may help predict individual patient responses. Methodological 
advances must address critical gaps, including the development of 
rapid RCD biomarker assays and standardized preclinical models that 
better reflect clinical sepsis heterogeneity. A collaborative framework 
uniting basic researchers, clinicians, and trial methodologies will 
be  essential to navigate the delicate balance between therapeutic 
efficacy and preservation of host defenses, ultimately bridging 
mechanistic discovery with actionable clinical strategies for this 
complex syndrome.

Comparative context: relationships to 
pyroptosis, necroptosis, and apoptosis

While this review has focused on ferroptosis, cuproptosis, and 
disulfidptosis, sepsis engages additional regulated cell death (RCD) 
pathways that may indirectly influence disease progression. Pyroptosis 
(caspase-1-mediated) contributes to lung injury through gasdermin-D 
pore formation and IL-1β release (104), while necroptosis (RIPK3/
MLKL-dependent) exacerbates mitochondrial dysfunction (105). 
DAMPs released from these pathways (e.g., HMGB1) may potentiate 
ferroptosis by increasing labile iron pools (49) or exacerbate 
disulfidptosis through oxidative stress (76). Apoptosis, though 
immunologically silent, may deplete alveolar epithelial cells, reducing 
capacity for redox homeostasis (25). Critical gaps remain in 
understanding how pyroptotic pores affect copper influx or how 
necroptosis-derived mitochondrial DAMPs interact with disulfide 
stress. Future studies should leverage single-cell transcriptomics to 
map RCD co-occurrence and test combination therapies targeting 
multiple pathways simultaneously.

Conclusion

Sepsis-induced lung injury involves complex interplay between 
ferroptosis, cuproptosis, and disulfidptosis, each contributing to 
oxidative cellular damage through distinct but overlapping 
mechanisms. Key therapeutic targets including GPX4 for ferroptosis, 
CTR1/ATP7B for cuproptosis, and SQR for disulfidptosis show 
promise in preclinical studies, particularly when combined with 
immunomodulators. Critical gaps remain in (1) validating pathway-
specific biomarkers for patient stratification, (2) optimizing 
intervention timing to balance cytoprotection and host defense, and 
(3) developing multi-target therapies with minimal off-target effects. 
Future studies should prioritize human tissue-based validation (e.g., 
single-cell omics of septic ARDS cohorts) and adaptive clinical trial 
designs to evaluate RCD-modulating agents. This mechanistic and 
translational framework advances our understanding of sepsis 
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pathology while guiding the development of precision therapies for 
high-risk patients.
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