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Gut microbiota in liver diseases: 
initiation, development and 
therapy
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The gut microbiota plays a pivotal role in the pathogenesis and progression 
of various liver diseases, including viral hepatitis, alcoholic fatty liver disease, 
metabolic dysfunction-associated steatotic liver disease, drug-induced hepatitis, 
liver cirrhosis, hepatocellular carcinoma, and other hepatic disorders. Research 
indicates that dysbiosis of the gut microbiota can disrupt the integrity of the intestinal 
barrier and interfere with the immune functions of the gut-liver axis, thereby 
mediating the progression of liver diseases. Analysis of microbial composition 
and metabolites in fecal samples can assess the diversity of gut microbiota and 
the abundance of specific microbial populations, providing auxiliary diagnostic 
information for liver diseases. Furthermore, interventions such as fecal microbiota 
transplantation, probiotics, prebiotics, bacteriophages, and necessary antibiotic 
treatments offer multiple approaches to modulate the gut microbiota, presenting 
promising new strategies for the prevention and treatment of liver diseases. This 
review summarizes the latest research advances on the role of gut microbiota in 
liver diseases, offering novel theoretical foundations and practical directions for 
the diagnosis and treatment of hepatic disorders.
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1 Introduction

Liver diseases have emerged as a significant global health challenge, encompassing various 
conditions such as viral hepatitis, metabolic dysfunction-associated steatotic liver disease 
(MASLD), alcoholic liver disease (ALD), and hepatocellular carcinoma (HCC) (1). According 
to GLOBOCAN 2023 statistics, over 800 million people worldwide are affected by liver 
diseases, with approximately 2 million deaths annually, accounting for 4% of global mortality 
(2, 3). The gut microbiota, the largest microbial community in the human body, comprises 
more than 50 phyla and approximately 1,500 different species, playing a crucial role in 
maintaining health and contributing to disease pathogenesis (4). In healthy individuals, the 
gut microbiota is predominantly composed of beneficial bacteria such as Bacteroidetes and 
Firmicutes, along with smaller proportions of Proteobacteria, Actinobacteria, and 
Verrucomicrobia (5). Recent studies have demonstrated that gut microbiota dysbiosis is closely 
associated with the development and progression of various liver diseases, including chronic 
hepatitis B (CHB), ALD, MASLD, liver cirrhosis (LC), and HCC (6). The underlying 
mechanisms involve gut-liver axis signaling, metabolite regulation, and immune 
microenvironment remodeling, among others (7–10). Despite advancements in diagnostic 
and therapeutic technologies for liver diseases, significant challenges remain in diagnostic 
methods, criteria, and therapeutic targets, highlighting the need for further improvements.
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The gut microbiota and liver diseases are closely interconnected 
through the gut-liver axis. Nutrients, bacterial metabolites, and 
potential harmful substances in the gut can enter the liver via the 
portal venous system (11, 12). Simultaneously, the liver delivers 
metabolites such as bile acids (BA) to the intestinal lumen through the 
biliary tract, thereby regulating the composition and function of the 
gut microbiota (13). Additionally, liver diseases can disrupt intestinal 
barrier function, promote gut microbiota dysbiosis, and further 
impair the normal function of the gut-liver axis. Dysbiosis of the gut 
microbiota may exacerbate inflammatory and fibrotic processes in 
liver diseases, aggravating liver injury.

With advancing research, beyond traditional antiviral and 
immunomodulatory therapies, modulating the gut microbiota 
through fecal microbiota transplantation (FMT), probiotics, and 
specific dietary interventions has emerged as a novel adjunctive 
approach for liver disease treatment (14, 15). This review summarizes 
the role of the gut microbiota in the onset, progression, diagnosis, and 
pathogenesis of liver diseases, and explores the impact of therapeutic 
strategies aimed at restoring gut microbiota balance on disease 
progression, thereby providing new insights and methods for the 
diagnosis and treatment of liver diseases. Furthermore, this review 
analyzes the specific manifestations of the gut microbiota in different 
liver diseases, discusses its potential as a diagnostic biomarker in liver 
diseases, elucidates the mechanisms of microbiota in disease 
pathogenesis, and evaluates the potential of microbiota-targeted 
therapies in the management of liver diseases.

2 Expression characteristics, 
mechanistic research, and 
diagnostic-therapeutic applications of 
gut microbiota in viral hepatitis

In 2022, the World Health Organization (WHO) revised the 2030 
strategy for the comprehensive elimination of viral hepatitis, initially 
adopted in 2016, setting forth more specific and quantifiable targets 
(16). Viral hepatitis, a significant global health burden, is primarily 
caused by five viruses: hepatitis A virus (HAV), hepatitis B virus 
(HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), and 
hepatitis E virus (HEV) (17). The Global Hepatitis Report 2024 
disclosed that the number of deaths from viral hepatitis increased 
from 1.1 million in 2019 to 1.3 million in 2022, with 83% attributable 
to hepatitis B and 17% to hepatitis C, resulting in approximately 3,500 
deaths daily worldwide from these two types of hepatitis (18). Recent 
studies have indicated a correlation between gut microbiota dysbiosis 
and the occurrence of viral hepatitis, suggesting that hepatitis virus 
infections can alter the diversity of the gut microbiome (9, 10).

2.1 Alteration of gut microbiota in HBV

Chronic hepatitis B (CHB) patients exhibit characteristic 
alterations in gut microbiota: multiple 16S rRNA sequencing 
studies demonstrate a significant increase in Firmicutes abundance 
and a decrease in Bacteroidetes, resulting in an elevated 
Firmicutes/Bacteroidetes (F/B) ratio (19, 20). However, 
geographical variations may influence this trend, as one study 
observed reduced Firmicutes and increased Bacteroidetes in CHB 

patients (21). Further analysis reveals three distinct enterotypes in 
CHB patients, dominated by Bacteroides, Blautia, and Prevotella, 
respectively (8). Notably, fecal samples from occult HBV-infected 
individuals show a marked depletion of butyrate-producing 
Faecalibacterium coupled with an abnormal enrichment of 
opportunistic pathogen Subdoligranulum (22). LEfSe analysis 
confirms differential regulation of 19 genera in HBV-infected 
individuals, including upregulated Alloprevotella and 
downregulated Bacteroides (17). Most concerningly, HBV-related 
liver disease patients exhibit a pro-inflammatory microbiome 
signature characterized by opportunistic pathogens (e.g., Proteus, 
Klebsiella) enrichment and butyrate-producing bacteria (e.g., 
Ruminococcus) depletion (23).

2.2 Alteration of gut microbiota in HCV

In 86 patients with HCV infection, the abundance of 10 taxa, 
including Desulfovibrio, Eubacterium eligens, and Prevotella, was 
significantly higher than that in the HC group, while the abundance 
of 11 genera, such as Barnesiella, Colidextribacter, and Dorea, was 
significantly reduced (17). Additionally, treatment-naïve HCV 
patients exhibited increased gut microbiota diversity, with elevated 
abundances of Prevotella, Megasphaera, and Ruminococcaceae, and 
decreased abundances of Bacteroides, Streptococcus, and 
Enterobacteriaceae (24). 16S RNA sequencing analysis also revealed 
lower bacterial diversity in 166 Japanese patients with chronic 
hepatitis C (CHC), characterized by a reduction in the order 
Clostridiales and an increase in Streptococcus and Lactobacillus (25). 
Compared to the HC group, the total abundance of Lactobacillus and 
Lactobacillus acidophilus was significantly lower in patients with 
chronic HCV infection (26).

2.3 Alteration of gut microbiota in HEV, 
HAV, and HDV

In 33 patients with acute hepatitis E (AHE), the abundance of 
Proteobacteria, Gammaproteobacteria, and Enterobacteriaceae was 
significantly higher in the gut compared to the HC group (27). 
Furthermore, compared to the AHE group, the HEV-associated acute 
liver failure (ALF) group showed increased abundances of 
Gammaproteobacteria, Proteobacteria, Xanthomonadaceae, and 
Stenotrophomonas, and decreased abundances of Firmicutes, 
Streptococcus, Subdoligranulum, and Lactobacillus (28). HAV, an acute 
and self-limiting disease, has limited research on gut microbiota 
changes during infection. 16S rRNA analysis revealed gut microbiota 
dysbiosis in HIV patients co-infected with HAV, characterized by 
reduced Proteobacteria abundance and enrichment of Bifidobacterium 
and Bacteroides, with this dysbiosis persisting long after clinical 
recovery (29). As for HDV infection, no relevant studies on gut 
microbiota have been identified, likely because HDV is an incomplete 
virus requiring HBV for replication, making it challenging to obtain 
relevant data (17). These findings suggest that regional, dietary, and 
ethnic differences may contribute to the variability in gut microbiota 
expression in viral hepatitis-related liver diseases (Table 1). Therefore, 
long-term, multicenter studies are still needed to further explore the 
relationship between gut microbiota and viral hepatitis.
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2.4 The diagnostic value of microbiota in 
viral hepatitis

The gut microbiota plays a pivotal role in the progression, early 
detection, and diagnosis of HBV-related liver diseases, with 
compositional shifts serving as both prognostic indicators and 
diagnostic biomarkers (30). A case–control study utilizing 
Culturomics technology identified Enterocloster bolteae as a novel 
microbial signature in CHB patients, distinguishing them from 
healthy controls (31). In treatment-naïve CHB populations, HBeAg 
positivity correlates with specific taxonomic enrichments: HBeAg+ 
individuals exhibit elevated levels of Eubacterium coprostanoligenes, 
Christensenellaceae_R_7, Oscillospirales_UCG_010, and Haemophilus, 
paralleled by reduced Erysipelatoclostridium and Lachnoclostridium 
abundance compared to HBeAg- counterparts (32). Notably, these 
phyla-level differences remain statistically insignificant despite genus-
level alterations. Antiviral therapy significantly reshapes microbial 
profiles. Tenofovir alafenamide-treated HBeAg+ patients demonstrate 
marked increases in Bacteroidetes, Prevotella, Alistipes, Oxalobacter, 
and Butyricicoccaceae_UCG_009, coupled with depletion of 
Proteobacteria, Actinobacteria, and Bifidobacterium species (29). These 
changes contrast with immune phase-specific biomarkers, where 
Ruminococcus gnavus and Akkermansia muciniphila differentiate 

immune-tolerant from immune-active CHB states (33). Microbial 
dynamics correlate with clinical outcomes across disease spectra. In 
HBV-ACLF, metagenomic analysis reveals Enterococcus enrichment 
correlates with disease progression, while Faecalibacterium dominance 
associates with recovery (34). Bacteroidetes abundance inversely 
correlates with serum AFP levels, whereas Veillonella shows positive 
association with total bilirubin (TBIL), and Coprococcus demonstrates 
dual correlations with TBIL/INR (negative) and prothrombin time 
(positive) (35). Antiviral intervention partially restores microbial 
balance, particularly in Blautia, Dorea, and Ruminococcaceae_
UCG-013 populations (36). Complications such as portal 
hypertension and hepatic encephalopathy (HE) exhibit microbial 
predictors. TIPS therapy preserves microbial diversity in HBV-related 
portal hypertension, though HE-free patients show superior 
microbiota synergy compared to post-TIPS HE cases (37). In ACLF, 
Blautia, Coprococcus, and Methanobrevibacter abundance inversely 
correlates with coagulopathy and jaundice severity (37). Cross-viral 
comparisons reveal conserved and disease-specific patterns. HCV 
patients demonstrate post-treatment enrichment of Coriobacteriaceae 
and Staphylococcaceae with concurrent Morganellaceae reduction (38), 
while HEV severity correlates with Lactobacillaceae and 
Gammaproteobacteria abundance (28). ROC analysis identifies 
Butyricimonas, Escherichia-Shigella, and Veillonella as potential 

TABLE 1 Manifestations of gut microbiota in the disease process of viral hepatitis.

Studies Subjects Increased Decreased

Lin et al. (19) CHB (n = 58) Phylum level: Firmicutes, Verrucomicrobia, Fusobacteria

Genus level: Streptococcus, Blautia, Veillonella, Fusobacteria, 

Akkermansia

Phylum level: Bacteroidetes

Genus level: Bacteroides, Megamonas, Bacteroides, 

Sutterella, Lachnoclostridium

Zeng et al. (21) CHB (n = 21) Phylum level: Bacteroidetes

Family level: Enterobacteriaceae

Genus level: Bacteroides, Prevotella, Atopobium, Veillonella, Alistipes

Phylum level: Firmicutes

Family level: Bifidobacterium, Clostridiaceae

Zhang et al. (8) CHB (n = 110) Genus level: Bacteroides, Blautia, Prevotella /

Yang et al. (17) HBV (n = 546) Genus level: Nineteen genera, including Alloprevotella, 

Butyricimonas, Colidextribacter

Genus level: Bacteroides, Parabacteroides, Sutterella

Zhang et al. (8) CHB Advanced fibrosis 

(n = 52)

Genus level: Escherichia coli Genus level: Alistipes shahii, Alistipes obesi, Blautia 

stercoris, Desulfovibrio piger, Roseburia hominis, 

Ruminococcus callidus

Wang et al. (34) HBV-ACLF (n = 212) Genus level: Enterococcus, Pediococcus, Janthinobacterium, 

Faecalibacterium, Clostridiaceae, Phascolarctobacterium

/

Yao et al. (35) HBV-ACLF (n = 91) Phylum level: Firmicutes, Proteobacteria, Actinomycetota

Genus level: Veillonella, Streptococcus, Enterococcus, Fusobacteria, 

Klebsiella

Phylum level: Bacteroidetes

Genus level: Bacteroides, Ruminococcus, 

Butyricimonas, Lachnospiraceae, Sutterella

Yang et al. (17) HCV (n=86) Genus level: Desulfovibrio, Eubacterium eligens, and Prevotalla Genus level: Alloprevotella, Butyricimonas, 

Barnesiella, Colidextribacter, Dorea

Sultan et al. (24) HCV (n = 38) Family level: Ruminococcaceae

Genus level: Prevotella, Succinivibrio, Catenibacterium, Megasphaera

Family level: Enterobacteriaceae, Erysipelotrichaceae, 

Rikenellaceae

Genus level: Bacteroides, Dialister, Bilophila, 

Streptococcus, Parabacteroides, Alistipes

Inoue et al. (25) CHC (n = 166) Family level: Enterobacteriaceae

Genus level: Streptococcus, Lactobacillus, Bacteroides

Order level: Clostridiales

Wu et al. (27) AHE (n = 33) Phylum level: Proteobacteria

Class level: Gammaproteobacteria

family level: Enterobacteriaceae, Xanthomonadaceae

Family level: Bifidobacteriaceae
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progression markers for viral hepatitis (AUC > 0.700) (17), with five 
HCV-specific OTUs achieving AUC > 0.710 (24) (Table 2). Despite 
these advances, the field lacks standardized biomarkers. Longitudinal 
multicenter studies remain essential to validate microbial signatures, 
clarify causal mechanisms, and establish microbiota-based diagnostics 
for viral hepatitis management.

2.5 Mechanisms of the gut microbiota in 
viral hepatitis

The gut microbiota plays a crucial role in metabolic processes, not 
only facilitating the digestion and absorption of food but also 
producing various metabolites that influence host metabolic functions. 

During HBV infection, bacteria from the Leptospiraceae family may 
exert a positive role in managing HBV infection by reducing bacterial 
translocation and lowering lipopolysaccharide (LPS) levels (39). 
Multi-omics analysis has demonstrated that electroacupuncture 
combined with tenofovir disoproxil fumarate can increase the 
abundance of gut microbiota such as Bacteroides and Blautia by 
modulating the PPAR signaling pathway, while enhancing the 
expression of tight junction proteins (ZO-1, Occludin, Claudin-4), 
thereby improving intestinal barrier integrity (40). Additionally, 
Enterocloster bolteae isolated from chronic HBV patients can produce 
ethanol, potentially promoting the progression of liver disease (31). 
Ruminococcus gnavus promotes cholic acid production by secreting 
bile salt hydrolase, which activates the farnesoid X receptor alpha 
(FXRα) signaling pathway. This process enhances the transcription of 

TABLE 2 Gut microbiota-clinical correlations in liver diseases.

Studies Disease type Significantly altered gut microbiota Associated clinical 
indicators/functions

Correlation/
diagnostic value

Yao et al. (35) HBV-ACLF Bacteroidetes AFP Negative correlation

Veillonella TBIL Positive correlation

Coprococcus TBIL, INR Negative correlation

Zhao et al. (37) HBV-ACLF Methanobrevibacter, Blautia, Coprococcus Jaundice, coagulation 

dysfunction

Negative correlation

Shen et al. (36) CHB Turicibacter, Adlercreutzia AST Negative correlation

Streptococcus TBIL, DBIL, HBV-DNA Positive correlation

Ashour et al. (26) HCV Total lactate, Lactobacillus acidophilus HCV-RNA Negative correlation

Wu et al. (28) HCV Lactobacillaceae, Gammaproteobacteria INR, Th cell Positive correlation

Yang et al. (17) Viral hepatitis Butyricimonas, Escherichia-Shigella, Lactobacillus and 

Veillonella

Disease progression AUC > 0.700

Ganesan et al. (64) ALD Proteobacteria, Fusobacteria Disease severity Positive correlation

Bacteroidota Disease severity Negative correlation

Zhong et al. (71) Alcoholic cirrhosis Streptococcaceae, Streptococcus, Veillonella Severity of liver injury Positive correlation

Addolorato et al. (73) Alcohol use disorder Akkermansia Bacterial translocation and 

inflammatory response

Negative correlation

Park et al. (72) ELE/LC/HCC Signature microbial consortium ML AUC = 0.940–0.970

Lee et al. (101) MASLD Ruminococcaceae, Dorea Fibrosis severity Negative correlation

Caussy et al. (104) MASLD 27 signature microbial species Diagnostic value AUC = 0.920

Alboraie et al. (91) MASLD Fusobacteria, Veillonellaceae Disease progression Positive correlation

Rikenellaceae, Barnesiellaceae, Adolescentis Disease progression Negative correlation

Yan et al. (23) HBV-LC Lachnospiraceae, Ruminococcaceae Protective effect Negative correlation

Enterococcaceae, Staphylococcaceae Pathogenicity Positive correlation

Zhang et al. (45) LC Akkermansia, Barnesiella Proinflammatory response AUC = 0.824

Cao et al. (192) LC Bifidobacterium HBV-DNA Negative correlation

Efremova et al. (128) LC Negativicutes, Enterobacteriaceae, Veillonella, Klebsiella TNF-α, IL-6 Positive correlation

Yang et al. (17) HBV-LC Butyricimonas, Veillonella, Escherichia-Shigella Diagnostic value AUC = 0.917, 0.797, and 

0.794, respectively

Yang et al. (46) HCC Nine characteristic bacterial genera including 

Elizabethkingia, Klebsiella, and Stenotrophomonas

Diagnostic value AUC = 0.810

Combined with serum AFP levels Diagnostic value AUC = 0.980

Ren et al. (39), Peng 

et al. (150)

HCC 30 microbial biomarkers Diagnosis of vascular invasion AUC = 0.806
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HBV core antigen (HBcAg), thereby prolonging the HBV immune 
tolerance phase. Conversely, Akkermansia muciniphila suppresses 
Ruminococcus gnavus growth and its bile acid-converting function 
through metabolite secretion, reduces CA levels, blocks the FXRα-
HBcAg axis, and facilitates HBV clearance (33). The reduction of BA 
in viral hepatitis is associated with increased intestinal permeability, 
leading to elevated levels of LPS and other endotoxins, which promote 
the progression of liver disease (41). In an LPS-treated mouse model 
of HBV replication, gut microbiota dysbiosis triggers endotoxemia, 
inducing Kupffer cells to produce IL-10 and enhancing Kupffer cell-
mediated T cell suppression, which plays a critical role in HBV 
persistence (42). Depletion of gut microbiota impairs systemic 
anti-HBV humoral and cellular immune responses, resulting in 
delayed clearance of HBV antigens (43). Furthermore, bacterial 
extracts derived from HBV-CLD patients stimulate peripheral blood 
mononuclear cells, potentially promoting fibrotic progression by 
altering peripheral immune responses (elevated Th17 and reduced 
Th1), which adversely affects patient prognosis (36).

HCV infection drives disease progression by inducing alterations 
in the intestinal bile acid profile and gut microbiota dysbiosis, which 
downregulate CYP8B1 expression (a key enzyme in cholic acid 
biosynthesis), thereby perpetuating pathogenesis through the 
gut-microbiome-liver axis (44). Increased circulating LPS levels in 
CHC patients indicate that microbial translocation is closely linked to 
hepatic inflammation and injury, thereby driving disease progression 
(45). Additionally, impaired intestinal barrier function in HCV 
patients is evidenced by elevated levels of zonulin-1, LPS, and 
calprotectin, suggesting that intestinal inflammation, microbial 
imbalance, and increased barrier permeability play significant roles in 
the pathophysiology of HCV infection (46). These studies demonstrate 
that the pathogenesis of viral hepatitis is closely related to intestinal 
barrier function, microbiota-derived metabolites, and BA metabolism. 
Viral infections can alter the diversity and composition of gut 
microbiota, leading to gut-liver axis dysregulation and exacerbating 
hepatic inflammation and injury. Therefore, modulating gut 
microbiota may emerge as a novel strategy to improve intestinal 
barrier function and mitigate liver disease progression. Metabolites 
and microbiota signatures may serve as potential biomarkers for 
disease diagnosis, though their clinical application requires further 
validation. Future research should focus on elucidating the specific 
mechanisms of gut microbiota in liver diseases to enhance clinical 
diagnosis and treatment efficacy.

2.6 Treatment of the gut microbiota in viral 
hepatitis

2.6.1 FMT
Currently, targeting the gut microbiota has emerged as a novel 

therapeutic approach for viral hepatitis infections and their 
complications. FMT as a method to restore and reconstruct the 
balance and diversity of gut microecology, has demonstrated 
promising outcomes. In a study involving 20 patients with liver disease 
related to CHB progression, FMT treatment significantly improved 
the Shannon and Simpson indices of gut microbiota, repaired the 
impaired abundance of gut microbiota, and subsequently promoted 
the improvement of amino acid metabolism (47). In a preliminary 
study in China, FMT induced HBeAg clearance in 18 HBeAg-positive 
patients who had undergone long-term antiviral therapy (48). 

Similarly, in a non-randomized pilot clinical trial involving 14 CHB 
patients in India, the potential safety and efficacy of FMT in achieving 
viral suppression and HBeAg clearance in HBeAg-positive CHB 
patients were observed (49). Furthermore, a study by Suez et al. found 
that the benefits of probiotics might be counteracted by the restoration 
of the intestinal mucosa following antibiotic use, whereas autologous 
FMT could rapidly and nearly completely restore the intestinal 
mucosa within days after administration (50). This suggests that 
autologous FMT or the development of personalized probiotic 
approaches may help achieve intestinal mucosal protection without 
interfering with the antibiotic-induced disruption of host microbiome 
recolonization (50).

2.6.2 Direct-acting antiviral
In studies targeting HCV, the goal of antiviral therapy is to 

eradicate HCV, mitigate associated liver damage, and ultimately 
achieve a cure (51). A 72-week DAA treatment study (n = 50) 
demonstrated significant recovery of microbial diversity, particularly 
enriching short-chain fatty acid (SCFA)-producing genera (Blautia, 
Bifidobacterium, Subdoligranulum, and Fusicatenibacter) while 
reducing microbial translocation markers like lipopolysaccharide-
binding protein (LBP) (52). Other studies have also demonstrated that 
DAA treatment increases microbial diversity, alters bacterial 
abundance, and benefits intestinal health in patients with HCV-related 
chronic liver disease (53, 54). However, existing research findings 
exhibit some inconsistencies. A 12-week trial (n = 42) found 
quantitative but not qualitative microbiota alterations, providing 
important insights into the complex relationship between CHC and 
gut microbiota dysbiosis (38). In contrast, a study by Ponziani et al. 
found that 12 HCV-related cirrhosis patients exhibited significant 
changes in their overall gut microbial composition after 1 year of DAA 
treatment, characterized by a reduction in the abundance of 
potentially pathogenic bacteria such as Enterobacteriaceae, 
Enterococcus, and Staphylococcus (55). These discrepancies may 
be attributed to factors such as sample size and the timing of fecal 
sample collection. Additionally, studies on the impact of DAA 
treatment on gut microbiota diversity in CHC patients have yielded 
divergent results. A prospective study in Germany observed an 
increase in gut microbiota diversity among non-cirrhotic patients 
following treatment (56), whereas a prospective study in Taiwan found 
no significant differences between cirrhotic and non-cirrhotic patient 
subgroups (57). These inconsistencies may be  attributed to 
confounding factors such as ethnicity and dietary habits, highlighting 
the need for larger-scale and more rigorously designed studies to 
further elucidate the impact and mechanisms of DAA treatment on 
gut microbiota.

2.6.3 Probiotics, farnesoid X receptor ligands, and 
bacteriophages

Several studies have also explored the potential roles of probiotics, 
FXR ligands, and bacteriophages in treating HCV infection and its 
complications. HCV-infected patients administered heat-treated 
Enterococcus faecalis strain FK-23 exhibited a significant reduction in 
serum AST levels without adverse side effects (58). CHC patients taking 
probiotics containing Lactobacillus acidophilus and Bifidobacterium 
showed a 25% improvement in response to interferon IFN-α and ribavirin 
therapy (59). DCA, an FXR ligand, may overcome BA metabolic 
disturbances and ameliorate CHC progression when supplemented 
directly or through probiotics that convert cholic acid to DCA (44). 
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Additionally, correcting gut microbiota dysbiosis in HCV-infected 
individuals using specific bacteriophages targeting relevant bacteria has 
been proposed (60) (Table  3). Although these studies suggest that 
maintaining intestinal barrier integrity, correcting gut microbiota 
dysbiosis, preventing microbial translocation, and further reducing 
chronic inflammation may serve as novel strategies for treating HCV 
infection and its complications, current research remains limited by small 
sample sizes and a lack of randomized controlled trial designs. Therefore, 
the efficacy and safety of these approaches require further validation 
through large-scale clinical trials. Future research should focus on 
elucidating the underlying mechanisms and optimizing individualized 
treatment regimens to enhance clinical utility.

3 Expression characteristics, 
mechanistic research, and 
diagnostic-therapeutic applications of 
gut microbiota in ALD

3.1 Alteration of gut microbiota in ALD

ALD, driven by chronic excessive alcohol intake, progresses from 
hepatic steatosis to fibrosis and cirrhosis via gut microbiota dysbiosis 
(61–63). Clinical and animal studies consistently show ALD-associated 
microbial shifts: increased Proteobacteria and decreased Bacteroidota in 
patients (64), while murine models reveal ethanol exposure duration-
dependent changes—short-term (9 h) ethanol gavage elevates Bacteroido
ta/Parabacteroides (65), whereas prolonged intake (10–14 days) increases 
Firmicutes and Akkermansia (66, 67). Alcohol reduces anti-inflammatory 
taxa (Muribaculaceae, Bacteroides) (68), promotes pathogenic overgrowth 
(Enterococcus, Alistipes) (69), and disrupts intestinal permeability. Despite 
elevated Enterococcus faecalis in alcoholic hepatitis patients (n = 75), its 
abundance lacks correlation with disease severity or mortality (70) 
(Table 4). These findings highlight the need for larger human cohorts to 
reconcile interspecies discrepancies and validate therapeutic targets.

3.2 The diagnostic value of microbiota in 
ALD

Long-term alcohol consumption significantly alters the diversity 
and composition of gut microbiota, which greatly contributes to the 
progression of ALD. Studies have shown that the overall structure of 
gut microbial communities varies significantly across different stages 
of ALD. Advanced ALD is marked by Proteobacteria/Fusobacteria 
enrichment and Bacteroidota depletion, with Streptococcus dominance 
emerging as a potential biomarker for liver injury severity (71). 
Metagenomic analysis further confirms that the abundance of 
Proteobacteria increases while that of Bacteroidota decreases with the 
progression of ALD severity (64). Additionally, analysis of gut 
microbiota data from 263 ALD patients including elevated liver 
enzymes (ELE), cirrhosis, and HCC using a machine learning (ML) 
strategy revealed that the ML strategy achieved diagnostic AUC values 
of 0.940, 0.970, and 0.960 for ELE, LC, and HCC, respectively, 
indicating the significant diagnostic value of gut microbiota in ALD 
(72). In patients with alcohol use disorder, a notable feature of gut 
microbiota is the reduction of Akkermansia and the increase of 
Bacteroides. These changes are closely associated with bacterial 

translocation, inflammatory responses, and enhanced functions of the 
γ-aminobutyric acid metabolic pathway and energy metabolism, 
potentially further driving the progression of alcohol-related liver 
disease (73). Current research highlights the critical role of gut 
microbiota in the onset and progression of ALD, although the specific 
mechanisms remain to be further explored. Future studies should 
integrate multi-omics technologies (e.g., metagenomics, 
metabolomics) and advanced methods such as machine learning to 
delve deeper into the relationship between gut microbiota and ALD, 
and to validate its potential as a diagnostic biomarker.

3.3 Mechanisms of the gut microbiota in 
ALD

The pathogenesis of ALD has not been fully elucidated and is 
currently believed to involve multiple factors, including alcohol and 
its metabolites, gut microbiota dysbiosis, oxidative stress, and 
gut-liver axis dysfunction (74). Alcohol disrupts the gut-liver axis 
at multiple levels, including altering the composition of the gut 
microbiome, impairing mucus and epithelial barrier functions, and 
suppressing the production of antimicrobial peptides. These 
changes increase the translocation of microbes and their 
metabolites, thereby exacerbating the pro-inflammatory 
environment in the liver (75). Excessive alcohol consumption 
disrupts the balance of gut microbiota and affects the metabolism 
of intestinal contents, such as SCFAs, indoles, and BAs, which play 
critical roles in various physiological and pathological processes 
and directly influence the progression of ALD (76). Gut bacteria 
exacerbate hepatic inflammatory injury in ALD by disrupting the 
intestinal barrier, activating pattern recognition receptors in the 
liver, altering the metabolism of luminal contents such as BAs, 
indoleacetic acid, and SCFAs, and producing bacterial exotoxins 
(e.g., cytolysin) (74). Alcohol induces oxidative damage in 
hepatocytes by promoting reactive oxygen species generation and 
inhibiting antioxidant enzyme activity, while blocking Nrf2 nuclear 
translocation and the expression of its downstream antioxidant 
genes, thereby weakening hepatic antioxidant defenses; gut 
microbiota dysbiosis exacerbates hepatic oxidative stress, creating 
a vicious cycle that highlights the critical role of Nrf2-Keap1 
signaling pathway inhibition in ALD progression (77, 78). Current 
research indicates that the pathogenesis of ALD involves complex 
interactions among multiple factors and pathways. Future studies 
should further focus on the interplay between gut microbiota and 
host metabolism, particularly the specific mechanisms of 
metabolites such as SCFAs, BAs, and indoles in ALD. Integrating 
multi-omics technologies and animal model studies will help 
comprehensively elucidate the pathogenesis of ALD and provide a 
theoretical basis for developing combined strategies based on gut 
microbiota modulation and antioxidant therapy.

3.4 Treatment of the gut microbiota in ALD

3.4.1 Diet
In recent years, interventions targeting gut microbiota, including 

dietary modifications, probiotic supplementation, FMT, and 
bacteriophage therapy, have demonstrated significant efficacy in 
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improving ALD in numerous animal experiments and clinical trials. 
A diet rich in soluble dietary fiber increases the abundance of 
Bacteroides acidifaciens, thereby alleviating alcohol-induced liver 
injury in mice (79). Additionally, Solanum nigrum L. berry extract 
significantly ameliorates alcoholic liver injury by modulating gut 
microbiota, lipid metabolism, inflammation, and oxidative stress (80). 
Trilobatin, a novel natural food additive, exhibits potential for 
preventing and treating ALD by regulating the microbiota-gut-liver 
axis and the YAP/Nrf2 pathway (81).

3.4.2 Probiotics
Probiotics have garnered considerable attention for their role in 

improving ALD. Lactobacillus rhamnosus NKU FL1-8 reduces alcohol-
induced oxidative stress, lipid accumulation, and hepatic inflammation 
by modulating gut microbiota and repairing the intestinal barrier (82). 
In clinical studies, a 6-month treatment with Lactobacillus rhamnosus 
GG significantly reduced liver injury and alcohol consumption in 
patients with moderate to severe alcoholic hepatitis (83). Furthermore, 
both viable and inactivated Lactobacillus paracasei CCFM1120 V and 

TABLE 3 Applications and mechanisms of microbial-based interventions in liver diseases.

Studies Subjects Microbial 
interventions

Mechanisms of action Evidence level

Inoue et al. (44), Zhang et al. (45), 

Yang et al. (46)

CHB FMT Restores microbial diversity, modulates amino acid metabolism, 

and inhibits viral replication

Clinical study

Chauhan et al. (49), Suez et al. (50), 

Chinese Society of Hepatology and 

Chinese Society of Infectious 

Diseases; Chinese Medical 

Association (51)

HCV DAA Enhances microbial diversity and increases beneficial bacteria 

abundance

Clinical study

Neag et al. (41), Ponziani et al. (55) HCV Probiotics Reduces AST levels and ameliorates bile acid metabolic disorders Clinical study, animal 

model

Brown et al. (76) ALD Diet Increases Bacteroides acidifaciens abundance and alleviates liver 

injury

Animal model

Shen et al. (79), Yi et al. (81), Liu 

et al. (82)

ALD Probiotics Modulates gut microbiota, repairs intestinal barrier, and reduces 

alcohol-induced oxidative stress, lipid accumulation, and hepatic 

inflammation

Animal model

Wang et al. (80) ALD Probiotics Mitigates hepatic injury Clinical study

Vatsalya et al. (83) ALD FMT Improves short-/mid-term survival rates and clinical severity 

scores

Clinical study

Niu et al. (84) ALD FMT Reverses liver injury by regulating arachidonic acid and retinol 

metabolism pathways

Animal model

Ma et al. (109), Zhen et al. (110) MASLD Diet Reduces advanced fibrosis risk in MASLD and prevents MASH 

progression

Clinical study

Mao et al. (111), Matsumoto et al. 

(112)

MASLD Probiotics Ameliorates metabolic syndrome and prevents hepatic steatosis/

injury

Animal model

Gallage et al. (113) MASLD Probiotics Reduces body weight and intrahepatic fat content Clinical study

Li et al. (115) MASLD Synbiotics Decreases steatosis/fibrosis severity with parallel reduction in 

hepatic injury markers and inflammatory mediators

Clinical study

Zafar et al. (132), Maslennikov et al. 

(133)

LC Probiotics Increases beneficial/harmful bacteria ratio, with significant 

improvement in liver function and inflammatory cytokines

Clinical study

Huang et al. (130), Kang et al. (137) LC FMT Improves duodenal mucosal diversity, corrects dysbiosis, and 

enhances cognitive function in cirrhotic patients

Clinical study

Bloom et al. (140) LC FMT Enhances gut microbiota α-diversity (richness/evenness) and 

reduces hepatic inflammation in cirrhotic rats

Animal model

Hong et al. (141) LC Engineered carbon Alleviates liver injury, fibrosis progression, and mortality in ACLF 

models

Animal model

Bloom et al. (140), Wang et al. 

(156), Tilg et al. (157)

HCC FMT Restores microbial diversity and gut barrier integrity, markedly 

reducing hepatic inflammation and fibrosis

Animal model

Hu et al. (159) HCC Probiotics Modulates microbiota, stabilizes intestinal barrier, and reduces 

carcinogenic toxicity

Animal model

Zhen et al. (110) HCC Diet Improves MASH and fibrosis severity Animal model
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D effectively protect the liver from ethanol-induced damage by altering 
gut microbiota composition, strengthening the intestinal barrier, and 
enhancing hepatic antioxidant capacity (84). Lactic acid bacteria 
(LAB) strains have also been shown to directly alleviate ALD 
symptoms, including reducing inflammatory cytokines, inhibiting 
fatty liver, and restoring gut microbiota dysbiosis (85).

3.4.3 FMT
FMT, as an emerging therapy, has demonstrated significant 

efficacy in ALD treatment. Studies indicate that FMT improves 
short- and medium-term survival rates and clinical severity scores 
in patients with severe alcoholic hepatitis (86). In animal models, 
FMT reverses alcohol-induced liver injury by ameliorating gut 
microbiota dysbiosis and modulating metabolic pathways such as 
arachidonic acid and retinol metabolism (87). Bacteriophage therapy 
specifically targeting Enterococcus faecalis has shown promising 
results in mouse models, reducing cytolysin in the liver and 
significantly improving ALD (70) (Table 3). However, this therapy 
still requires validation in larger-scale prospective clinical trials to 
confirm its relevance in humans.

In a mouse model of acute alcohol exposure, Musculus senhousei 
peptide intervention exerts protective effects by mitigating gut-liver 
axis injury and reversing abnormalities in oxidative stress and 
inflammation-related biomarkers (88). Additionally, lentinan 
demonstrates significant hepatoprotective effects by reducing hepatic 
steatosis, alleviating oxidative stress and inflammatory responses, and 
promoting the proliferation of antioxidant probiotics (89). These 
findings suggest that interventions targeting gut microbiota hold 
broad application prospects in ALD treatment.

However, most current studies are limited to animal models or 
small-scale clinical trials. Future large-scale, multicenter prospective 
studies are needed to validate the efficacy and safety of 
these approaches.

4 Expression characteristics, 
mechanistic research, and 
diagnostic-therapeutic applications of 
gut microbiota in MASLD

4.1 Alteration of gut microbiota in MASLD

MASLD, formerly known as non-alcoholic fatty liver disease, is 
a chronic liver condition affecting approximately 30% of the global 
population (90). Characterized by abnormal lipid accumulation in 
hepatocytes, MASLD can progress from simple steatosis to metabolic 
dysfunction-associated steatohepatitis (MASH), and ultimately lead 
to hepatic fibrosis, cirrhosis, and even hepatocellular carcinoma (91). 
Studies have shown that the diversity and abundance of gut 
microbiota are significantly reduced in MASLD patients compared 
to HC (92). However, findings vary across regions and ethnicities. 
For example, a study in Indonesia involving 37 MASLD patients 
reported a predominance of Firmicutes and an elevated F/B ratio 
(93). In contrast, a study in Taiwan involving 50 biopsy-confirmed 
MASLD patients demonstrated a higher abundance of Bacteroidetes, 
a lower abundance ofFirmicutes, a reduced F/B ratio, and decreased 
levels of Ruminococcaceae, Clostridiales, and Clostridium compared 
to healthy individuals (94). A study in Korea involving 23 MASLD 

TABLE 4 Manifestations of gut microbiota in the disease process of ALD.

Studies Subjects Increased Decreased

Ganesan et al. (64) ALD patients (n = 185) Phylum level: Proteobacteria

Genus level: Fusobacterium, Lactobacillus, 

Bifidobacterium, Hemophilus, Staphylococcus, 

Streptococcus, Akkermansia

Phylum level: Bacteroides

Genus level: Prevotella, Alistipes, Bacteroides, Parabacteroides, 

Phascolarctobacterium, Faecalibacterium

Smirnova et al. 

(193)

ALD patients (n = 34) Genus level:

Phylum level: Firmicutes, Proteobacteria

Family level: Enterobacteriaceae, Lachnospiraceae, 

Lactobacillaceae, Prevotellaceae, Saccharibacteria, 

Streptococcaceae, Veillonellaceae

Phylum level: Bacteroidetes

Family level: Acidaminococcaceae, Bacteroidaceae, 

Erysipelotrichaceae, Lachnospiraceaey, Peptococcaceae, 

Peptostreptococcaceae, Porphyromonadaceae, Prevotellaceae, 

Rikenellaceae, uminococcaceae, Sutterellaceae

Lang et al. (194) ALD patients (n = 74) Genus level: Veillonella, Enterococcus Genus level: Akkermansia

Wang et al. (65) ALD rats (n = 12) Phylum level: Bacteroidota, Proteobacteria

Genus level: Muribaculum, Enterococcus, Bacteroides, 

Parasutterella

Phylum level: Firmicutes

Genus level: Lactobacillus, Enterobacter, Bacteroides, 

Faecalibaculum

Grander et al. (195) ALD rats (n = 20) Genus level: Muribaculaceae, Fecalibactulum Genus level: Enterobacteriaceae, Roseburia, Clostridium

Zhang et al. (196) ALD rats (n = 10) / Genus level: Akkermansia, Bacteroides

Wang et al. (197) ALD rats (n = 10) Phylum level: Proteobacteria, Patescibacteria

Genus level: Bacteroides, Enterobacter, Escherichia-

Shigella

Phylum level: Firmicutes, Epsilonbacteraeota, Actinobacteria, 

Tenericutes, Cyanobacteria

Family level: Lachnospiraceae NK4A136

Genus level: Desulfovibrio

Yin et al. (198) ALD rats (n = 5) Genus level: Helicobacter sp, Pichia kudriavzevii Genus level: Faecalibaculum rodentium

Li et al. (199) ALD rats (n = 9) Family level: Bacteroidaceae, Erysipelotrichaceae, 

Sutterellaceae

Genus level: Bacteroides, Parabacteroides, Parasutterella

Family level: Muribaculaceae, Lachnospiraceae

Genus level: Lactobacillus
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patients with elevated liver enzymes found an enrichment of 
Firmicutes, an increased F/B ratio, and a significant rise in the 
abundance of Veillonella, Dialister, Collinsella, Latilactobacillus, and 
Bifidobacterium (95). These inconsistencies in F/B ratios may 
be  attributed to differences in dietary habits across countries. 
Furthermore, animal model studies support the role of gut microbiota 
in MASLD. In mouse models of MASLD induced by a high-fat diet 
(HFD) or Western diet, the F/B ratio was significantly elevated (96). 
In MASLD patients, the abundance of beneficial bacteria such as 
Akkermansia muciniphila, Faecalibacterium prausnitzii, and 
Bifidobacterium is significantly reduced (97). A study involving 100 
adolescent MASLD patients found a notable decrease in the 
abundance of Lactobacillus and Escherichia coli and a significant 
increase in Prevotella (98). Metagenomic sequencing analysis further 
revealed an increased abundance of Bacteroidetes and a reduced 
abundance of 11 genera, including Alistipes, Barnesiella, and 
Eisenbergiella, in MASLD patients (99). These findings indicate that 
the gut microbiota of MASLD patients exhibits significant diversity, 
which may be closely related to factors such as ethnicity, dietary 
habits, and geographic environment.

4.2 The diagnostic value of microbiota in 
MASLD

Numerous studies have elucidated the critical role of the gut 
microbiome in the progression of MASLD (100). The gut microbiome 
critically influences MASLD progression through compositional and 
functional alterations. Non-obese MASLD patients exhibit reduced 
Ruminococcaceae abundance compared to obese counterparts, with its 
depletion correlating with fibrosis severity (101), while protective 
Dorea shows similar depletion patterns (102). Pathogenic Klebsiella 
pneumoniae (identified in 60% of Chinese MASLD patients) directly 
drives MASLD development via alcohol production, as validated by 
FMT experiments (103). Distinct microbial signatures differentiate 
disease stages: Streptococcus enrichment occurs in both MASLD and 
MASLD-cirrhosis groups, but Megasphaera is exclusive to cirrhosis 
(104). Diagnostic models integrating 27 bacterial features achieve high 
accuracy (AUC = 0.920) for cirrhosis detection (104). Metabolic shifts 
are evident in MASLD, characterized by ethanol-producing bacteria 
(Enterobacteriaceae, Megasphaera) dominance and SCFA-producing 
taxa (Ruminococcus, Eggerthellaceae) reduction (105). Advanced 
fibrosis associates with Methanobrevibacter depletion and Slackia 
enrichment (106). Machine learning identifies 12 MASLD-linked 
taxa, including Fusobacteria (positive correlation) and Rikenellaceae 
(negative correlation) (91) (Table 2). These findings underscore gut 
microbiota’s role in MASLD severity stratification and 
prognostic prediction.

4.3 Mechanisms of the gut microbiota in 
MASLD

The onset of MASLD is closely associated with dysfunction of the 
gut microbiome, primarily involving two mechanisms: abnormal 
elevation of intestinal barrier permeability and imbalance of 
microbiota-derived metabolites (107). Trimethylamine-N-oxide 
(TMAO), a microbiota-derived metabolite, disrupts tight junction 

proteins to impair intestinal barrier integrity while directly promoting 
hepatic lipid accumulation in both cellular (HepG2) and rodent 
models (108). This process is driven by gut bacterial conversion of 
trimethylamine (TMA) to TMAO via hepatic FMO3, with clinical 
studies confirming serum TMAO levels as a biomarker of steatosis 
severity (109, 110). Concurrently, pathogenic bacteria such as 
Klebsiella pneumoniae exacerbate MASLD through alcohol-mediated 
steatosis and inflammation (103), while Gram-negative overgrowth 
(e.g., Enterobacter cloacae B29) triggers TLR4/NF-κB signaling via 
endotoxin release (107). Contrastingly, protective microbiota like 
Ruminococcus attenuate lipid deposition through SCFA production 
and 7α-dehydroxylase regulation (102). Bile acid metabolism is 
further modulated by gut microbes, with ursodeoxycholic acid 
(UDCA) enhancing autophagy and mitochondrial function to restore 
host-microbiota equilibrium (111). These findings suggest that the 
role of gut microbiota in MASLD is dualistic, encompassing both 
disease-promoting factors and potential protective mechanisms 
(Figure 1).

4.4 Treatment of the gut microbiota in 
MASLD

4.4.1 Diet
Currently, a balanced diet and healthy lifestyle are considered the 

best strategies for improving MASLD. The high intake of soy and its 
products, fish, shellfish, and seaweed in the Japanese diet is 
significantly associated with a reduced risk of advanced fibrosis in 
MASLD patients (112), likely due to the anti-inflammatory and 
antioxidant components abundant in these foods. Additionally, 
intermittent fasting (e.g., the 5:2 regimen) can effectively prevent the 
development of MASH and improve diagnosed MASH and fibrosis 
without affecting total caloric intake (113), suggesting that dietary 
pattern modulation may have unique intervention effects on MASLD.

4.4.2 Probiotic
In animal models, MASLD mice induced by HFD showed 

significant reductions in body weight, triglycerides, total cholesterol, 
and low-density lipoprotein cholesterol levels after supplementation 
with Lactiplantibacillus plantarum DSR33 (114). Furthermore, the 
abundance of Bacteroides thetaiotaomicron (B. theta) is positively 
correlated with the alleviation of metabolic syndrome in both early 
and late stages of MASLD. HFD-fed mice supplemented with B. theta 
for 12 weeks exhibited reduced body weight and fat accumulation, 
improved hyperlipidemia and insulin resistance, and prevention of 
hepatic steatohepatitis and liver injury (115). These findings suggest 
that specific bacterial strains may exert therapeutic effects by 
modulating host metabolism and inflammatory responses. A 
randomized double-blind study showed that 68 obese MASLD 
patients experienced significant reductions in body weight and 
intrahepatic fat after 12 weeks of supplementation with a probiotic 
mixture (including Lactobacillus acidophilus, Lactobacillus rhamnosus, 
Lactobacillus paracasei, Pediococcus pentosaceus, Bifidobacterium 
lactis, and Bacillus breve) (116). However, in another PROBILIVER 
clinical trial, 44 biopsy-confirmed MASH patients showed no 
significant improvement in serum liver enzymes, transient 
elastography, MASLD fibrosis score, or fatty liver index after 24 weeks 
of probiotic mixture supplementation (117). This discrepancy may 
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be  related to the selection of probiotic strains, dosage, treatment 
duration, and individual patient differences.

4.4.3 Synbiotics and Postbiotics
Additionally, synbiotics (a combination of probiotics and prebiotics) 

have shown promise in MASLD treatment. A randomized double-blind 
clinical trial demonstrated that 50 MASLD patients had significant 
reductions in steatosis and fibrosis, along with decreased levels of liver 
injury markers and inflammatory mediators, after 28 weeks of synbiotic 
supplementation (118). Notably, the probiotic Bifidobacterium adolescentis 
alleviates steatohepatitis by inhibiting lipid peroxidation and NF-κB 
activation and mitigates non-alcoholic fatty liver through the production 
of SCFAs (119). Moreover, postbiotics (bacterially derived functional 
compounds) exhibit significant hepatoprotective properties by enhancing 
intestinal barrier function, modulating gut microbiota composition, 
optimizing lipid metabolism, and reducing liver inflammation and 
steatosis (120) (Table 3).

These studies indicate that dietary adjustments, supplementation 
with probiotics, prebiotics, or synbiotics positively reshape gut 
microbiota composition and enhance its activity, thereby improving 
liver function damage in MASLD patients. However, current research 
findings remain inconsistent, and future large-scale, long-term clinical 
trials are needed to validate the efficacy of different intervention 
strategies and further explore their mechanisms of action.

5 Expression characteristics, 
mechanistic research, and 
diagnostic-therapeutic applications of 
gut microbiota in LC

5.1 Alteration of gut microbiota in LC

LC represents a severe stage of chronic liver disease characterized 
by extensive hepatocyte degeneration, fibrosis, and nodular 
regeneration, leading to significant morbidity and mortality (121, 
122). In hepatitis B-related cirrhosis, a common subtype of LC, 
progressive liver damage is further aggravated by gut microbiota 
dysbiosis and associated metabolic dysfunction (123). Studies 
consistently demonstrate that LC patients exhibit markedly reduced 
gut microbial diversity compared to healthy individuals (39, 124), with 
notable depletion of beneficial bacteria such as Agathobacter and 
Prevotella_9 alongside overgrowth of opportunistic pathogens 
including Streptococcus (124, 125). This dysbiotic pattern becomes 
particularly pronounced in HBV-related cirrhosis patients progressing 
toward hepatocellular carcinoma, where protective bacterial families 
like Lachnospiraceae and Ruminococcaceae diminish while potentially 
harmful Enterobacteriaceae and Staphylococcaceae proliferate (23). 
Geographic variations in microbiota profiles have been observed, with 
Chinese LC patients showing elevated Bacteroidota/Firmicutes ratios 
and Proteobacteria abundance correlated with inflammatory responses 
(45), while North American cohorts demonstrate distinct associations 
between Enterobacteriaceae/Streptococcaceae dominance and clinical 
outcomes including extrahepatic organ failure (126). Emerging 
diagnostic approaches utilizing microbial signatures, such as machine 
learning models based on 14 differential bacterial genera, show 
promising accuracy for LC detection (AUC 0.824) (45). The clinical 
relevance of these microbial alterations is underscored by their 

correlations with disease complications, including the association 
between Akkermansia muciniphila depletion and sarcopenia 
development (127), as well as the close relationship between 
pathogenic bacterial overgrowth and systemic inflammatory markers 
like TNF-α and IL-6 (128) (Table  2). These findings collectively 
establish gut microbiota dysbiosis as a key contributor to LC 
progression through multiple interconnected pathways.

5.2 Mechanisms of the gut microbiota in 
LC

The gut microbiota plays a critical role in the pathogenesis of LC. In 
LC patients, gut microbiota dysbiosis, bacterial overgrowth, and 
increased intestinal permeability disrupt the protective mechanisms of 
the gut, leading to pathological bacterial translocation and increased 
endotoxin uptake. These endotoxins subsequently reach the liver and 
mesenteric lymph nodes, activating immune cells and triggering the 
release of pro-inflammatory cytokines such as TNF-α and IL-8 (129). 
Meta-analysis results indicate that endotoxin-producing 
Enterobacteriaceae and Enterococcus are significantly increased in LC 
patients, which may be related to the impaired intestinal mucosal barrier 
function caused by LC (130). Gut microbiota dysbiosis leads to intestinal 
barrier injury (DAO reduction, Claudin-3 dysfunction), bacterial toxin 
translocation (LPS elevation) triggers systemic inflammation (TNF-α), 
forming a vicious gut-liver axis cycle that exacerbates liver fibrosis and 
portal hypertension (125). In LC patients, reduced liver function and 
decreased BA secretion result in bacterial overgrowth and changes in 
microbiota composition, weakening the inhibition of potential 
pathogenic microorganisms and exacerbating intestinal inflammation 
and mucosal barrier damage (131). Small intestinal bacterial overgrowth 
(SIBO) can also trigger bacterial translocation and endotoxemia, 
activating chronic liver inflammation and promoting liver fibrosis (132). 
Moreover, SIBO is closely associated with hyperdynamic circulation and 
other hemodynamic changes in cirrhosis patients, potentially serving as 
a primary factor in inducing these changes through systemic 
inflammation (133). The impaired intestinal barrier and gut microbiota 
dysbiosis not only lead to bacterial translocation and endotoxemia but 
also exacerbate liver injury and fibrosis through abnormal related 
metabolites. In LC patients, dysbiosis of the ascending colon mucosa-
associated microbiota, particularly the reduction of SCFA-producing 
bacteria, compromises intestinal barrier integrity and BA metabolism, 
thereby exacerbating liver fibrosis progression via the gut-liver axis. This 
microbial imbalance correlates with downregulated FGF19 expression 
and upregulated profibrogenic factors (e.g., TGF-β1), establishing a 
vicious cycle (134). Additionally, the overgrowth of Viridans streptococci 
may induce hyperammonemia in CHC and LC patients (25). The gut 
microbiota plays a pivotal role in the development of cirrhosis, with its 
dysbiosis not only directly affecting liver inflammation and fibrosis but 
also influencing systemic metabolism and immune responses through 
the gut-liver axis (Figure 2).

5.3 Treatment of the gut microbiota in LC

5.3.1 Probiotics
Targeting gut microbiota dysbiosis may serve as an effective 

strategy for preventing and slowing the progression of liver 

https://doi.org/10.3389/fmed.2025.1615839
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Yu et al. 10.3389/fmed.2025.1615839

Frontiers in Medicine 11 frontiersin.org

cirrhosis. In a study involving 160 patients with HBC, the 
administration of the ready-to-eat supplement Lactobacillus 
paracasei N1115 significantly increased gut microbiota diversity, 
elevated the proportion of beneficial bacteria such as Bacteroides 
and Bifidobacterium, and reduced the proportion of harmful 
bacteria such as Escherichia, Shigella, and Streptococcus. 
Concurrently, liver function indicators improved significantly, and 
levels of inflammatory factors decreased markedly (135). A meta-
analysis further supported these findings, with 22 included 
randomized controlled trials demonstrating that probiotics can 
enhance intestinal permeability and liver toxin filtration capacity, 
significantly reducing gamma-glutamyl transferase, AST, blood 
ammonia, and endotoxin levels (136). Additionally, animal 
experiments and human tissue analyses confirmed that the 
probiotic Akkermansia muciniphila can restore levels of 
pro-inflammatory cytokines, endotoxins (LPS and LBP), serotonin-
related cognitive function, and liver injury, making it a potential 
therapeutic candidate for alleviating liver fibrosis and cognitive 
impairment symptoms (137). Four single-arm trials (58 
participants) and two randomized controlled trials (66 participants) 
showed that the use of probiotics significantly reduced hepatic 
venous pressure gradient (138). Another randomized controlled 
trial indicated that a multifactorial intervention consisting of multi-
strain probiotics, home-based exercise, and branched-chain amino 
acids improved frailty in cirrhosis patients and reduced emergency 
visits and fall incidents (139).

5.3.2 FMT
Furthermore, after oral administration of FMT capsules, the 

abundance of SCFA-producing bacteria (Bifidobacterium 
adolescentis and Bifidobacterium angulatum) increased in LC 

patients, positively correlating with improvements in 
HE psychological scores, suggesting that FMT has a beneficial 
effect on cognitive function in LC patients (140). However, in 
decompensated cirrhosis patients, defects in immune status may 
reduce the therapeutic efficacy of FMT (141). Despite this, oral 
FMT capsules enriched with Lachnospiraceae and 
Ruminococcaceae demonstrated good safety and tolerability in LC 
patients and improved duodenal mucosal diversity and dysbiosis 
(142). Animal experiments also confirmed that FMT increased 
the abundance of beneficial bacteria such as Lactobacillaceae and 
Bacteroidaceae, significantly improving gut microbiota diversity, 
richness, and evenness in cirrhotic rats, reducing liver 
inflammation, and thereby ameliorating liver fibrosis and 
cirrhosis (143).

5.3.3 Engineered carbon
In a LC mouse model, the engineered carbon bead adsorbent 

Yaq-001 positively influenced microbial composition and metabolism 
by reducing intestinal permeability, significantly alleviating liver 
injury, fibrosis progression, and mortality in ACLF animals, and 
achieved primary endpoints for safety and tolerability in clinical trials, 
providing strong preclinical theoretical and safety support for LC 
patients (144) (Table 3).

Probiotics, FMT, and engineered carbon beads improve gut 
microbiota dysbiosis through different mechanisms, reduce 
inflammation, enhance liver function, and positively impact cognitive 
function, offering new approaches for the treatment of cirrhosis 
patients. However, these methods each have unique advantages and 
limitations. Future research could further explore the combined 
application and optimized integration of these methods to enhance 
treatment efficacy and patient quality of life.

FIGURE 1

Mechanisms of the gut microbiota in the development of MASLD (by Figdraw). LPS, lipopolysaccharide; ZO-1, Zonula occludens-1; TMAO, 
Trimethylamine-N-oxide; TLR4: Toll-like Receptor 4; NF-KB, Nuclear Factor kappa-light-chain-enhancer of activated B cells; SCFA, short-chain fatty 
acid.
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6 Expression characteristics, 
mechanistic research, and 
diagnostic-therapeutic applications of 
gut microbiota in HCC

6.1 Alteration of gut microbiota in HCC

HCC is the fourth leading cause of cancer-related deaths 
globally, with its incidence primarily associated with hepatitis B 
(40%), hepatitis C (40%), alcohol (11%), and MASH (2). 
According to GLOBOCAN data, there were 905,677 new cases 
and 830,180 deaths from liver cancer worldwide in 2020 (145). 
Recent studies have shown that alterations in the gut microbiota 
are closely related to the occurrence and progression of HCC 
(146). In early-stage HCC patients, the species richness of fecal 
microbiota is increased compared to the LC group (39, 124). 
Analysis of published fecal datasets from four different regions 
in China revealed that the relative abundance of Firmicutes was 
significantly lower in HCC patients compared to HC, and further 
decreased with disease progression, while the relative abundance 
of Bacteroidetes and Proteobacteria significantly increased (45). 
However, Yan et  al. reported inconsistent findings in a study 
conducted in Beijing, showing that the abundance of both 
Bacteroidetes and Firmicutes gradually decreased in HCC patients 
(23). Additionally, the abundance of Proteobacteria, Streptococcus, 
and Ruminococcus was significantly higher in the HCC group 
compared to controls, while the abundance of Subdoligranulum 
was significantly reduced (46). In early-stage HCC patients, the 
abundance of Actinobacteria increased, and 13 genera, including 
Gemmiger and Parabacteroides, were enriched in early HCC (39). 
The relative abundance of potentially beneficial bacteria, such as 
Lactobacillus, Bifidobacterium, and Bacteroides, was significantly 
reduced in HCC patients, while the relative abundance of 

potentially pathogenic bacteria, such as Escherichia-Shigella and 
Enterococcus, was significantly increased (147). Furthermore, 
Akkermansia was most enriched in LC patients, while its 
abundance was relatively lower in the HC group, CHB patients, 
and HCC patients (21). In conclusion, to gain a more 
comprehensive understanding of the specific role and expression 
characteristics of gut microbiota in HCC, multicenter, large-
sample clinical trials are still needed for further exploration.

6.2 The occurrence and early warning 
value of metabolites in HCC

Gut microbiota-derived metabolites play a pivotal role in HCC 
progression and early detection. Comparative analyses reveal 
significant enrichment of Proteobacteria and Actinobacteria in 
advanced liver disease (HCC and cirrhosis) versus HC, with 
Escherichia-Shigella, Veillonella, and Streptococcus consistently 
elevated at the genus level (15). Viral-related HCC patients exhibit 
increased Faecalibacterium and Coprococcus, while non-hepatitis 
C-related cases show Bacteroides and Ruminococcus dominance (148). 
Early postoperative recurrence is associated with higher Dialister, 
Veillonella, and Bifidobacterium faecale abundance (149), and 
Streptococcus/Escherichia-Shigella levels correlate with disease severity 
(46). Macrovascular invasion (MVI) in HCC is marked by Firmicutes 
depletion and Proteobacteria/Bacteroidetes enrichment (150), 
particularly in HBV-related cases where Prevotella_9 and Megamonas 
increase (150). Notably, Bacteroides thetaiotaomicron depletion 
distinguishes recurrence-prone HCC patients (151). Mendelian 
randomization identifies Ruminococcaceae and Bacteroidetes as 
protective against HCC development (152), underscoring the 
potential of microbiota-targeted interventions in precancerous stages 
to mitigate progression.

FIGURE 2

Mechanisms of the gut microbiota in the development of LC (by Figdraw). DAO, Diamine oxidase; BA, Bile acids; IL-8, Interleukin-8; SIBO, Small 
intestinal bacterial overgrowth; TNF-alpha, Tumor necrosis factor-alpha.
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6.3 The diagnostic value of microbiota in 
HCC

RF analysis revealed that nine gut microbial genera, including 
Elizabethkingia, Burkholderia_Caballeron-ia_Paraburkholderia, 
Klebsiella, Delftia, Faecalibaculum, Acetatifactor, Lactobacillus, 
Ruminococcaceae_UCG-010, and Stenotrophomonas, could 
significantly distinguish the HCC group from the control group, with 
an AUC of 0.810. When these genera were combined with serum AFP 
levels, the AUC further improved to 0.980, demonstrating higher 
diagnostic efficacy (46). Additionally, 14 and 10 cross-dataset 
reproducible differential genera were identified in LC and HCC 
patients, respectively. RF models constructed based on these genera 
achieved AUCs of 0.820 and 0.900 for distinguishing cirrhosis and 
HCC in the training dataset and successfully achieved cross-regional 
validation (45). Studies based on ML algorithms further demonstrated 
that gut microbial biomarkers have high diagnostic accuracy in HCC 
subgroup classification, with an AUC of up to 0.940 (148). Peng et al. 
established a gut microbial diagnostic model, validating the potential 
of gut microbiota as a non-invasive tool for preoperative diagnosis of 
MVI (150). Through five-fold cross-validation, the study identified the 
optimal 30 microbial biomarkers and achieved an AUC of 80.64% in 
75 early HCC samples and 105 non-HCC samples, demonstrating 
strong diagnostic capabilities for both early and advanced HCC (39). 
More importantly, the study successfully achieved cross-regional 
validation of microbial biomarkers in HCC patients from northwest 
and central China (39) (Table 2). The combination of gut microbial 
biomarkers with existing diagnostic methods, such as serum AFP, can 
significantly improve the diagnostic accuracy of HCC. In the future, 
validating these microbial biomarkers in larger, multi-regional clinical 
cohorts will help further enhance the stability and reliability of 
HCC diagnosis.

6.4 Mechanisms of the gut microbiota in 
HCC

Recent studies have shown that gut microbiota dysbiosis plays a 
critical regulatory role in the pathological progression of HCC. The 
gut microbiota of patients with cirrhosis-related HCC exhibits 
characteristic changes, including a reduction in butyrate-producing 
bacteria (Clostridium, Ruminococcus, and Coprococcus) and an 
increase in LPS-producing bacteria (Neisseria, Peptostreptococcus, 
Enterobacteriaceae, and Veillonella). This imbalance in microbial 
metabolites may accelerate disease progression (153). LPS can activate 
TLR4 signaling in resident hepatocytes, stimulating the secretion of 
cytokines (IL-6 and TNF-α), leading to liver inflammation and 
oxidative damage (154, 155). Klebsiella pneumoniae promotes the 
development of precancerous lesions and HCC in mice by disrupting 
intestinal barrier integrity and translocating to the liver. 
Mechanistically, its PBP1B protein binds to TLR4 on HCC cells, 
thereby activating TLR4-mediated oncogenic signaling and driving 
tumorigenesis (156). Additionally, the gut microbiome transports 
microbial-associated molecular patterns and metabolites to the liver 
via the portal vein, thereby regulating HCC progression through the 
gut-liver axis (157) Akkermansia muciniphila enhances the efficacy of 
PD1 therapy by restoring gut barrier integrity to reduce LPS influx, 
suppressing the TLR2/NF-κB signaling pathway to diminish 

immunosuppressive m-MDSCs and M2 macrophages, while 
modulating cholesterol and BA metabolism (158). Notably, in viral 
hepatitis-related HCC patients, SCFA-producing bacteria are 
significantly enriched (148). Integrated analysis of the gut microbiome 
and tissue metabolome reveals that gut microbiota-derived acetate can 
be absorbed by the liver, providing energy support for tumor cell 
growth and proliferation, which may be an important mechanism for 
microbiota-mediated HCC recurrence (149). Particularly insightful is 
the finding that acetate derived from Bacteroides thetaiotaomicron can 
promote macrophage polarization toward a pro-inflammatory 
phenotype while enhancing T cell-mediated tumor cell killing, thereby 
inhibiting HCC progression (151). These groundbreaking findings 
collectively confirm that gut microbiota dysbiosis and the resulting 
barrier dysfunction and metabolite imbalance play a pivotal regulatory 
role in the pathological progression of liver cancer by promoting 
bacterial translocation and reshaping the immune microenvironment 
(Figure 3).

6.5 Treatment of the gut microbiota in HCC

6.5.1 FMT
Following FMT, the abundance of beneficial gut bacteria such as 

Lactobacillaceae, Bacilli, and Bacteroides significantly increased, 
improving the diversity, richness, and evenness of the gut microbiota 
in cirrhotic rats, thereby alleviating liver fibrosis (143). Transplantation 
of fecal bacteria from wild-type mice or Lactobacillus reuteri into HCC 
mice elevated acetate levels and reduced IL-17A secretion, enhancing 
the anticancer effects in HCC mice (159). The absence of Akkermansia 
muciniphila has been associated with increased abundance of hepatic 
monocytic myeloid-derived suppressor cells. Notably, FMT-mediated 
reintroduction of Akkermansia muciniphila in Nlrp6−/− mice restored 
intestinal barrier integrity and markedly attenuated hepatic 
inflammation and fibrosis (160).

6.5.2 Probiotics
Probiotics, as important microbial agents for maintaining gut 

microbiota stability, include LAB strains such as Lactobacillus and 
Bifidobacterium (161). They can modulate the gut microbiota, stabilize 
the intestinal barrier, and mitigate carcinogenic toxicity, thereby 
influencing the development and progression of liver cancer (162). 
Studies have found that after 48 h of LAB treatment, the abundance of 
Firmicutes, Bacteroidetes, and Actinobacteria significantly increased in 
HCC mice, while the abundance of Proteobacteria was significantly 
lower than in untreated HCC groups (147). Furthermore, LAB, 
particularly L. brevis SR52-2 and L. delbrueckii Q80, exhibit antiviral 
properties that help improve gastrointestinal health in HCC 
patients (147).

6.5.3 Diet
In a high-fructose diet-fed HCC mouse model, microbiota-

derived acetate increased levels of glutamine and UDP-N-
acetylglucosamine in HCC, enhancing protein O-GlcNAcylation and 
promoting HCC progression (163). Conversely, a 5:2 intermittent 
fasting regimen improved MASH and fibrosis and inhibited HCC 
development by activating hepatic PPARα and PCK1 (113) (Table 3).

These findings suggest that FMT, probiotics, and dietary 
interventions may exert beneficial effects on liver cirrhosis and HCC 
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by modulating gut microbiota functionality. However, current 
research remains predominantly limited to animal studies, 
highlighting the need for further clinical validation to address existing 
gaps in translational applicability.

7 Expression characteristics, 
mechanistic research, and 
diagnostic-therapeutic applications of 
gut microbiota in drug-induced liver 
injury

7.1 Alteration of gut microbiota in 
drug-induced liver injury

Drug-induced liver injury (DILI), a leading cause of ALF and acute 
hepatitis globally (1), is a severe adverse drug reaction associated with 
medications such as anti-infectives, herbal products, and non-steroidal 
anti-inflammatory drugs (164, 165). Emerging evidence highlights the 
critical role of gut microbiota in DILI pathogenesis. Patients with DILI 
exhibit significant gut microbial dysbiosis, characterized by reduced 
richness and diversity (99), with distinct patterns across drug types. In 
acetaminophen (APAP)-induced models, APAP exposure increases 
Cyanobacteria and Deferribacteres while decreasing Firmicutes at the 
phylum level, and elevates Bacteroides/Enterococcus but depletes 
Bifidobacterium/Lactobacillus at the genus level (166, 167). Similar 
dysbiosis is observed in dietary supplement- or conventional drug-
induced DILI, marked by reductions in Acetobacteroides, Blautia, and 
Coprococcus (99). Idiosyncratic DILI patients show Bacillota 
enrichment and Bacteroidota/Verrucomicrobiota depletion, with 
Alloprevotella dominance over Eubacterium eligens (168). 
Metronidazole (MNZ) exposure in mice reduces α-diversity and 

elevates F/B ratios alongside Lactobacillus reuteri abundance (169), 
though conflicting results on microbiota changes [e.g., Tulstrup et al. 
(170)] suggest dose- and duration-dependent effects. Mendelian 
randomization identifies Oscillospira, Blautia, and Prevotella_7 as risk-
associated taxa (171), while cisplatin and methotrexate models link 
Proteobacteria, Enterococcus, and Collinsella to liver injury (172, 173). 
These findings collectively underscore gut microbiota as a pivotal 
mediator in DILI progression.

7.2 Mechanisms of the gut microbiota in 
DILI

Thousands of drugs can induce direct, indirect, or idiosyncratic 
liver injury, with mechanisms that are complex and not yet fully 
elucidated. Studies have shown that the loss of intestinal barrier 
integrity leading to increased intestinal permeability may be one of the 
important mechanisms of DILI. APAP administration can upregulate 
the colonic epithelial chemokine (C-C motif) ligand 7, thereby 
mediating intestinal barrier dysfunction, which may be a key factor in 
APAP-induced hepatotoxicity (174). Additionally, metronidazole can 
disrupt the structure and function of the intestinal barrier, leading to 
gut microbiota dysbiosis and subsequent intestinal and liver injury 
(169). Numerous studies have demonstrated that the composition of 
gut microbiota is altered in DILI patients and animal models, 
manifesting as increased intestinal permeability, elevated LPS 
translocation, reduced SCFA production, and disrupted BA metabolic 
homeostasis (175). In a clinical trial, antithyroid drugs were found to 
increase fecal and serum LPS levels in patients, activating LPS-related 
signaling pathways and thereby inducing liver injury (176). In an 
APAP-induced mouse model of acute liver injury, ampicillin 
exacerbated APAP-induced liver injury by inducing gut microbiota 

FIGURE 3

Mechanisms of the gut microbiota in the development of HCC (by Figdraw). ROS, Reactive oxygen species; IL-6, Interleukin-6; M1, Macrophage 1; M2, 
Macrophage 2; PBP1B, Penicillin binding protein 1B.
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imbalance and reducing butyrate levels (177). However, some studies 
have also suggested that gut microbiota metabolites may have 
protective effects on the liver. For instance, daidzein released by 
β-galactosidase from Lactobacillus vaginalis can inhibit Fdps-mediated 
hepatocyte ferroptosis, thereby ameliorating APAP-induced liver 
injury in mice (178). These findings indicate that the mechanisms by 
which gut microbiota regulates drug-related liver injury may 
be  associated with intestinal barrier disruption, alterations in gut 
microbiota composition, and its metabolites. Future research should 
further explore the specific mechanisms of gut microbiota and its 
metabolites in liver injury and develop intervention strategies based 
on gut microbiota modulation, providing new targets for the 
prevention and treatment of drug-induced liver injury.

7.3 Treatment of the gut microbiota in DILI

The occurrence of DILI is accompanied by structural changes in 
the gut microbiota, and modulating the gut microbiota can effectively 
alleviate DILI. Compared to donor feces, oral fecal gavage enriches 
Lachnospiraceae and butyrate in the gut, mitigating APAP-induced 
ferroptosis through the AMPK-ULK1-p62 signaling pathway while 
simultaneously inducing mitochondrial autophagy and the Nrf2 
antioxidant response, thereby effectively alleviating ALI in mice (179). 
Additionally, oral magnesium reduces APAP-induced liver injury by 
increasing the abundance of Bifidobacterium and inhibiting the 
production of the gut microbiota metabolite CYP2E1 (180). 
Bacteroides vulgatus exhibits probiotic effects in vivo, inhibiting the 
colonization of pathogenic microorganisms and alleviating APAP-
induced oxidative stress and liver injury (181). Studies have also found 
that triptolide (TP) significantly disrupts gut microbiota composition, 
particularly reducing the relative abundance of Lactobacillus 
rhamnosus GG (LGG). Supplementation with LGG can reverse 
TP-induced hepatotoxicity by increasing bile salt hydrolase activity 
and reducing elevated conjugated BAs (182). Magnesium 
isoglycyrrhizinate treatment increases the abundance of the probiotic 
Lactobacillus, restores the intestinal barrier, and ameliorates 
methotrexate-induced liver injury (200). Furthermore, a randomized 
clinical trial demonstrated that probiotics may help alleviate drug-
induced liver dysfunction in patients with depression (183). These 
studies indicate that FMT and probiotic treatments can restore gut 
microbiota homeostasis, enhance intestinal barrier function, and 
improve liver function parameters, thereby effectively mitigating the 
onset and progression of DILI. These findings provide new insights 
and approaches for the treatment of DILI. At the same time, attention 
should be paid to individual differences and the complexity of gut 
microbiota changes to achieve more precise and 
personalized treatments.

8 Other liver diseases and gut 
microbiota

In recent years, studies have revealed that, in addition to common 
liver diseases, autoimmune and genetic liver diseases such as primary 
biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), 
autoimmune hepatitis (AIH), and Wilson’s disease (WD) are also 
closely associated with gut microbiota dysbiosis. Among these, PBC, 

as a progressive autoimmune liver disease, often presents with subtle 
early clinical manifestations. Research indicates that the albumin-
bilirubin (ALBI) score and its grading system can effectively assess 
disease progression and prognostic risk in PBC patients. Notably, 
ALBI grade 1 patients exhibit higher gut microbiota α-diversity and 
ecological balance, with a significant predominance of Clostridia and 
Lachnospira genera. ML models have identified Lachnospira as a key 
biomarker for distinguishing different ALBI grades (184). In terms of 
therapeutic interventions, UDCA treatment can induce gut microbiota 
remodeling in PBC patients, with a particularly prominent expansion 
of Bacteroides in high-Clostridia microbiota. This microbial 
modulation may enhance the clinical response to UDCA by restoring 
gut homeostasis (185).

PSC is a chronic cholestatic liver disease characterized by typical 
pathological alterations including abnormal liver enzymes, 
dysregulated bile acid metabolism, and altered gut microbiota 
composition. Patients with PSC exhibit significantly reduced 
α-diversity and markedly decreased species richness in their gut 
microbiota (186). An observational study of 43 Czech PSC patients 
demonstrated significant upregulation of fecal bacterial genera 
including Haemophilus, Rothia, Clostridium, Enterococcus, 
Streptococcus, and Veillonella compared to HC (187). Inverse variance 
weighted analysis further revealed that the relative abundance of 
Eubacterium hallii was positively associated with PSC risk, whereas 
Clostridiaceae1 and Lachnospiraceae families showed significant 
negative correlations with PSC susceptibility, suggesting their potential 
protective roles (188). In clinical interventions, single FMT 
administration in 10 PSC patients resulted in ≥50% reduction in 
alkaline phosphatase levels in 3 cases. Notably, FMT not only 
significantly enhanced microbial diversity but also induced clinical 
remission of comorbid ulcerative colitis with efficacy comparable to 
biologic agents (189).

For AIH, the chronic liver inflammation process is closely linked 
to gut microecological imbalance. AIH patients exhibit a significant 
reduction in gut microbiota diversity, which not only alters microbial 
metabolic profiles but may also exacerbate liver inflammation by 
disrupting intestinal barrier integrity and immune regulatory 
functions (190). In the context of inherited metabolic liver diseases, 
WD patients experience copper metabolism disorders due to 
mutations in the ATP7B gene. 16S rRNA sequencing has shown that 
the abundance of Selenomonaceae and Megamonas genera in the gut 
of WD patients is significantly higher than in healthy individuals. This 
microbial abnormality may be pathologically associated with copper 
deposition and toxic damage in hepatocytes caused by impaired 
biliary copper excretion (191). Gut microbiota dysbiosis plays a 
crucial role in the development and progression of autoimmune and 
genetic liver diseases. Modulating the gut microbiota may provide 
new insights for the diagnosis and treatment of these diseases. Future 
research should further explore the specific mechanisms of gut 
microbiota in these liver diseases and develop gut microbiota-based 
early diagnostic and therapeutic approaches, thereby offering more 
precise and personalized treatment strategies for patients.

9 Summary and perspectives

This review explores the role of gut microbiota in various liver 
diseases, analyzing its applications in disease diagnosis and its 
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contributions to disease progression. Studies have shown that 
patients with liver diseases exhibit a reduction in beneficial bacteria 
and an increase in potentially pathogenic bacteria within the gut, 
leading to dysbiosis of the gut microbiota. This imbalance further 
disrupts the integrity of the intestinal mucosal barrier, facilitating 
the translocation of bacteria and their toxins to the liver, creating a 
vicious cycle that exacerbates liver disease progression. 
Interventions such as FMT, dietary modifications, and oral 
administration of probiotics or prebiotics can effectively modulate 
the structure of gut microbiota, increase the abundance of beneficial 
bacteria, inhibit the growth of harmful bacteria, improve the gut 
microenvironment, alleviate hepatic inflammation, and protect 
hepatocytes from damage.

Despite the growing attention and extensive research on the 
relationship between gut microbiota and liver diseases, the gut 
microbiota is influenced by multiple factors, including dietary 
habits, geographic environment, host genetic background, age, 
technical variations, and pharmacological interventions. This has 
led to inconsistencies and limited comparability across studies 
regarding gut microbiota alterations. Current research primarily 
focuses on changes in microbiota composition, while the functional 
roles of microbiota, their metabolites, and their interaction 
mechanisms with the liver require further in-depth investigation. 
Future studies should aim to elucidate the specific molecular 
targets of gut microbiota in the pathogenesis of liver diseases and 
clarify the unique interactions between gut microbiota and 
different types of liver diseases. In recent years, research on 
microbial communities beyond the gut, such as oral microbiota, 
has also demonstrated their significant relevance to the onset, 
progression, and prognosis of liver diseases. This discovery 
provides a new perspective for liver disease research and may offer 
important insights for developing precision diagnostic tools and 
personalized treatment strategies based on microbial community 
characteristics. Additionally, research on gut microbiota 
modulation strategies should be expanded, optimizing the use of 
probiotics, prebiotics, and exploring novel microbiota 
transplantation methods. These efforts will provide more effective 
approaches for the comprehensive prevention and treatment of 
liver diseases, ultimately improving patient prognosis and quality 
of life.
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