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SHAP combined with machine
learning to predict mortality risk
in maintenance hemodialysis
patients: a retrospective study
Peng Shu*†, Xia Wang, Zhuping Wen, Jie Chen and Fang Xu*†

The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, Hubei, China

Background: Patients undergoing maintenance hemodialysis face a high

mortality rate, yet effective tools for predicting mortality risk in this population

are lacking. This study aims to develop an interpretable machine learning model

to predict mortality risk among maintenance hemodialysis patients.

Methods: A retrospective analysis was conducted on clinical data from 512

maintenance hemodialysis patients treated at The Central Hospital of Wuhan

between January 2021 and October 2024. The dataset included 50 feature

variables. The data were split into a training set (70%) and a test set (30%). Five

machine learning models—Random Forest, Extreme Gradient Boosting, Support

Vector Machine, Logistic Regression, and K-Nearest Neighbor—were trained and

evaluated for predicting patient mortality risk, using metrics such as the F1 score,

precision, accuracy, AUC-ROC, and recall. SHAP values were used to assess the

contribution of each feature in the best-performing model.

Results: The K-Nearest Neighbor model achieved the highest AUC-ROC of

0.9792 (95% CI: 0.9600–0.9929). SHAP analysis identified key factors influencing

predictions, including dialysis duration, creatinine levels, white blood cell ratio,

blood phosphorus concentration, and unconjugated iron.

Conclusion: The K-Nearest Neighbor model demonstrated high efficacy

in predicting mortality risk among hemodialysis patients. SHAP analysis

highlighted critical risk factors. While these findings show promise for future

clinical research, they should be interpreted with caution due to the study’s

retrospective design and the need for external validation.
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hemodialysis, predictive modeling, machine learning, mortality risk, SHAP

1 Introduction

Chronic kidney disease (CKD) is a non-communicable disease predominantly
attributed to diabetes and hypertension (1). As of 2017, the global prevalence of CKD
was reported to be 9.1%, with a corresponding mortality rate of 4.6% (2). Within the
Chinese population, the prevalence of CKD is estimated at 8.2% (3), with a mortality rate of
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6.95%, which exceeds that of the global population (4). Notably,
patients undergoing end-stage renal replacement therapy exhibit
a significantly elevated risk of mortality compared to the
general population, with approximately 20% of dialysis patients
succumbing each year (5). Various high-risk factors contribute
to mortality among individuals on maintenance hemodialysis
(MHD). The early identification of these risk factors, coupled
with appropriate care and treatment interventions, is essential
for enhancing the quality of life and extending the survival
of affected patients (6). In the realm of healthcare, artificial
intelligence (AI) and machine learning, distinguished by their
capabilities in data management and processing, present novel
opportunities for advancing healthcare delivery and care models
(7). Machine learning algorithms possess the capability to
process extensive volumes of clinical data, identify potential risk
factors, and construct predictive models that assist physicians
in more accurately assessing patients’ conditions (8). Within
the domain of vascular diseases, machine learning models have
been effectively employed for risk assessment in areas such
as coronary artery disease, peripheral vascular disease, and
renal disease, yielding favorable outcomes (9–11). Nevertheless,
traditional machine learning models frequently suffer from a lack
of interpretability, a challenge that constrains their application in
clinical practice (12).

To address this limitation, the Local Interpretable Model-
agnostic Explanations (LIME) and SHAP (SHapley Additive
exPlanations) values have been introduced to elucidate the
predictions of machine learning models. LIME primarily provides
local explanations, focusing on the interpretability of individual
samples and relying on perturbation sampling. SHAP values,
derived from the Shapley values in game theory, are able to
quantify the contribution of each feature to the model’s predictions,
thereby providing interpretable prediction results. SHAP offers
both global and local explanations, with a more rigorous theoretical
foundation, but at a relatively higher computational complexity
(13). The objective of this study was to develop and validate a
predictive model based on machine learning, utilizing SHAP values
to interpret outcomes and predict mortality risk in hemodialysis
patients. The model’s capability to quantify the contribution of each
feature to its predictions enhances the transparency of machine
learning models by elucidating their “black box” nature. The SHAP
methodology not only identifies the most influential features in
forecasting mortality risk among hemodialysis patients but also
elucidates the interactions and combined effects of these features
on model predictions.

In this investigation, five machine learning models were
constructed to predict mortality risk in hemodialysis patients, from
which the optimal model was selected and subsequently interpreted
using the SHAP approach. The K-nearest neighbor model (KNN)
was determined to be the most suitable model. This algorithm
represents a straightforward and intuitive supervised learning
approach that is extensively employed in both classification and
regression tasks. Its fundamental principle posits that within the
feature space, the class or value of a given sample can be inferred
from the classes or values of its K nearest neighboring samples.
KNN algorithms have found considerable application within the
medical domain (14).

The study aims to furnish clinicians with an advanced decision-
support tool to facilitate the early identification of patients at

elevated risk of mortality, thereby enabling timely interventions to
improve patient prognosis and ultimately extend patient lifespan.

2 Materials and methods

2.1 Study design

This research employed a retrospective cohort study design,
wherein demographic and biochemical data from hemodialysis
patients at the Hemodialysis Center of The Central Hospital of
Wuhan were collected retrospectively, spanning the period from
January 1, 2021 to October 30, 2024. Data collection was conducted
using a purposive sampling method. Patients were classified into
two groups—death and survival—based on their mortality status.
The study received ethical approval from the Ethics Committee
of The Central Hospital of Wuhan, under approval number
WHZXKYL2024-115.

Follow-Up: Patients receiving hemodialysis at our hospital
from January 1, 2021, to October 31, 2024, were included. Follow-
up began on each patient’s first recorded hemodialysis date and
ended on October 31, 2024, or at the time of death, whichever
occurred first. In this study, the follow-up duration for patients
ranged from 3 to 221 months.

Patient censoring: Patients were censored from the study upon
transferring to another healthcare facility for dialysis or becoming
lost to follow-up, thereby precluding the determination of their
survival outcomes.

2.2 Inclusion and exclusion criteria

(1) Inclusion Criteria: The study included participants who met
the following criteria: (1) aged 18 years or older; (2) undergoing
a minimum of two dialysis sessions per week; and 3) receiving
dialysis sessions with a duration of at least 3 h each.

(2) Exclusion Criteria: Participants were excluded from the
study if they met any of the following conditions: (1) receiving
dialysis through a temporary catheter; (2) having more than 30%
of clinical information missing; or (3) having left the institution
without access to patient survival outcomes.

2.3 Feature selection

Patient demographics were counted based on medical records
in our electronic data case system, involving a total of 69
characteristic variables. A series of clinical indicators and laboratory
findings were collected to comprehensively assess the health status
of hemodialysis patients. These included basic information (Age,
gender, survival outcome, frequency of dialysis, etiologic diagnosis,
education, type of vascular access, hypertension, diabetes mellitus,
secondary hyperparathyroidism, hyperphosphatemia, heart failure,
gout, cerebral infarction, myocardial infarction, and age at dialysis),
Physiologic indices include body mass index and various blood
cell counts, while biochemical markers cover a range of lipids,
vitamins, iron levels, hormones, proteins, enzymes, and kidney
function indicators.
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2.4 Data processing

In this study, we conducted missing value processing and
multiple imputation on data collected from hemodialysis patients.
It is important to note that the missing data in our dataset are
likely to be Missing Not At Random (MNAR), as the absence of
certain laboratory tests or clinical assessments may be related to
the patients’ health status or other factors that influenced their
decision to undergo these tests. For instance, patients with less
severe conditions might have opted out of certain tests, or economic
constraints might have prevented some patients from completing
all recommended assessments. To address the missing data, we
initially excluded columns exhibiting more than 50% missing data
to mitigate the potential impact of high missing rates on the
analysis. Ultimately, 50 feature variables were retained.

Subsequently, we performed multiple imputation using
the miceforest library in Python, generating 10 complete
datasets through five iterations. This approach was chosen to
comprehensively account for the uncertainty associated with
missing values, especially given the potential non-random nature
of the missingness. A random seed of 42 was established to
ensure the reproducibility of the results. The robustness of
the imputed datasets was assessed through model training and
evaluation metrics, including the Normalized Root Mean Square
Error (NRMSE) for regression tasks and the Receiver Operating
Characteristic Area Under the Curve (AUC-ROC) for classification
tasks. The datasets demonstrating optimal performance were
selected for further analysis. Subsequently, the robustness of the
data was assessed; for each continuous variable, the first quartile
(Q1) and the third quartile (Q3) were calculated, along with
the interquartile range (IQR = Q3 − Q1). Outlier boundaries
were established, with values falling below Q1 − 1.5 × IQR or
exceeding Q3 + 1.5 × IQR classified as outliers. These outliers
were addressed by replacing values below the lower boundary
with Q1 and values above the upper boundary with Q3. Finally,
multiple imputation was performed utilizing the miceforest library
in Python, generating 10 complete datasets through five iterations
to comprehensively account for the uncertainty associated
with missing values.

In the imputation process, a random seed of 42 was
established to guarantee the reproducibility of the results.
Subsequently, valid datasets were assessed through model training
and evaluation metrics, specifically the Normalized Root Mean
Square Error (NRMSE) for regression tasks and the Receiver
Operating Characteristic Area Under the Curve (AUC-ROC)
for classification tasks. The datasets demonstrating optimal
performance were selected for further analysis; specifically, the
dataset exhibiting the lowest NRMSE was chosen for regression
problems, while the dataset with the highest AUC-ROC was
selected for classification problems, thereby ensuring the accuracy
and reliability of the model.

2.5 Constructing machine learning
models

The dataset was randomly partitioned into training and test sets
with a 7:3 ratio. Logistic Regression (LR), Random Forest (RF),

K-Nearest Neighbors (KNN), Support Vector Machine (SVM),
and Extreme Gradient Boosting (XGBoost) models were developed
using Python software (version 3.13.2). The training and validation
datasets were imported, and clinical demographics along with
laboratory test results from the training set were utilized as
predictors to construct the models, with patient mortality serving
as the target variable.

2.6 Data standardization

To ensure the stability and effectiveness of model training, we
standardized the continuous variables in the dataset.

Specifically, we used the StandardScaler module in Python
(version 3.13.2), which is based on the Z-score standardization
method. This method transforms each continuous variable into
a distribution with a mean of 0 and a standard deviation of 1.
This process helps to eliminate differences in scale and numerical
range among different features, thereby preventing certain features
from dominating the model training process due to their larger
numerical ranges. The data standardization process was performed
as follows: (1) The dataset was split into training and test sets.
(2) The Standard Scaler was applied to the continuous variables
in the training set to compute the mean and standard deviation.
(3) The training set was standardized using these computed
statistics. (4) The test set was standardized using the same statistics
derived from the training set to ensure consistency. Handling
Data ImbalanceData imbalance was addressed using oversampling
techniques. Specifically, the Synthetic Minority Over-sampling
Technique (SMOTE) was applied to the training set to balance the
class distribution. This step was performed after standardization to
ensure that the synthetic samples generated were consistent with
the standardized data distribution. Model training and validation
optimal parameters for each model were identified through
grid search and five-fold cross-validation. Upon finalizing the
models, validation was conducted using the validation dataset, and
performance metrics such as the area under the receiver operating
characteristic curve (AUC), sensitivity, specificity, accuracy, recall,
and F1 score were computed for each model.

2.7 Feature interpretation

To interpret and rank the features of the training models, the
SHAP package was employed to assess the contribution of each
feature to the model. Following the selection of the best-performing
model, SHAP values were further utilized to visualize and analyze
the significance of the features.

2.8 Statistical analysis

Python (version 3.13.2) was employed for data processing
and statistical analysis. Categorical variables were represented as
frequencies and percentages and were compared using either
Fisher’s exact test or the chi-square test. For continuous variables,
the Shapiro-Wilk test was initially applied to assess normality. If
the data conformed to a normal distribution, comparisons were
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made using the independent samples t-test, with results expressed
as mean ± standard deviation. For data not conforming to a
normal distribution, comparisons were made using non-parametric
methods, and results were reported as median with interquartile
range (first and third quartiles). A p-value of less than 0.05 was
considered indicative of statistical significance.

3 Results

3.1 Comparison of patients’ general
information

A total of 614 patients were enrolled in this study and finally
512 patients were enrolled in the study, 300 in the survivor group
and 212 in the mortality group (Figure 1). 50 characteristics were
included in the study [Age, gender, education level (EL), vascular
access type (VAT), hypertension (HTN), diabetes mellitus (DM),
secondary hyperparathyroidism (SHPT), hyperphosphatemia
(HP), heart failure (HF), gout (Gout), cerebral infarction (CI),
myocardial infarction (MI), dialysis frequency (DF), dialysis
age (DV), and other characteristics], [heart failure (HF), gout
(Gout), cerebral infarction (CI), myocardial infarction (MI),
dialysis frequency (DF), dialysis age (DV)], physiologic indices
[body mass index (BMI), white blood cell count (WBC), red
blood cell count (RBC), Hematocrit (HCT), Monocyte count
(MONO), platelet count (PLT), Lymphocyte Count (LYMPH),
Neutrophil Count (NEUT), Hemoglobin Concentration (HGB),
Potassium (K), Sodium (Na), Chlorine (Serum Cl), Calcium
(Ca), Phosphorus (P)] as well as biochemical markers [Total
Iron Binding Capacity (TIBC), Serum Iron (SI), Unbound Iron
(UI), Parathyroid Hormone (iPTH), Glucose (GLU)], urea
(URE), creatinine (CRE), uric acid (UA), total carbon dioxide

(TCO2), alpha hydroxybutyrate dehydrogenase (αHBDH), lactate
dehydrogenase (LDH), creatine kinase (CK), creatine kinase
isoenzyme (CKMB), total bilirubin (TBIL), direct bilirubin (DBIL),
indirect bilirubin (IBIL), alanine aminotransferase (ALT), aspartate
aminotransferase (AST), gamma-glutamate aminotransferase
(GGT), total protein (TP), albumin (ALB), globulin (GLB), and
albumin-globulin ratio (AGR)].There was a significant difference
in educational qualifications, type of pathway, diabetes mellitus,
blood phosphorus, and creatinine between the 2 groups (p < 0.05)
(Table 1).

3.2 Comparison between the
performance of different models

In this study, five distinct machine learning models were
developed. Among these, the K-Nearest Neighbors model
demonstrated superior performance, achieving an Area Under
the Curve of 0.9792 (95% Confidence Interval: 0.9600–0.9929),
as presented in Table 2. The optimal parameters for each model
are detailed in Table A1. The model exhibiting the highest AUC
value was designated as the best-performing model in this study, as
illustrated in Figure 2. The sensitivity analysis of the best model is
provided in Table A2.

3.3 Feature importance interpretation in
KNN models

Figure 3 shows Dialysis age (DV), unconjugated (UI),
creatinine (CRE),Albumin/Globulin Ratio (AGR), and blood
phosphorus concentration (P) are important characteristics for the

FIGURE 1

Flowchart of study design.
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TABLE 1 Comparison of the characteristics of the two groups of patients.

Survivor group (n = 300) Death group (n = 212) Statistical value P

Gender 2.260 0.133

Female 108 (36.0%) 62 (29.2%)

Male 192 (64.0%) 150 (70.8%)

EL 22.794 0.000*

Illiteracy 30 (10.0%) 44 (20.8%)

Primary education 52 (17.3%) 38 (17.9%)

Junior high school 96 (32.0%) 40 (18.9%)

High school/secondary school 54 (18.0%) 38 (17.9%)

Three-year college 22 (7.3%) 8 (3.8%)

Undergraduate and above 46 (15.3%) 44 (20.8%)

Vascular access 17.061 0.000*

Tunneled cuffed catheter 44 (14.7%) 64 (30.2%)

Arteriovenous fistula 256 (85.3%) 148 (69.8%)

Hypertension 1.537 0.215

No 28 (9.3%) 28 (13.2%)

Yes 272 (90.7%) 184 (86.8%)

Diabetes 4.043 0.044*

No 216 (72.0%) 134 (63.2%)

Yes 84 (28.0%) 78 (36.8%) 5.33 0.021*

Secondary hyperparathyroidism

No 206 (68.7%) 166 (78.3%)

Yes 94 (31.3%) 46 (21.7%)

Hyperphosphatemia 12.444 0.000*

No 210 (70.0%) 178 (84.0%)

Yes 90 (30.0%) 34 (16.0%)

Heart failure 0.948 0.33

No 206 (68.7%) 136 (64.2%)

Yes 94 (31.3%) 76 (35.8%)

Gout

No 290 (96.7%) 202 (95.3%) 0.319 0.572

Yes 10 (3.3%) 10 (4.7%) 0.319 0.572

Cerebral infarction 0.018 0.893

No 246 (82.0%) 172 (81.1%)

Yes 54 (18.0%) 40 (18.9%)

Myocardial infarction 27.744 0.000*

No 292 (97.3%) 178 (84.0%)

Yes 8 (2.7%) 34 (16.0%)

Number of dialysis (times/week) 3.291 0.07

2 68 (22.7%) 64 (30.2%)

3 232 (77.3%) 148 (69.8%)

Age (years) 58.0854± 13.2568 62.1601± 12.3315 7.812 0.000*

BMI (kg/m2) 22.586± 3.657 22.160± 2.985 1.445 0.149

WBC (10∧9/L) 6.784± 2.356 7.254± 3.220 −1.809 0.071

RBC (10∧12/L) 3.064± 0.798 3.090± 0.633 −0.413 0.679

HCT (L/L) 27.739± 6.437 27.645± 5.377 0.179 0.858

(Continued)
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TABLE 1 Continued

Survivor group (n = 300) Death group (n = 212) Statistical value P

MONO (10∧9/L) 0.470± 0.251 0.488± 0.259 −0.778 0.437

PLT (10∧9/L) 188.154± 77.618 187.597± 68.586 0.086 0.932

LYMP (10∧9/L) 1.280± 0.921 1.140± 0.491 2.213 0.027*

NEUT (10∧9/L) 4.839± 2.087 5.414± 3.053 −2.378 0.018*

HGB (g/L) 90.618± 23.658 88.750± 17.601 1.024 0.306

K (mmol/L) 4.946± 0.832 4.941± 0.863 0.066 0.947

Na (mmol/L) 139.790± 3.916 139.639± 3.346 0.469 0.64

Serum Cl (mmol/L) 102.562± 5.813 103.096± 5.050 −1.106 0.269

Ca (mmol/L) 2.235± 0.252 2.231± 0.258 0.178 0.858

p (mmol/L) 1.787± 0.507 1.680± 0.582 2.157 0.032*

TIBC (µmol/L) 44.707± 8.276 44.782± 8.585 −0.098 0.922

SI (µmol/L) 10.261± 4.970 9.854± 4.312 0.987 0.324

UI (µmol/L) 34.291± 8.504 34.746± 8.194 −0.609 0.543

PTH (pg/mL) 60.219± 93.885 39.987± 34.739 3.416 0.001*

GLU (g/L) 6.471± 2.948 7.116± 3.269 −2.288 0.023*

URE (mmol/L) 24.209± 21.544 21.499± 8.482 1.973 0.049*

CRE (µmol/L) 794.262± 338.309 682.964± 307.572 3.868 0.000*

UA (µmol/L) 396.397± 121.743 373.807± 117.092 2.115 0.035*

TCO2 (mmol/L) 21.712± 3.962 22.476± 4.206 −2.073 0.039*

αHBDH (U/L) 172.657± 42.427 176.217± 55.973 −0.781 0.435

LDH (U/L) 235.443± 81.830 244.806± 161.400 −0.777 0.438

CK (U/L) 234.099± 320.536 126.474± 383.221 3.345 0.001*

CKMB (U/L) 10.636± 6.580 10.181± 5.687 0.835 0.404

TBIL (µmol/L) 7.301± 10.054 9.814± 30.809 −1.145 0.253

DBIL (µmol/L) 2.486± 6.547 4.086± 21.755 −1.038 0.300

IBIL (µmol/L) 4.675± 3.863 5.715± 9.265 −1.543 0.124

ALT (U/L) 15.020± 12.995 16.537± 26.971 −0.759 0.448

AST (U/L) 18.210± 9.761 19.461± 16.410 −0.993 0.322

GGT (U/L) 27.989± 18.324 40.558± 115.028 −1.577 0.116

TP (g/L) 68.062± 9.852 68.534± 10.795 −0.505 0.614

ALB (g/L) 37.718± 6.337 37.085± 6.640 1.083 0.279

GLB (g/L) 30.141± 5.546 31.173± 5.963 −1.986 0.048*

AGR 1.288± 0.261 1.209± 0.219 3.675 0.000*

*p < 0.05.

risk of death in MHD. In order to better show the relationship
between the variables, this study used bubble heat map to show the
relationship between the characteristics (Figure 4).

Figure 5 presents a summary plot of the characteristic SHAP
values. For dialysis age (DV), it was observed that elevated values
(indicated in red) generally contributed to an increase in the model
output, whereas lower values (indicated in blue) were associated
with a decrease in the model output. In contrast, for unbound iron
(UI), the impact of high and low values on the model output was
more variable. However, on average, higher values exhibited a slight
positive effect.

Figure 6 illustrates the impact of individual characteristics
on the model. Specifically, dialysis age (DV), creatinine (CRE),
albumin-globulin ratio (AGR), and blood phosphorus (P) exhibit
a negative influence on the model. In contrast, unconjugated iron
(UI) demonstrates a positive effect.

We employed K-Nearest Neighbors models to visualize
individual patient mortality risk predictions. Specifically, the
arrows illustrate the influence of each factor on the prediction
outcomes. Features that elevate the risk of brain death are depicted
in red, whereas those that mitigate the risk are shown in blue.
The length of each stripe represents the significance of the
corresponding feature in the prediction process; a longer stripe

Frontiers in Medicine 06 frontiersin.org

https://doi.org/10.3389/fmed.2025.1615950
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1615950 July 3, 2025 Time: 14:56 # 7

Shu et al. 10.3389/fmed.2025.1615950

TABLE 2 Comparison of indicators between different models.

Mould AUC F1 score Accuracy Accurate Recall rate

LR 0.7163 0.6389 0.6623 0.5750 0.7188

(0.6300–0.7923) (0.5496–0.7222) (0.5907–0.7338) (0.4675–0.6829) (0.6111–0.8209)

RF 0.9771 0.8710 0.8961 0.9000 0.8438

(0.9572–0.9910) (0.8000–0.9280) (0.8442–0.9416) (0.8135–0.9667) (0.7535–0.9299)

SVM 0.6984 0.6309 0.6429 0.5529 0.7344

(0.6174–0.7799) (0.5372–0.7180) (0.5649–0.7208) (0.4444–0.6623) (0.6207–0.8358)

XGBoost 0.9601 0.8710 0.8961 0.9000 0.8438

(0.9255–0.9897) (0.8036–0.9231) (0.8505–0.9416) (0.8225–0.9655) (0.7500–0.9310)

KNN 0.9792 0.8955 0.9091 0.8571 0.9375

(0.9600–0.9929) (0.8376–0.9449) (0.8636–0.9545) (0.7678–0.9385) (0.8689–0.9855)

indicates a greater contribution of that feature to the prediction. By
aggregating the effects of each factor, we calculated the respective
prediction score for each feature. Figure 7 presents the contribution
value of each feature to the accurate prediction of mortality risk in
hemodialysis patients. For instance, in the case of the first patient,
the predicted risk of mortality was 15%.

4 Discussion

According to the American Society of Kidney Diseases, the
mortality rate for maintenance hemodialysis patients in the
United States is 16.7% (15), whereas in Europe it is 13.1% (16).
A study conducted in China reports a crude mortality rate of 8.8%
among hemodialysis patients (17). It is imperative to implement
appropriate measures to mitigate the risk of mortality in this
patient population. Our study identified several factors associated
with mortality risk in maintenance hemodialysis patients, including
dialysis duration, levels of unconjugated iron, creatinine, white
blood cell count, and blood phosphorus concentration. Notably,
the relationship between dialysis duration and mortality risk
exhibited a U-shaped curve: patients undergoing dialysis for less
than 1 year and those with a duration of 5–10 years experienced
higher mortality peaks, whereas those with 1–5 years of dialysis
demonstrated a relatively stable mortality rate (18, 19).

This outcome may be attributed to the combined effects of
both dialysis duration and patient age. Newly initiated dialysis
patients frequently present with severe malnutrition, anemia
(hemoglobin levels below 90 g/L), electrolyte imbalances such as
hyperkalemia, failure to achieve dry weight, and psychological
conditions including anxiety and depression (20). Furthermore,
there is a markedly elevated risk of early cardiovascular events,
such as acute heart failure, and infections, including catheter-
associated sepsis (18). As the duration of dialysis increases,
patients are more likely to experience disturbances in calcium
and phosphorus metabolism and muscular dystrophy, which may
elevate the mortality risk among long-term dialysis patients.
Cardiovascular events remain the leading cause of mortality,
potentially linked to complications arising from prolonged dialysis
(21). The relationship between age at the initiation of dialysis and
mortality risk in patients undergoing maintenance hemodialysis
is complex and dynamic. In the early stages, risks are primarily

associated with maladaptation and acute complications, whereas
in the mid- to long-term, metabolic disorders and chronic
pathologies predominate. Consequently, healthcare professionals
can mitigate all-cause mortality in hemodialysis patients through
a series of staged interventions, including nutritional support,
cardiovascular management, and tumor screening, alongside
personalized strategies such as optimization of the primary disease
and careful selection of vascular access. Furthermore, precision in
dialysis management can be enhanced by integrating biomarkers
with emerging technologies.

In studies of iron metabolism, unbound iron refers to
free iron ions not sequestered by transferrin. The presence of
unbound iron, which can result from either iron deficiency
or iron overload, is closely linked to increased mortality
risk in patients undergoing maintenance hemodialysis through
mechanisms involving cardiovascular injury, oxidative stress, and
inflammatory responses. Iron deficiency, in particular, is associated
with coronary artery calcification, potentially due to accelerated
vascular calcification arising from reduced activity of iron-
dependent enzymes such as anti-calcitonin (22). Conversely, iron
overload leads to a significant increase in unconjugated iron, which
is highly oxidative and directly contributes to lipid peroxidation,
endothelial damage, and tissue iron deposition, thereby elevating
the incidence of cardiovascular events under oxidative stress
conditions (23).

Creatinine serves as a fundamental indicator of nutritional and
muscular status in patients undergoing maintenance hemodialysis
Both persistently low levels and a dynamic decline in creatinine are
associated with an increased risk of mortality. In dialysis patients,
renal function is compromised, rendering creatinine clearance
almost entirely reliant on dialysis. Consequently, blood creatinine
levels predominantly reflect muscle mass. A significant association
exists between low blood creatinine levels and muscle atrophy,
as well as protein-energy wasting. Studies have demonstrated that
patients who succumbed exhibited lower blood creatinine levels
compared to survivors, with a 12.6-fold increase in mortality
risk for each 1 mg/dL decrease in creatinine (hazard ratio
[HR] = 12.60, 95% confidence interval [CI] 0.66–241.35) (24).
Elevated creatinine levels (e.g., > 10 mg/dL) are indicative
of better muscle mass and nutritional status, correlating with
more favorable clinical outcomes (25). Furthermore, patients
experiencing a decline of more than 15% in serum creatinine
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FIGURE 2

Plot of AUC comparison between different models.

over a 2-year period have a 5-year mortality rate of 40.3%. To
maintain creatinine within the optimal range (6–10 mg/dL) and
enhance patient prognosis, comprehensive clinical interventions,
including nutritional supplementation, anti-inflammatory therapy,
and dialysis optimization, are essential (26). Although serum
creatinine holds significant predictive value, its concentration is
predominantly influenced by the glomerular filtration rate (GFR), a
vital marker of renal function. In clinical practice, serum creatinine
is extensively utilized to estimate GFR due to its convenient
measurement and cost-effectiveness. Nevertheless, it is crucial to
acknowledge that serum creatinine levels may be affected by factors
beyond GFR, including muscle mass, dietary intake, and specific
medications, potentially leading to inaccuracies in GFR estimation
(27). Consequently, integrating multiple clinical indicators and
employing machine learning models is essential for achieving a
more comprehensive assessment of patient prognosis.

In recent years, the albumin-globulin ratio (AGR) has emerged
as a valuable prognostic marker for assessing nutritional status
and chronic inflammation in patients undergoing maintenance
hemodialysis. A study involving 320 MHD patients revealed that
the 5-year all-cause mortality rate was significantly elevated in
the low AGR group (< 1.21) compared to the high AGR group
(32.98% vs. 10.3%). Even after adjusting for age and comorbidities,
a low AGR was associated with a 2.74-fold increased risk of

all-cause mortality (hazard ratio [HR] = 2.740, 95% confidence
interval [CI] 1.08–6.64) (28). The cardiovascular effects of the
albumin-globulin ratio may be mediated through inflammatory
pathways. Specifically, a low globulin level results in decreased
colloid osmotic pressure and tissue edema, which can exacerbate
cardiac insufficiency. Additionally, it diminishes the reserve of
antioxidants, such as thiol groups, thereby increasing oxidative
stress. Conversely, elevated globulin levels indicate the activation
of pro-inflammatory cytokines, including interleukin-6 (IL-6)
and tumor necrosis factor-alpha (TNF-α), which may facilitate
the progression of microinflammation to systemic inflammation,
thereby accelerating atherosclerosis and protein-energy wasting.
AGR is a significant predictor of mortality risk in patients
undergoing maintenance hemodialysis and is valued for its ability
to integrate the dual pathophysiological processes of nutrition
and inflammation. Consequently, it is recommended that an
AGR of ≥ 1.2 be established as a management target through
dynamic monitoring, stratified intervention, and multidisciplinary
management, including nutritional fortification, anti-inflammatory
therapy, and dialysis optimization. Furthermore, it is advised
that serum albumin, globulin, and inflammatory markers such
as C-reactive protein and IL-6 be monitored every 3 months
to allow for the dynamic adjustment of nutritional support
in MHD patients.
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FIGURE 3

Importance ranking of mortality risk in the KNN model.

The relationship between blood phosphorus levels and
mortality in patients undergoing maintenance hemodialysis is
characterized by a complex time-dose-effect dynamic. This
relationship exhibits a U-shaped risk at absolute phosphorus
levels and an independent hazard with dynamic variability.
Numerous studies have demonstrated an association between blood
phosphorus levels and mortality in MHD patients. Mortality rates
are lowest when blood phosphorus levels are maintained within
the range of 3.5–5.5 mg/dL (1.13–1.78 mmol/L). However, all-
cause mortality significantly increases when blood phosphorus
levels exceed 5.0 mg/dL (1.6 mmol/L), with a marked escalation
in risk observed at levels above 7.0 mg/dL (2.26 mmol/L), where
the hazard ratio (HR) reaches 2.02 (29). A blood phosphorus
level of less than 3.5 mg/dL (1.13 mmol/L) is associated with
malnutrition, and patients with such levels exhibit a 5-year
mortality rate of 32.98%, alongside a 2.74-fold increase in corrected
risk (30). Mechanistically, elevated phosphorus levels inhibit
endothelial nitric oxide synthase and elevate markers of oxidative
stress, contributing to increased arterial stiffness. Additionally,
high phosphorus levels upregulate pro-inflammatory cytokines
such as interleukin-6 (IL-6) and tumor necrosis factor-alpha
(TNF-α), further elevating mortality risk when C-reactive protein
levels exceed 5 mg/L. Phosphorus accumulation also facilitates
the production of uremic toxins, such as indolephenol sulfate,
which synergistically interact with fibroblast growth factor 23
(FGF-23) to impair myocardial mitochondrial function. This
impairment subsequently leads to left ventricular hypertrophy,
as indicated by a left ventricular mass index (LVMI) greater
than 130 g/m2 (29, 31). Serum phosphorus levels play a
critical role in the mortality of patients undergoing maintenance

hemodialysis primarily through pathways involving vascular
calcification, the inflammation-dystrophy axis, and metabolic
toxicity. Clinically, a stratified management approach is essential.
For patients exhibiting hyperphosphatemia, intensive dialysis
coupled with pharmacological interventions is recommended.
Conversely, for those with hypophosphatemia, the focus should
be on addressing malnutrition and enhancing long-term outcomes
by dynamically monitoring the coefficient of variation in serum
phosphorus levels.

Currently, the prediction of survival rates for patients with
end-stage renal disease predominantly depends on indices such
as the Davies Index, Khan Index, and the Charlson Comorbidity
Index (CCI). In addition, other comorbidity indices like the
Index of Coexistent Diseases (ICED) and the Index of Chronic
Disease Diagnoses (ICDD) are also utilized. However, these
indices exhibit certain limitations: they encompass numerous
variables, rendering them less suitable for clinical application
and statistical analysis. The Davies Index suffers from ambiguous
definitions of comorbidities, resulting in problematic weight
allocation. The Khan Index assigns equal weights to each
comorbidity, which may not accurately reflect their relative impact.
Furthermore, the CCI tends to overestimate the weight of certain
comorbidities (32). The interpretable machine learning model
that we have developed can be integrated into clinical record
systems for practical use in clinical settings. The model predicts
the risk of death for individual patients by analyzing their data
(Figure 7).

The findings of our study highlight certain features that
significantly contribute to the optimal model; however, these may
not align with some clinical research outcomes. Beyond the features

Frontiers in Medicine 09 frontiersin.org

https://doi.org/10.3389/fmed.2025.1615950
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1615950 July 3, 2025 Time: 14:56 # 10

Shu et al. 10.3389/fmed.2025.1615950

FIGURE 4

Bubble heat map of correlations between significance features.

identified in our study, it is crucial to consider additional factors
in maintenance hemodialysis patients. These factors include blood
pressure, fluid status, dialysis dose (e.g., Kt/V), anemia, bone
mineral parameters, inflammation markers, and residual kidney
function, which have not been explicitly incorporated into our
model but warrant careful consideration.

Previous research has established that the nutritional status of
hemodialysis patients is a critical determinant of patient mortality.
Specifically, a decrease in serum albumin levels is significantly
associated with an elevated risk of death within 6 months
(6). In our study, no significant difference in serum albumin
levels was observed between the deceased and survivor groups.
However, variations were noted in the albumin/globulin ratio and
globulin levels between these groups, potentially attributable to
the administration of albumin during dialysis. Consequently, it is
imperative to closely monitor and address the nutritional status
of these patients.

Several studies have demonstrated that dialysis adequacy
constitutes a significant risk factor influencing mortality among
hemodialysis patients. High-dose dialysis, defined as a Kt/V greater
than 1.4, has been associated with a reduction in all-cause mortality
in patients undergoing maintenance hemodialysis. This effect is

particularly pronounced in subgroups of patients younger than
65 years or those with a dialysis duration exceeding 60 months,
where the risk of cardiovascular disease (CVD) also shows a marked
decrease (33, 34).

Similarly, blood pressure significantly influences the survival
rates of hemodialysis patients. Empirical evidence indicates a
reduction in the incidence of cardiovascular events among patients
with systolic blood pressure (SBP) levels of 101–110 mmHg (HR
0.647, 95% CI 0.455–0.920), 111–120 mmHg (HR 0.663, 95%
CI 0.492–0.894), 121–130 mmHg (HR 0.747, 95% CI 0.569–
0.981), and 131–140 mmHg (HR 0.757, 95% CI 0.596–0.962)
(35). Our study did not incorporate blood pressure indicators.
Consequently, it is imperative to consider variations in a patient’s
blood pressure when formulating clinical decisions. This approach
is essential to ensure the provision of comprehensive preventive
measures for patients.

4.1 Limitations of the study

Several limitations of our study should be acknowledged
when interpreting the results. First, this study was conducted
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FIGURE 5

Scatter plot of SHAP values for different features.

FIGURE 6

SHAP dependency graph for different features.

FIGURE 7

Single patient predictive SHAP force plot.
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as a single-center, retrospective analysis and did not include
external validation. This design may limit the generalizability
and external validity of the findings, as single-center studies
may not adequately reflect the characteristics of patient
populations in different regions or healthcare settings. Future
research should consider conducting multicenter, large-
sample, prospective cohort studies to enhance the accuracy
and generalizability of the models.

Second, the data in our study are likely subject to Missing
Not At Random (MNAR) issues. The absence of certain
laboratory tests or clinical assessments may be related to the
patients’ health status or other factors that influenced their
decision to undergo these tests. This non-random missingness
could introduce bias, as the missing data may systematically
differ from the observed data. For example, patients with
milder conditions or those with financial constraints may be
more likely to have missing data. Although we employed
multiple imputation techniques to address missing data, these
methods rely on assumptions about the missing data mechanism.
Given the potential MNAR nature of our missing data, it is
possible that our imputation model did not fully capture the
underlying patterns of missingness. This could affect the accuracy
and generalizability of our findings. Future research should
consider more advanced methods for handling MNAR data,
such as pattern mixture models or selection models, which can
explicitly account for the non-random nature of missing data.
Additionally, sensitivity analyses could be conducted to assess the
robustness of the results under different assumptions about the
missing data mechanism.

Furthermore, our study may have been affected by unmeasured
confounding variables. These include nominal variables (such
as gender and race) and treatment-related factors (such as
treatment protocols and medication use),which may have
influenced the study outcomes. Although we controlled for known
confounders in our analysis, unmeasured confounders could
still introduce bias into the interpretation of the results. Future
research should aim to reduce the impact of these potential
confounders through more comprehensive data collection and
analysis methods.

While our study provides some insights into the
relevant issues, its findings need to be further validated in
broader research contexts. Future studies should employ
multicenter, large-sample, prospective cohort designs, as
well as more advanced statistical methods, to improve the
accuracy and reliability of the results. The objective of this
modeling is to support clinical decision-making; however,
the final treatment decision remains the responsibility of the
attending nephrologist. This tool is not designed to supplant
clinical judgment.

5 Conclusion

We developed and evaluated five distinct machine learning
models to predict mortality risk among hemodialysis patients,
identifying the K-nearest neighbor algorithm as the most
effective. To elucidate the factors influencing mortality risk,
we employed SHAP values for interpretability. Our analysis

revealed that mortality risk is associated with variables
such as dialysis vintage, white blood cell ratio, creatinine
levels, blood phosphorus concentration, and serum iron.
The integration of the KNN algorithm with SHAP values
offers a transparent and interpretable framework for risk
prediction, holding significant potential for application in
future clinical research. This approach aids clinicians in
implementing timely interventions and provides comprehensive
insights for the long-term management of hemodialysis
patients, ultimately contributing to the reduction of mortality
risk. However, despite the model’s high predictive efficacy
in the single-center data, its clinical value should still
be interpreted with caution. The inherent limitations of
observational studies mean that the risk factors identified by
the model need to be combined with clinical judgment and
cannot replace the comprehensive assessment of individual
patients by physicians.
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Appendix

TABLE A1 Optimal model parameters.

**Model** **Best Parameters**

Logistic regression ‘{‘C’: 1, ‘solver’: ‘liblinear’}’

Random forest ‘{‘max_depth’: 20, ‘min_samples_split’: 2, ‘n_estimators’:
200}’

SVM ‘{‘C’: 0.1, ‘kernel’: ‘linear’}’

XGBoost ‘{‘learning_rate’: 0.1, ‘max_depth’: 7, ‘n_estimators’: 100}’

KNN ‘{‘n_neighbors’: 10, ‘weights’: ‘distance’}’

TABLE A2 Comparison of various indicators in subgroup analysis.

Featur Subgrou Sample size Accuracy Recall Precision F1 AUC

Gender 1 103 0.8835 0.9167 0.8462 0.8800 0.9742

Gender 0 51 0.9608 1.0000 0.8889 0.9412 0.9929

VAT 1 120 0.9000 0.9070 0.8298 0.8667 0.9807

VAT 0 34 0.9412 1.0000 0.9130 0.9545 0.9560

HTN 1 134 0.8955 0.9231 0.8276 0.8727 0.9737

HTN 0 20 1.0000 1.0000 1.0000 1.0000 1.0000

DM 1 47 0.9574 0.9231 1.0000 0.9600 0.9853

DM 0 107 0.8879 0.9474 0.7826 0.8571 0.9817

SHPT 0 116 0.8966 0.9600 0.8276 0.8889 0.9794

SHPT 1 38 0.9474 0.8571 1.0000 0.9231 0.9643

HP 0 126 0.9048 0.9643 0.8438 0.9000 0.9806

HP 1 28 0.9286 0.7500 1.0000 0.8571 0.9750

HF 0 105 0.8857 0.9000 0.8182 0.8571 0.9723

HF 1 49 0.9592 1.0000 0.9231 0.9600 1.0000

Gout 0 147 0.9048 0.9322 0.8462 0.8871 0.9777

Gout 1 7 1.0000 1.0000 1.0000 1.0000 1.0000

CI 0 122 0.9016 0.9245 0.8596 0.8909 0.9792

CI 1 32 0.9375 1.0000 0.8462 0.9167 0.9654

MI 1 14 0.8571 1.0000 0.8182 0.9000 0.9111

MI 0 140 0.9143 0.9273 0.8644 0.8947 0.9812

DF 2 44 0.8636 1.0000 0.7500 0.8571 0.9658

DF 3 110 0.9273 0.9130 0.9130 0.9130 0.9851
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