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renin—angiotensin system and
angiotensin-converting enzyme
2/Ang(1-7)/Mas axis in
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Pulmonary fibrosis (PF), a progressive and fatal disease, is characterized by
fibroblast proliferation, excessive extracellular matrix deposition, and collagen
synthesis. These pathological changes lead to impaired lung structure and
function, ultimately resulting in respiratory failure. Emerging basic and clinical
evidence highlight the renin—angiotensin system (RAS) as a critical contributor
to PF onset and progression. Angiotensin (Ang) I, a key RAS component,
mediates various biological effects through its receptors, Ang Il receptor type
1 (AT1R) and Ang Il receptor type 2 (AToR). Ang Il promotes vasoconstriction,
inflammation, and fibrosis via AT{R, while it shows contrasting effects through
AT,R. Angiotensin-converting enzyme 2 (ACE2) plays a significant role in RAS by
converting Ang Il into Ang (1-7), which in turn interacts with Mas receptor and
Mas-associated G-protein-coupled receptor D to exert anti-inflammatory, anti-
apoptotic, and anti-fibrotic effects. The RAS also influences autophagy, oxidative
stress, and inflammation in the progression of PF. This review provides an updated
overview of the roles of the classical and non-classical RAS pathways in PF.
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1 Introduction

Pulmonary fibrosis (PF) is a rapidly progressive and fatal condition with high
morbidity and mortality, often secondary to acute lung injury (ALI) and acute respiratory
distress syndrome (ARDS). PF is characterized by repetitive epithelial injury, epithelial-
mesenchymal transition (EMT), endothelial-mesenchymal transition, cell senescence,
fibroblast activation, proliferation, extensive extracellular matrix (ECM) accumulation,
lung architectural distortion, and pulmonary dysfunction. Its etiology remains unknown.
PF leads to a gradual decline in lung function, resulting in end-stage respiratory failure
(1, 2). In the context of the complexity of PF pathogenesis, current treatments, such
as pirfenidone and nintedanib, primarily aim to slow fibrosis progression. However, an
optimal therapeutic strategy for PF has yet to be established (3-5). Therefore, identifying
novel therapeutic targets for PF remains critically important.
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The renin-angiotensin system (RAS) is widely recognized for
its essential role in regulating blood pressure, electrolyte balance,
and blood volume. Components of RAS are identified in various
organs, including the heart, blood vessels, lungs, and kidneys (6). It
comprises two subsystems: the classical RAS and the non-classical
or alternative RAS (7). The classical RAS primarily includes
angiotensin-converting enzyme (ACE), angiotensin (Ang) II, and
the Ang II receptor type 1 (AT;R). In this system, renin converts
angiotensinogen (AGT) into Ang I, a substrate for the ubiquitously
expressed ACE, particularly in lung tissue. ACE further processes
Ang I into Ang II, the key effector of the classical RAS, which
exerts various physiological effects by binding to specific receptors,
AT;R and AT,R (8). Ang II promotes vasoconstriction, pro-
inflammatory, pro-apoptotic, and pro-fibrotic activities, as well
as sodium balance regulation, primarily through AT;R. However,
Ang IT has been shown to elicit opposing effects when interacting
with AT,R (9). Ang II is degraded by ACE2, a key regulator that
counteracts the effects of the classical RAS (10). Ang II can also
be hydrolyzed by aminopeptidase A (APA) into Ang IIT and then
converted to Ang IV by aminopeptidase N (APN) (11). Ang II
activates a range of intracellular protein kinases, including receptor
tyrosine kinases such as epidermal growth factor receptor (EGFR)
and platelet-derived growth factor receptor (PDGFR), as well as
non-receptor tyrosine kinases such as Src, which is upregulated
in PF and accelerates the release of transforming growth factor-
B1 (TGF-B1). Moreover, Ang II stimulates serine/threonine kinases
such as mitogen-activated protein kinase (MAPK), Akt/protein
kinase B, and various protein kinase C isoforms (12).

The alternative RAS, comprising ACE2, Ang (1-7), and the
Mas receptor (MasR), plays vasodilatory, anti-inflammatory, and
anti-fibrotic roles in respiratory diseases such as ARDS (13).
In the non-classical RAS, ACE2 cleaves Ang I to produce the
Ang (1-9) peptide, which counteracts the ACE arm. Ang (1-
9) can later be converted into Ang (1-7) by ACE or neprilysin
(NEP) (14). NEP (15), a membrane metalloendopeptidase (MME),
directly processes Ang I into Ang (1-7), improving its protective
effects, particularly in the lung, especially in the presence of
ACE inhibitors (16). NEP also hydrolyzes endothelin-1 (ET-1),
a known bronchoconstrictor and vasoconstrictor in the airways,
mitigating inflammatory responses and preventing the fibrotic
cascade in the lung (17). The increase in plasma ET-1 levels is
linked to Ang II release. ET-1 contributes to pulmonary vascular

Abbreviations: ACE, angiotensin-converting enzyme; AGT, angiotensinogen;
Ang |, angiotensin |; Ang I, angiotensin Il; ACE2, angiotensin-converting
enzyme 2; ALA, alamandine; ALIl, acute lung injury; ARDS, acute respiratory
distress syndrome; a-SMA, a-smooth muscle actin; AT,R, angiotensin II
type 2 receptor; AT;R, angiotensin Il type 1 receptor; ECM, extracellular
matrix; EMT, epithelial-mesenchymal transition; EndoMT, endothelial—
mesenchymal transition; PF, pulmonary fibrosis; MAPK, mitogen-activated
protein kinase; MasR, Mas receptor; MrgD, Mas-related G-protein-coupled
receptor D; MSCs, mesenchymal stem cells; NOS, nitric oxide synthase;
NO, nitric oxide; NADPH, nicotinamide adenine dinucleotide phosphate;
PF, pulmonary fibrosis; PAH, pulmonary arterial hypertension; ROS, reactive
oxygen species; RAS, renin angiotensin system; SARS-CoV-2, severe
acute respiratory syndrome coronavirus 2; Smad, small mothers against

decapentaplegic homologs; TGF-B1, transforming growth factor-p1.
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remodeling, potentially leading to pulmonary arterial hypertension
(PAH) secondary to bleomycin (BLM)-induced PF (14, 18). ET-
1 also stimulates the release of TGF-B1 following severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This
process drives endothelial dysfunction that can result in vascular
constriction and increased vascular permeability (19, 20). Ang
(1-7), which is hydrolyzed by ACE into Ang (1-5), was initially
considered biologically inactive (14). However, recent evidence
suggests that Ang (1-5) promotes NO release by activation of eNOS
via interaction with the AT,R (21).

The non-classical RAS also facilitates the conversion of Ang II
into the vasodilator Ang (1-7) via ACE2, thereby counteracting
the effects of Ang II. Furthermore, ACE2 degrades Ang A (an
aspartate-to-alanine homolog of Ang II) into another vasodilator,
alamandine (ALA) (22). ALA interacts with the Mas-related G-
protein-coupled receptor D (MrgD), playing a protective role in
opposing the classical RAS and mitigating fibrosis (23) (Figure 1).

Under normal physiological conditions, the classical and non-
classical RAS maintain a delicate balance. Emerging evidence
indicates that the dysregulation of the RAS is associated with
the progression of various diseases, particularly cardiovascular
diseases and PAH (24), chronic obstructive pulmonary disease
(COPD) (8), and ALI (25). The RAS also plays a critical role
in regulating various cellular processes, including inflammation,
proliferation, and apoptosis. It is also implicated in endothelial
dysfunction and vascular remodeling in animal models of PAH
(26, 27). ACE2, a key component of the non-classical RAS, is
closely associated with PAH. Reduced ACE2 activity is closely
linked to the development of PAH, while its upregulation has been
shown to improve pulmonary homeostasis, reduce oxidative stress,
and suppress inflammatory mediators (28). The ACE2 activator
diminazene aceturate (DIZE) alleviates monocrotaline-induced
PAH and restores the imbalance caused by monocrotaline (29).
Increasing evidence supports the link between dysregulated RAS
and the development and progression of PF (30, 31). Previous
studies have shown that local RAS activation contributes to PF
development induced by hyperoxia in neonatal rats (32). Moreover,
ACE inhibitors and non-selective Ang II receptor antagonists, such
as saralasin, effectively block experimental lung fibrosis in animal
models (9).

Further research is needed to fully understand the role of the
classical RAS and the ACE2/Ang (1-7)/Mas network in PF. The
ACE2/Ang (1-7)/Mas network may serve as a potential therapeutic
target for PF. This review offers a comprehensive overview of
the relationship between the classical RAS and the ACE2/Ang
(1-7)/Mas network in PF.

2 The roles of the ACE/Ang II/AT4R
pathway in PF

The ACE/Ang II/AT|R network is a key regulator in the
development of PF (30, 31). Elevated renin levels have been
observed in the lungs and fibroblasts of patients with PE
correlating with increased expression of TGF-B1. This cytokine is
pivotal in driving fibrosis by promoting fibroblast activation and
ECM deposition, resulting in tissue scarring and compromised
organ function. Furthermore, renin suppresses the expression of
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FIGURE 1
Schematic diagram of the local renin—angiotensin system and ACE2/Ang (1-7)/Mas axis in pulmonary fibrosis. AGT, angiotensinogen; Ang |,
angiotensin I; Ang ll, angiotensin II; Ang Ill, angiotensin Ill; Ang IV, angiotensin IV; ACE2, angiotensin-converting enzyme?2; NEP, neprilysin/neutral
endopeptidase; ACE, angiotensin-converting enzyme; ET-1, endothelin-1; AT2R, angiotensin Il type 2 receptor; AT1R, angiotensin Il type 1 receptor;
APA, aminopeptidase A; APN, aminopeptidase N; Ang A, angiotensin A; TGF-B1, transforming growth factor-p1; EMT, epithelial-mesenchymal
transition; NO, nitric oxide; EndoMT, endothelial-mesenchymal transition; MasR, Mas receptor; MrgD, Mas-related G-protein-coupled receptor D.

matrix metalloproteinase-1 (MMP-1), an enzyme involved in ECM
degradation. Knocking down renin results in a significant decrease
in TGF-B1 levels (33).

Ang Il is the primary effector in the classical RAS system. Ang II
can stimulate the formation of fibrosis via AT{R in various tissues,
including the heart, kidney, and lungs (34). Elevated levels of Ang
II and AT R have been observed in a PF rat model induced by
BLM, and inhibiting Ang II alleviates structural damage to lung
tissue (35). Treatment with AT;R antagonists has been shown to
reduce the expression of alpha-smooth muscle actin (¢-SMA) in
PF induced by hyperoxia in neonatal rats (36). An increase in
Ang IT leads to the accumulation of collagen in the lungs (37).
Furthermore, the rise in TGF-B1 and collagen deposition caused by
Ang IT was blocked by AT;R-selective antagonists such as L158809
or losartan (9). Following BLM exposure, the severity of lung
fibrosis and the hydroxyproline levels were significantly reduced by
the AT, R antagonist olmesartan medoxomil (38).

As previously mentioned, Ang IT has antifibrotic effects when
binding to AT,R (9). The AT,R agonist compound 21 prevented
the development of lung fibrosis induced by BLM at day 0 or
halted its progression at day 3 (39), suggesting that Ang II plays
distinct roles depending on which receptor it binds to. Ang II
plays a significant role in signaling pathways critical to fibrosis
pathogenesis. The primary pathway mediated by BLM in PF is the
activation of the small mothers against decapentaplegic homologs
(Smad)/TGF- signaling cascade (40). Elevated levels of collagen
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I, AT R, TGF-B1, and phosphorylated Smad2/3 (p-Smad2/3) have
been detected in lung fibroblasts stimulated with macrophage-
derived exosomes following Ang IT exposure (41). Lung fibroblasts
isolated from patients with PF produce Ang II, AGT, and a-
SMA, which colocalize within myofibroblast foci (42). Inhibition
of Ang II signaling reduces myofibroblast differentiation and ECM
deposition in silicotic fibrosis models (43). Furthermore, targeting
both the Ang II/AT} R axis and the TGF-p/Smad signaling pathway
alleviates BLM-induced lung fibrosis (40).

The expression of AT;R is also upregulated in lung tissues
affected by silicotic fibrosis (43). Elevated ACE, Ang II, and
AT R levels have been linked to right ventricular hypertrophy and
hypoxia-induced fibrosis (44). The increased AT;R and reduced
MasR have been observed in patients with PF. AT R expression is
inversely correlated with pulmonary function (45). Furthermore,
the co-expression of ACE and AT;R in alveolar epithelial cells
was significantly elevated in PF following mechanical ventilation
(46). AT} R antagonists, such as losartan, or genetic disruption of
the AT R gene, reduce hydroxyproline accumulation and caspase-
3 activity both in vitro and in vivo, including in models of lung
fibrosis (47).

AT R antagonists, such as losartan, have been shown to
significantly improve lung function in patients with PF over 1 year
(48). However, these findings require validation through larger,
controlled clinical studies. Inhibition of Ang II synthesis using ACE
inhibitors, including captopril and enalapril, has also been reported
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to reduce hydroxyproline content and TGF-B1 levels in animal
models of PF (9, 49). Clinically, treatment with ACE inhibitors
(e.g., lisinopril and ramipril) or AT;R antagonists (e.g., valsartan
and losartan) has been associated with decreased mortality risk
and a slower rate of FVC decline in patients with PF, suggesting
a potential disease-modifying effect in PF compared to patients
not receiving ACE inhibitor or ATR therapy (50). However, the
interpretation of these findings is constrained by the retrospective
nature of the exploratory analyses, which revealed associations
between ACE inhibitor or Ang receptor blocker (ARB) use and
clinical outcomes without establishing causality. These analyses are
limited to patients receiving placebo treatment. Therefore, further
prospective studies are needed to clarify the therapeutic impact of
ACE inhibitors or AT;R antagonists, particularly in combination
with approved antifibrotic agents, on clinical outcomes in PF.

elevated ACE has
bronchoalveolar fluid of patients with fibrotic lung diseases

Similarly, been observed in the
(51). Single-nucleotide polymorphism insertion/deletion (I/D)
mutations in the ACE gene can alter its function and activity.
These mutations can lead to an increase in ACE activity,
contributing to pulmonary inflammation and promoting lung
fibrosis. Furthermore, an I/D polymorphism of ACE is linked to
COPD (52, 53). A higher frequency of the D allele of the ACE
gene is observed in patients with PF compared to healthy controls
(54). The ACE I/D gene polymorphism is associated with the
elevated risk of PF, particularly in the Chinese Han population
(55). Moreover, ACE inhibitors such as captopril demonstrated
efficacy in reducing collagen deposition in animal models exposed
to irradiation (56-58). The above findings suggest that ACE plays
a significant role in promoting the development of PF. These
observations indicate that inhibiting Ang IT or ACE may serve as a
potential therapeutic approach for PE.

3 The significance of the ACE2/Ang
(1-7)/Mas network in PF

ACE2, the primary receptor for SARS-CoV-2 entry into host
cells (59, 60), is widely expressed in various organs, including the
lungs (particularly on the surface of alveolar epithelial cells) (61),
cardiovascular system, intestine (62), kidneys (63), central nervous
system (64), and adipose tissue (65). It is also present in the testes
and prostate tissues (66).

The risk of developing PF increases with decreased ACE2 levels
in SARS-CoV-2-infected individuals, as ACE2 exerts anti-fibrotic
effects post-infection (67, 68). However, reduced ACE2 levels may
also offer protection against SARS-CoV-2 infection in susceptible
populations, as ACE2 provides binding opportunities for the virus
before infection (60, 62). These findings suggest that ACE2 plays
distinct roles at different stages of infection.

ACE2 plays a significant role in the RAS by degrading Ang II
to generate Ang (1-7) (68, 69). Ang (1-7) mitigates organ fibrosis,
including that of the liver and lungs, by binding to MasR, which is
encoded by the proto-oncogene Mas (70-72). It also inhibits tumor
cell proliferation and modulates inflammation and angiogenesis in
various types of tumors (73).

ACE2 and Ang (1-7) levels are significantly reduced following
BLM administration (74). Both mRNA expression and activity
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of ACE2 are significantly decreased in experimental models of
lung fibrosis and in patients with PF (75). Previous studies have
shown that the alternative RAS pathway, including ACE2, mitigates
inflammatory lung disease (76). The ACE2/Ang (1-7)/Mas
pathway counteracts the adverse effects of the classical RAS, playing
a critical role in regulating physiological and pathological functions
in humans. ACE2 can suppress TGF-B1 signaling to inhibit EMT
in alveolar epithelial cells induced by lipopolysaccharide (78).
Activation of ACE2 using DIZE significantly increases E-cadherin
levels while reducing a-SMA, collagen I, vimentin, hydroxyproline,
and TGF-B1, therefore mitigating silica-induced lung fibrosis (77).
It also modulates the TGF-$1/Smad2/Smad3 signaling pathway in
type II alveolar epithelial cells, inhibiting collagen accumulation
and TGF-B1 pathway activation (78). Exogenous ACE2 has been
shown to attenuate BLM-induced fibrosis by preserving local ACE2
levels and preventing the increase of AGT (80). Overexpression
of ACE2/Ang (1-7) reverses increased mRNA levels of TGF-f
and other pro-inflammatory cytokines in BLM-treated rat models
(79). Furthermore, ACE2 reduces apoptosis in alveolar type II
epithelial cells induced by silica (80) while upregulation of ACE2
ameliorates fibrosis and EMT in these cells (81). Inhibiting ACE2,
blocking the MasR, or knocking down the ACE2 gene worsens
EMT, ECM accumulation, and lung dysfunction in silica-treated
mice (83). ACE2-deficient mice show impaired exercise capacity,
compromised lung function, and increased collagen deposition
following BLM treatment compared to wild-type mice (82). These
findings underscore that ACE2 alleviates EMT, ECM deposition,
and TGF-B1 levels in vitro and in vivo, demonstrating its potential
as a therapeutic target in lung fibrosis.

Furthermore, suppressing the ACE/Ang II/AT|R pathway
using acetyl-seryl-asparyl-lysyl-proline, an anti-fibrotic peptide,
reduces EMT and abnormal ECM deposition in silica-induced
pulmonary interstitial fibrosis. This effect is mediated through the
ACE2/Ang (1-7)/Mas pathway stimulation, thus protecting against
fibrosis (83). Similarly, Ang (1-7) alleviates EMT induced by TGF-
Bl (84). Exogenous Ang (1-7) enhances E-cadherin synthesis,
reduces ECM formation induced by TGF-B1, and inhibits the
phosphorylation of Smad2 and Smad3 (84). Overexpression of
Ang (1-7) similarly decreases the deposition of excessive collagen,
reduces mRNA levels of TGF-f, and suppresses the release of pro-
inflammatory cytokines (79, 85, 86). Ang (1-7) alleviates EMT
and decreases the production of AT1R and Ang II by inhibiting
SRC kinase in early PF models induced by lipopolysaccharide.
These effects are blocked by the MasR antagonist A779 (87).
Collectively, these findings highlight the ACE2/Ang (1-7) pathway
as a potent anti-fibrotic, anti-inflammatory, and anti-apoptotic
pathway, making it a promising therapeutic target for PF.

4 Regulation of autophagy, oxidative
stress, and inflammation in PF by
classical RAS and ACE2/Ang (1-7)/Mas
pathways

Increasing evidence suggests that oxidative stress and
cytokine production are closely linked to the development
of PF (88). Several studies have indicated that over-activated
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Role of RAS and the ACE2/Ang (1-7)/Mas focuses on ACE2 in pulmonary fibrosis. In pulmonary fibrosis, upregulated ACE/Ang II/AT1R axis and
downregulated ACE2/Ang (1-7)/Mas axis exist, which can induce oxidative stress and inflammation. Over-expression of ACE2 can reduce oxidative
stress and inflammation.

reactive oxygen species (ROS) contribute to the progression of
PF (89, 90). Chronic inflammation in fibrosis persists, triggering
excessive ROS production and TGF-§ synthesis, which leads to
fibroblast activation and ECM accumulation. Recent findings have
highlighted that the Ang II and ACE2/Ang (1-7)/Mas network
plays a significant role in mediating oxidative stress (91-93),
autophagy (91, 94), and inflammation (95) during PF (Figure 2).
Ang II induces inflammation and oxidative stress through its
interaction with AT R (11, 47, 69). Ang II activates autophagy flux,
intercellular ROS production, collagen synthesis, and NOD-like
receptor family pyrin domain-containing 3 (NLRP3) expression.
The profibrotic effect of BLM was reversed by autophagy
inhibitors such as rapamycin and 3-MA, suggesting that inhibiting
autophagy has an antifibrotic role in PF (91). The imbalance
of autophagy caused by oxidative stress leads to increased
ROS and apoptosis. ROS levels and oxidative stress markers
are also upregulated in patients with PE and high ROS levels
are associated with poor prognosis. Combining pirfenidone and
losartan (an AT;R antagonist) may provide stronger protection
against PF than monotherapy by enhancing anti-inflammatory
and antioxidant effects (96). A previous study suggested that
ACE2 may regulate autophagy, as the autophagy inhibitor 3-
MA mitigated the severity of ALI induced by lipopolysaccharide
(LPS) (97). Furthermore, Ang (1-7) reduced NADPH oxidase 4
(NOX4) protein levels and inhibited autophagy, improving PF
induced by smoking (98). Inhibiting autophagy also improved
lung fibrosis in BLM-treated animals (91), which could be
attributed to differences in the experimental models. However,
contradictory reports exist regarding autophagy regulation by Ang
II and the ACE2/Ang (1-7)/Mas network in PF. Overexpression
of ACE2 in mice treated with BLM resulted in less collagen
deposition and lower levels of NOX4, but higher LC3-II protein
levels, indicating that ACE2 overexpression alleviated PF by
enhancing autophagy (94). This suggests that autophagy may
exert a dual role in PF. The seemingly contradictory reports
regarding the role of ACE2-mediated autophagy in PF underscore
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the complexity of its dynamic regulatory networks and intricate
microenvironmental influences during disease progression. To
elucidate the precise mechanisms of the ACE2-autophagy axis
across diverse etiologies and disease stages, future investigations
should integrate cutting-edge single-cell sequencing technologies,
dynamic pathological modeling, and comprehensive clinical
cohort analyses.

The combination of AT R antagonist losartan with pirfenidone
reduced the release of inflammatory factors, such as interleukin-
1B, tumor necrosis factor-a, TGF-p1, and platelet-derived growth
factor, and reduced collagen formation. This suggests that the
combined therapy has anti-inflammatory and anti-fibrotic effects
in PF models treated with BLM (99). Overexpression of ACE2
in umbilical cord mesenchymal stem cells (ACE2-UCMSCs) has
been shown to be more effective in reducing collagen deposition
than either ACE2 or UCMSCs alone. In the ACE2-UCMSCs
treatment group, fibrosis severity was attenuated, accompanied by
a reduction in the release of inflammatory cytokines, including
IL-1, IL-2, IL-6, and IL-10. These findings suggest that ACE2
and UCMSCs exert a synergistic effect on lung fibrosis caused by
BLM (100). Bone marrow-derived mesenchymal stem cells (MSCs)
overexpressing ACE2 improved the release of inflammatory
mediators and pulmonary endothelial function in ALI induced
by lipopolysaccharide (101). Exogenous Ang (1-7) and ACE2
together can reduce the synthesis and release of cytokines and
chemokines, inhibit the migration of inflammatory cells to the
lung, and improve pulmonary function (102, 103). Ang (1-7)
significantly suppresses NADPH oxidase activation and inhibits
nitric oxide synthase (NOS) release induced by both Ang IT and
IL-1f. Ang (1-7) can alleviate Ang II-driven vascular smooth
muscle cell inflammation (104). Downstream cascades of Ang
(1-7) help mitigate inflammation and fibrosis through the MasR
(71, 95). Some studies have suggested that the anti-fibrotic effects
of ALA (alpha-lipoic acid) occur by blocking oxidative stress
and promoting autophagy. ALA also reduced the deposition of
ECM components (such as collagen I and a-SMA) in fibroblasts
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challenged by Ang II, and its effects were suppressed by D-
Pro7-Ang (1-7), a MrgD antagonist. These findings indicate that
ALA alleviates PF by suppressing oxidative stress and activating
autophagy (105, 106).

In human endothelial cells, Ang (1-7) enhances the release of
nitric oxide (NO) and prostaglandins, promoting vasodilation by
counteracting the vasoconstrictor effects of Ang II mediated by
AT;R (107). The absence of NO exacerbates fibrotic changes in
PF mice induced by BLM (108). NO also inhibits the release of
connective tissue growth factor by blocking the Smad-dependent
TGF-B signaling pathway. In cellular models, exogenous Ang
(1-7) and ACE2 reduced inflammation and accumulation of
collagen I induced by Ang II by inhibiting the MAPK/NF-«kB
pathway. These effects were reversed by the Mas inhibitor, A-779
(109). However, continuous infusion of Ang (1-7) paradoxically
exacerbates lung inflammation. This paradox could be explained
by the fact that, when the ACE/Ang II/AT1R pathway is stimulated
by BLM or Ang II, exogenous Ang (1-7) suppresses the protein
expressions of ACE/Ang II/AT R while promoting the expression
of ACE2, Ang (1-7), and Mas, activating Mas (an antagonist
of AT|R) and inhibiting Ang II. However, Ang (1-7) may
play a pro-inflammatory role when binding to AT;R in the
absence of ACE/Ang II/AT;R stimulation (109). Furthermore,
increased NO mediated by AT,R has been shown to reduce
the production of pro-inflammatory cytokines and enhance the
production of anti-inflammatory cytokines (110). Blocking MasR
with A779 prevented the deposition of ECM. The Ang (1-
7)/MasR pathway is also involved in the anti-inflammatory
and anti-fibrotic effects of aerobic training in chronic asthma
models (111). These findings suggest that the ACE2/Ang (1-
7)/Mas pathway can reduce inflammation in lung fibrosis by
increasing NO production and suppressing the expression of
inflammatory factors.

5 Conclusion and perspectives

The over-activation of the ACE/Ang II/AT;R network results
in an imbalance between the classic RAS and the ACE2/Ang (1-
7)/Mas pathway, contributing to the initiation and progression of
PF. ACE2, as an inverse modulator of the local RAS, facilitates the
formation of Ang (1-7) from Ang II, thus regulating local Ang II
levels and counteracting its harmful effects. Pharmacological agents
that target the ACE/Ang II/AT|R network and upregulate the
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