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Introduction: Simian T-cell leukemia virus type 1 (STLV-1) and human T-

lymphotropic virus type 1 (HTLV-1) are homologous viruses with high genetic

identity. STLV-1 infections in non-human primates serve as valuable models to

study HTLV-1 pathogenesis.

Methods: This study investigated STLV-1 infection in captive green monkeys

(Chlorocebus aethiops) in Brazil. Blood samples from 52 animals were collected

and analyzed for viral presence, genetic characterization, and pathological

manifestations.

Results: STLV-1 infection was detected in seven animals, corresponding to a

seroprevalence of 13.4%. Phylogenetic analysis showed that the STLV-1 strains

identified are more closely related to baboon STLV-1 strains and human African

HTLV-1 isolates than to other STLV-1 variants, suggesting a shared evolutionary

history and possible cross-species transmission. Clinically and hematologically,

STLV-1 infection in C. aethiops presented parallels to HTLV-1 infection in

humans, including the presence of characteristic “flower cells” and similar

lymphoproliferative disorders.

Discussion: These findings reinforce the relevance of C. aethiops as a natural

model for studying HTLV-1 infection and pathogenesis. The genetic and clinical

similarities indicate potential mechanisms of viral evolution and transmission,

providing insights that may aid in understanding HTLV-1-associated diseases in

humans.
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Introduction

Human T-lymphotropic virus type 1 (HTLV-1) infection is a
major global health problem, affecting an estimated 10–20 million
people worldwide, with a particularly high prevalence in certain
geographic regions such as southwestern Japan, the Caribbean,
parts of South America, sub-Saharan Africa and the Middle East
(1). As the first human retrovirus discovery in 1980, HTLV-1 has
been extensively studied since them, revealing its etiologic role
in adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated
myelopathy (HAM), as well as various inflammatory diseases (2–
4). Despite decades of research, there remain critical gaps in our
understanding of HTLV-1 pathogenesis, transmission dynamics
and effective therapeutic approaches, largely due to the limitations
of existing experimental models.

The search for appropriate animal models to study HTLV-1
infection has led researchers to investigate its simian counterpart,
Simian T-cell leukemia virus type 1 (STLV-1). STLV-1 shares
remarkable genetic identity with HTLV-1, with nucleotide sequence
identity ranging from 90% to 95% depending on the viral region
examined (5). This close genetic relationship has led to the
hypothesis that HTLV-1 originated from multiple cross-species
transmission events of STLV-1 from non-human primates to
humans, most likely through hunting activities and direct contact
with infected animals, followed by the subsequent dissemination
of the virus, primarily facilitated by the transatlantic slave trade to
Latin America (6–8). The evolutionary relationship between these
viruses provides a unique opportunity to study retroviral zoonotic
transmission patterns and the adaptations required for successful
cross-species infection.

Simian T-cell leukemia virus type 1 has been detected in
over 30 non-human primate species across Africa and Asia,
with infection rates varying significantly between species and
geographical locations (9, 10). Among Old World monkeys, the
genera Cercocebus, Cercopithecus, and Lophocebus albigena stand
out. Despite the potential of the genus Chlorocebus aethiops,
especially C. aethiops, as a model for retroviral infections due to its
susceptibility and ease of handling, there remains a significant gap
in the study of STLV-1 infection in these species (11–13). Due to the
fact that the alternative species to the use of Rhesus monkeys, being
of management relatively easy and high prolificacy in captivity
(14, 15). These monkeys are widely distributed throughout sub-
Saharan Africa and have been introduced to various locations
worldwide, including the Caribbean islands and parts of South
America, through historical human activities (16, 17).

Brazil offers a unique setting for investigating STLV-1 and
HTLV-1 interactions due to several converging factors. The
country has one of the largest populations of HTLV-1-infected
individuals worldwide—estimated at 800,000 to 2.5 million (18)—
and hosts multiple primate facilities with captive C. aethiops
and other non-human primate species. Brazil is also among
the few countries to maintain research colonies of C. aethiops,
enabling controlled studies of STLV-1 in Old World monkeys
within the same geographic region as endemic HTLV-1 infections.
This configuration supports comparative research on transmission,
pathogenesis, and viral evolution that is not feasible elsewhere.

The pathogenesis of HTLV-1 in humans is marked by
complex virus-host interactions that can lead to a wide range

of clinical outcomes. Although most infected individuals remain
asymptomatic, approximately 2%–5% progress to adult T-cell
leukemia/lymphoma (ATL), and 0.25%–3.8% develop HTLV-1-
associated myelopathy/tropic (HAM) (19, 20). The mechanisms
underlying disease progression are not fully understood but are
believed to involve a combination of viral factors, host genetic
background, and environmental influences (21). Similarly, studies
in non-human primates (NHPs) naturally infected with STLV-1
have revealed the development of lymphoproliferative diseases that
closely resemble ATL in humans.

For instance, d’Offay et al. (22) reported STLV-1-associated
T-cell lymphomas in baboons, characterized by clonal expansion of
infected T cells and immune activation during tumor development.
Likewise, Miura et al. (23) demonstrated that Japanese macaques
naturally infected with STLV-1 exhibit clinical and molecular
features analogous to HTLV-1 infection in humans, supporting
their use as a relevant model for studying viral pathogenesis
and host responses.

A hallmark feature HTLV-1 and STLV-1 infection is the
presence morphological changes in infected lymphocytes, named
“flower cells” – atypical lymphocytes with lobulated nuclei
resembling flower petals (24). These cells serve as a diagnostic
marker for HTLV-1 infection in humans and have been observed
in STLV-1-infected non-human primates, suggesting shared
pathogenic features (23). Both viruses primarily target CD4+ T
lymphocytes and persist through mitotic spread (proliferation of
infected cells) and de novo infection via cell-to-cell contact (25).

Phylogenetic analyses of HTLV-1 and STLV-1 strains have
identified distinct molecular subtypes (genotypes) with specific
geographical distributions. HTLV-1 is classified into seven major
subtypes (a–g), with the Cosmopolitan subtype (HTLV-1a) being
the most widespread globally (1). Similarly, STLV-1 strains
exhibit genetic diversity corresponding to their host species and
geographical origins. The phylogenetic relationships between these
viruses provide valuable insights into their evolutionary history and
the patterns of cross-species transmission events that have shaped
their current distribution (9, 26, 27).

Understanding HTLV-1 pathogenesis is critical for developing
effective preventive and therapeutic strategies, but progress has
been limited by the lack of animal models that fully reflect
the human disease. Although models such as transgenic and
humanized mice have been used, they fall short in replicating
the complex virus-host dynamics of natural infection (28, 29).
In contrast, STLV-1-infected non-human primates offer greater
physiological relevance but require thorough characterization to
confirm their utility.

In this context, we investigated STLV-1 infection in a captive
C. aethiops population in Brazil, where HTLV-1 is endemic.
Using phylogenetic, clinical, and hematological analyses, we aimed
to clarify the evolutionary relationship of these STLV-1 strains
with known HTLV-1/STLV-1 isolates and assess the pathological
features of infection.

Materials and methods

This is a cross-sectional study conducted at the Laboratory of
Medical Investigation 56 (LIM/56), Faculty of Medicine, University
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of São Paulo. The study included C. aethiops specimens that
have been maintained in captivity for over three generations at
the National Primate Center (CENP) in Belém, Pará, where they
remain under standardized conditions, including regular veterinary
care, environmental enrichment, and controlled diet and housing.

Sample collection and study population
criteria

Peripheral blood samples were collected from each of the
52 animals via femoral vein puncture. Species identification was
performed on site by visual inspection, following the criteria
established in the Kingdon Field Guide to African Mammals (30).
Blood samples were centrifuged at 2,500 rpm for 15 min to separate
the plasma and leukocyte layer (buffy coat). Both plasma and buffy
coat fractions were then stored at−20◦C for subsequent analyses.

Inclusion criteria: Only non-human primates of the genus
Chlorocebus were included in this study.

Exclusion criteria: Only animals older than 2 years were
included to avoid potential interference from maternal antibodies.

Clinical and hematologic profiling

Each C. aethiops specimen underwent a standardized clinical
evaluation, including physical examination and hematological
analysis. The physical examination included measurement of body
weight, inspection of the ocular and oral mucosa, assessment of
skin turgor for hydration status, palpation of lymph nodes and
auscultation of the lungs. In addition, a complete blood count was
performed to determine the hematologic parameters. Peripheral
blood smears were taken and examined microscopically to detect
atypical and multilobulated lymphocytes characteristic of HTLV-1-
associated T-cell leukemia, such as “flower cells.”

Serological test

To quantify the titers of cross-reactive antibodies against
human T-cell lymphotropic virus type 1 (HTLV-1) in all plasma
samples, serological testing was performed using the Western blot
method (HTLV-Blot 2.4, MP Biomedicals). Briefly, plasma samples
were diluted 1:100 in the provided sample buffer and incubated
on nitrocellulose strips pre-coated with HTLV-1 viral antigens,
including disrupted virions, the recombinant gp21 (GD21) protein,
and specific peptides such as MTA-1 (corresponding to residues
162-209 of the gp46 protein). Strips were incubated for 1 h at
room temperature with gentle agitation. After washing to remove
unbound antibodies, strips were incubated with horseradish
peroxidase-conjugated anti-primate IgG secondary antibody for
30 min. Following further washes, antigen-antibody complexes
were visualized using a chromogenic substrate according to
the kit protocol.

Samples were classified as seropositive if they exhibited
antibody reactivity against the p19 and p24 core antigens as
well as envelope glycoproteins GD21 and MTA-1. Samples

showing antibodies against GD21 with or without p19 but lacking
p24 reactivity were considered inconclusive. Samples without
any specific bands, with only non-specific bands, or exhibiting
antibodies against structural proteins without the presence of GD21
or MTA-1 were classified as seronegative.

Molecular studies

For the extraction of genomic DNA from buffy coat cells, the
PureLinkTM Genomic DNA Mini Kit (Invitrogen, Massachusetts,
United States) was used, strictly following the manufacturer’s
protocol. The quality and concentration of the extracted DNA were
assessed using a Nanodrop spectrophotometer (Thermo Fisher
Scientific, Massachusetts, United States).

For the detection of STLV-1 provirus, two pairs of specific
primers amplifying regions of the LTR gene were used in a
nested PCR approach. In the first amplification cycle, the forward
(5′-TGACAATGACCATGAGCCCCAA-3′) and reverse (5′-
CGCGGAATAGGGCTAGCGCT-3′) primers were employed. For
the second cycle, a second pair of primers internal to the initial
reaction was used: forward (5′-GGCTTAGAGCCTCCCAGTGA-
3′) and reverse (5′-GCCTAGGGAATAAAGGGGCG-3′),
generating a final amplicon of 645 base pairs. The nested-
PCR reactions were prepared in a final volume of 26 µl, containing
11.45 µl of ultrapure H2O, 1.25 µl of 10× reaction buffer, 3.0 µl of
MgCl2 (50 mM), 6.0 µl of dNTPs (10 mM), 0.5 µl of each primer
(forward and reverse, 20 pmol), 0.3 µl of Taq DNA polymerase, and
3.0 µl of genomic DNA. The thermocycling conditions included
an initial denaturation at 94◦C for 5 min, followed by 35 cycles
of denaturation at 94◦C for 30 s, annealing at 52◦C for 30 s, and
extension at 72◦C for 40 s, with a final extension at 72◦C for
10 min. The second amplification cycle used identical conditions
with the internal primer pair.

Sequencing

The identity and integrity of the amplified LTR gene
fragments were confirmed by Sanger sequencing. Following
nested PCR amplification, the resulting amplicons (645 base
pairs) were purified using the PureLinkTM PCR Purification Kit
(Thermo Fisher Scientific), to remove excess primers, nucleotides,
and enzymes. Sequencing reactions were carried out using
the BigDyeTM Terminator v3.1 Cycle Sequencing Kit (Applied
Biosystems). Both forward and reverse primers from the nested
PCR were used in independent reactions to ensure bidirectional
coverage and increase accuracy.

Post-reaction cleanup of sequencing products was performed
using the BigDyeTM XTerminatorTM Purification Kit to remove
unincorporated dyes and salts. The purified reactions were
then loaded onto an ABI 3130xl Genetic Analyzer (Applied
Biosystems), and electropherograms were analyzed using
standard capillary electrophoresis conditions. Sequencing
quality was evaluated using Sequence Analysis Software, and
only high-quality reads were considered for further alignment and
phylogenetic analysis.
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Phylogenetic analyses

Phylogenetic analysis was carried out using the Maximum
Likelihood (ML) method implemented in IQ-TREE (31). The
most appropriate nucleotide substitution model, TIM2 + F + G4,
was selected using the ModelFinder tool, which evaluates
models based on the Akaike Information Criterion (AIC) and
the Bayesian Information Criterion (BIC). This step ensured
that the model best fit the evolutionary characteristics of the
dataset. To evaluate the robustness of the inferred phylogenetic
tree, a bootstrap analysis with 1,000 replicates was performed.
Branches with bootstrap support values greater than 80% were
considered statistically significant, providing confidence in the
topology of the tree.

Results

Serological and molecular detection

Among 52 sera specimens tested, 8 (15.4%) demonstrated
robust serological responses against critical HTLV-1 proteins (gp46,
p19, and p24), confirming STLV-1 infection. PCR amplification
successfully detected proviral DNA in 7 (13.4%) of these
seropositive specimens, while one case was confirmed exclusively
through Western blot assay. Four additional specimens exhibited
atypical immune profiles - two reacting solely to p19 and GD21, and
two responding only to GD21 (Figure 1). These specimens, lacking
proviral DNA detection and displaying non-standard serological
patterns, were classified as indeterminate and excluded from
subsequent analyses.

Clinical characteristics

All seven PCR-confirmed STLV-1-positive animals were adult
females with an average body weight of 3.5 ± 0.56 kg. Clinical
assessment revealed three animals with dermal dehydration and
two with lymphadenopathy, while none displayed respiratory or
mucosal abnormalities.

Hematological findings

Simian T-cell leukemia virus type 1-positive primates exhibited
significant alterations in immune parameters, particularly elevated
white blood cell counts with pronounced lymphocytosis (Figure 2).
This pattern reflects the clonal expansion of infected T-cells
typically observed in retroviral infections and mirrors findings in
human HTLV-1 cases. Microscopic examination of blood smears
from all positive specimens revealed the presence of distinctive
atypical lymphocytes with multilobulated nuclei, known as “flower
cells,” which are pathognomonic of HTLV-1-associated leukemia
in humans (Figure 3). No other significant abnormalities in red
blood cell morphology or platelet counts were detected in STLV-
1-positive animals.

Evolutionary relationships of STLV-1
isolates

Phylogenetic analysis revealed that STLV-1 isolates from
C. aethiops form a distinct monophyletic cluster, clearly
differentiated from previously described lineages (Figure 4).
This cluster positions strategically among predominant viral
lineages from African and Japanese origins.

Of note, these C. aethiops STLV-1 isolates demonstrate
remarkable genetic proximity to STLV-1 strains from baboons
(Papio anubis) (MF621980.1, MF621979.1, JX987040.1). More
intriguingly, they occupy an intermediate evolutionary position
between baboon isolates and HTLV-1 strains isolated from humans
of African descent (MN781150.1 to MN781155.1). This human
comparison group includes viral samples from West and North
African populations as well as individuals from French Guiana with
African ancestry.

The strategic intermediate phylogenetic position of the
C. aethiops STLV-1 isolates suggests they may represent an ancestral
form to contemporary human HTLV-1 strains, providing crucial
evidence for understanding the evolutionary history and cross-
species transmission dynamics of these retroviruses.

Discussion

In our study, STLV-1 infection in captive C. aethiops
in Brazil was investigated by serological, molecular, clinical
and hematological analyzes to characterize the evolutionary
relationships between the viruses and pathological manifestations
in a region where HTLV-1 is endemic in humans. Our serologic and
molecular results are consistent with established HTLV-1/STLV-
1 studies while providing new insights into retroviral infection
patterns through the identification of characteristic “flower cells”
in all STLV-1-positive samples from this particular C. aethiops
population in Brazil. The seroprevalence rate of 13.4% observed in
our study is consistent with previously reported STLV-1 infection
rates in various Old World primates, particularly the range of
11%–25% documented by Ishikawa et al. (32) in Indonesian
macaques and the seroprevalence of approximately 25% in Japanese
monkeys (33).

The significant serologic responses against critical HTLV-1
proteins (gp46, p19, and p24) in our positive samples reflect
the antigenic similarity between STLV-1 and HTLV-1 and
confirm the proven close evolutionary relationship between these
retroviruses. Previous studies (34–36) on the timing of cross-
species transmission provide a link to our results by providing an
evolutionary context for the antigenic similarities we observed. The
demonstration of strong cross-reactivity between STLV-1-infected
monkey samples and HTLV-1 test antigens confirms molecular
conservation between these viruses despite 27 300 years of separate
evolution (37). This conservation explains why our diagnostic tests
(EIA and WB) developed for HTLV-1 were successful in detecting
infection in monkeys, validating our methodological approach.

Our observation that all PCR-positive STLV-1 animals were
adult females is consistent with the epidemiologic patterns reported
by Hayami et al. (33), who found that STLV-1 incidence in Japanese
monkeys increases with age and is higher in females than in males.
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FIGURE 1

Western blot analysis of simian T-cell leukemia virus type 1 (STLV-1) serological profiles in non-human primates. Western blot results showing
positive patterns (left) and indeterminate patterns (right) for STLV-1 seroreactivity in non-human primates. Specimens classified as positive exhibited
strong reactivity to key STLV-1 proteins, including gp46, p19, and p24. Indeterminate samples displayed atypical profiles, with reactivity limited to
GD21 and/or p19.

FIGURE 2

Comparative analysis of hematological parameters between C. aethiops STLV-1+ and healthy specimens. The comparison between non-parametric
continuous variables was performed using the Mann-Whitney test.

This pattern has been confirmed in several species, as infection
status in Japan is positively correlated with age and the incidence
of the disease is higher in females than in males. This sex-specific
disparity is consistent with the epidemiology of HTLV-1 and
suggests similar transmission dynamics in non-human primates.
The positive correlation between STLV-1 infection status and age
likely reflects cumulative exposure risk over time, as older animals
have more opportunities for virus transmission through social
interactions and grooming behaviors.

The higher incidence of disease in females compared to
males can be attributed to several factors, including the
more frequent grooming behavior of females, sex-specific
immune responses that influence susceptibility to infection
(38), maternal transmission routes, and social structures in
which females remain in natal groups while males disperse.
This pattern mirrors HTLV-1 epidemiology in humans,
where seroprevalence generally increases with age and
adult females have higher rates than males, particularly in
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FIGURE 3

Flower cells observed in C. aethiops STLV-1+ specimens. The image shows a multilobed atypical cell with a characteristic “flower-like” appearance,
as highlighted in the stained smear preparation.

FIGURE 4

Phylogenetic analysis of simian T-cell leukemia virus type 1 (STLV-1) isolates highlighting the evolutionary relationship between C. aethiops and
other primate hosts. The phylogenetic tree illustrates the evolutionary relationships among STLV-1 isolates, with C. aethiops represented by yellow
branches. The analysis was performed using the 5′ 88–3′ 734 regions (645 bp, REF: MF621980.1) of the isolates. Black dots indicate branches with
bootstrap support > 80. Phylogeny was inferred using Maximum Likelihood in IQ-TREE, with the TIM2 + F + G4 model selected by ModelFinder
according to AIC/BIC, and branch support assessed by bootstrap. The distinct clustering of C. aethiops isolates (yellow) between baboon (purple)
(Papio anubis) and human isolates (orange) (MN781150.1-MN781155.10) suggests a potential interface in cross-species transmission or a shared
evolutionary history among these primate hosts.

endemic regions where maternal transmission is important
(39, 40).

While most STLV-1-positive subjects in our study appeared
clinically healthy on examination, a subgroup exhibited
subtle clinical manifestations, especially skin desiccation and
lymphadenopathy. These mild symptoms are in contrast
to the more severe HTLV-1-associated diseases observed in
humans, such as ATL and HAM. The high proportion of
asymptomatic STLV-1 carriers in our population reflects the

well-established pattern of HTLV-1 infection in humans, where
approximately 90%–95% of infected individuals remain clinically
silent throughout their lives. The absence of overt disease in
most seropositive animals reflects the characteristically long
latency period of deltaretrovirus infections, during which viral
persistence can last for years or decades before pathologic
consequences, if any, occur. These results suggest that our
captive C. aethiops population provides a valuable model for
studying the natural history of HTLV-1 infection, particularly the
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asymptomatic carrier state, which is the most common clinical
outcome in humans.

Our hematologic findings showed an increased white blood
cell count with lymphocytosis in STLV-1-positive animals, which
is consistent with the immune response to viral infection (41).
However, it would be premature to call this a clonal expansion
in the absence of molecular evidence of T-cell clonality. Although
HTLV-1 infection in humans can lead to clonal expansion of
infected T cells, particularly during progression to ATL, this
process usually occurs over decades and is not necessarily present
in asymptomatic carriers (42, 43). The observed lymphocytosis
probably represents a polyclonal immune response to viral antigens
rather than a true clonal expansion.

In particular, the detection of “flower cells” in all positive
samples is a critical finding, as these cells are pathognomonic
for HTLV-1-associated leukemia in humans. This observation is
consistent with previously published reports showing that STLV-
1 induces ATL in naturally infected NHPs (44, 45), despite
some differences in auxiliary proteins (7). The presence of these
characteristic hematologic markers in our C. aethiops population
argues that STLV-1-infected African green monkeys are a valuable
model for HTLV-1 research. This is particularly important as
African green monkeys have been identified as natural carriers
of STLV-1 (37). The detection of flower cells in our samples
represents a direct cellular manifestation that occurs in both
monkey and human infections, emphasizing the translational
value of this model.

Phylogenetic analysis reveals a clear relationship between
STLV-1 isolates of C. aethiops and other primate hosts. The distinct
monophyletic cluster formed by STLV-1 isolates occupies an
intermediate position between baboon isolates (Papio anubis) and
HTLV-1 strains from humans of African descent. This intermediate
position provides convincing evidence for the evolutionary history
of these retroviruses. The close genetic proximity between STLV-1
from C. aethiops and STLV-1 strains from baboons (MF621980.1,
MF621979.1, JX987040.1) is consistent with previous findings by
Meertens et al. (46), who identified STLV-1 in C. aethiops that was
identical to an STLV-1 strain from Papio anubis (PAN 503) from
the same geographic region in Cameroon. This suggests possible
cross-transmission between different primate species living in the
same environment.

The phylogenetic positioning of C. aethiops STLV-1 between
baboon isolates and African-origin human HTLV-1 strains
(MN781150.1 to MN781155.1) supports the hypothesis that these
viruses may represent an ancestral lineage to modern HTLV-1
strains in humans. This finding is consistent with the hypothesis
of multiple cross-species transmission from non-human primates
to humans. As highlighted in the review by Jégado et al. (37),
Yamashita et al. (47), the diversity of STLV-1 across various non-
human primate species and its correspondence to specific HTLV-
1 subtypes from the same geographic regions strongly suggest
repeated zoonotic transmission events. This is particularly relevant
considering that HTLV-1 subtype B is closely related to STLV-1
strains infecting various African primates, including chimpanzees
and gorillas from central African regions, with sequence identity
reaching 98% (48).

The transmission dynamics between STLV-1 and HTLV-1
are particularly noteworthy. In Japanese macaque troops infected
with STLV-1, extremely high genomic identity (> 99%) has

been observed (49), in contrast to the greater genetic diversity
seen among African non-human primates and humans. his
disparity suggests the influence of distinct evolutionary pressures
or transmission patterns across geographic regions. While HTLV-
1 is primarily transmitted among humans via sexual contact,
mother-to-child transmission, or exposure to infected blood, STLV-
1 transmission in non-human primates occurs mainly through
aggressive interactions. However, sexual transmission may play a
more prominent role in certain species, such as vervet monkeys
(50, 51).

The molecular clock analysis performed by Dooren et al.
(52) suggests that STLV-1 was introduced to the Asian continent
approximately 156,000–269,000 years ago, while the origin of
HTLV-1 subtypes A, B, D and E dates back to approximately
27,300 ± 8,200 years ago. These time frames in conjunction with
the phylogenetic positioning of the STLV-1 isolates of C. aethiops
contribute to our understanding of the evolutionary history of these
retroviruses and their cross-species transmission patterns.

Despite these results, this study has several limitations.
The small sample size of captive C. aethiops in a non-native
environment may not fully represent wild populations, which could
affect the generalizability of our results. The cross-sectional design
prevents assessment of disease progression over time, limiting
our understanding of the natural history of STLV-1 infection. In
addition, we relied on diagnostic tests optimized for the detection
of HTLV-1 in humans rather than STLV-1-specific tests, and
molecular characterization was limited to partial viral sequences
rather than complete genomes. The lack of immunophenotyping
and T-cell receptor gene rearrangement studies prevents definitive
confirmation of clonality in the observed lymphocytosis.

In conclusion, our results demonstrate that STLV-1 infection
in captive C. aethiops produces serologic, molecular, and cellular
manifestations remarkably similar to those of HTLV-1 infection
in humans, with the phylogenetic positioning of these isolates
providing compelling evidence for their role in the evolutionary
pathway between simian and human deltaretroviruses. The
presence of characteristic “flower cells” in all positive samples
despite asymptomatic clinical presentations suggests that these
animals may serve as valuable models for studying the early
stages and natural history of HTLV-1 infection, particularly
the mechanisms underlying the transition from asymptomatic
transmission to disease development. This study supports the
evidence for multiple cross-species transmission events in the
evolutionary history of these retroviruses and emphasizes the
importance of continuous monitoring of STLV-1 in non-human
primates as potential reservoirs for emerging human pathogens.

Despite these advances, several questions remain unanswered.
First, the temporal dynamics of clinical progression in STLV-
1–infected primates, including the possible evolution toward
diseases similar to ATL or HAM, have yet to be established
due to the cross-sectional design of the study. Additionally,
the absence of comprehensive analyses of cellular clonality,
such as immunophenotyping and T-cell receptor rearrangement
studies, limits the understanding of the true nature of the
observed lymphocytosis. Another relevant point is the lack of
complete genomic characterization of the isolated viruses, which
restricts detailed analysis of genetic variations that may influence
pathogenesis and transmissibility.
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