
fmed-12-1616923 June 30, 2025 Time: 19:27 # 1

TYPE Original Research
PUBLISHED 03 July 2025
DOI 10.3389/fmed.2025.1616923

OPEN ACCESS

EDITED BY

Feilong Zhu,
Beijing Normal University, China

REVIEWED BY

Zhonghai Li,
The First Affiliated Hospital of Dalian Medical
University, China
Roberta Sefcik,
Medical University of South Carolina,
United States

*CORRESPONDENCE

Chunyang Meng
mengchunyang1600@mail.jnmc.edu.cn

Hong Wang
wanghongspine@126.com

Qingwei Li
plasurg0618@163.com

RECEIVED 23 April 2025
ACCEPTED 09 June 2025
PUBLISHED 03 July 2025

CITATION

Qi B, Kong K, Wu Q, Zhang L, Wei W,
Meng C, Wang H and Li Q (2025) Machine
learning-driven prediction of risk factors
for postoperative re-fractures in elderly
OVCF patients with underlying diseases:
model development and validation.
Front. Med. 12:1616923.
doi: 10.3389/fmed.2025.1616923

COPYRIGHT

© 2025 Qi, Kong, Wu, Zhang, Wei, Meng,
Wang and Li. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Machine learning-driven
prediction of risk factors for
postoperative re-fractures in
elderly OVCF patients with
underlying diseases: model
development and validation
Bao Qi1, Kai Kong2, Qingquan Wu3, Lu Zhang1, Wei Wei4,
Chunyang Meng1*, Hong Wang5,6* and Qingwei Li1,5*
1Department of Spine Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China,
2Department of Public Health, Affiliated Hospital of Jining Medical University, Jining, Shandong, China,
3Department of Interventional Radiography, Affiliated Hospital of Jining Medical University, Jining,
Shandong, China, 4Department of medical research center, Affiliated Hospital of Jining Medical
University, Jining, Shandong, China, 5China Medical University, Shenyang, Liaoning, China,
6Department of Spine Surgery, Dalian Central Hospital, Dalian, Liaoning, China

Background: Postoperative re-fractures in elderly osteoporotic vertebral

compression fracture (OVCF) patients with comorbidities pose a major

clinical challenge, with rates up to 52%. Traditional risk models overlook

complex underlying diseases interactions in elderly patients. This study

pioneers a machine learning (ML) framework for this high-risk group,

integrating multidimensional factors to predict re-fractures and identify

novel predictors.

Methods: We analyzed 560 OVCF patients with comorbidities who underwent

percutaneous vertebroplasty (PVP). Fourteen characteristic variables—

including scoliosis, chronic kidney disease (CKD), mental disorders, and

cardiovascular comorbidities—were selected using feature engineering.

Six ML models [Random Forest (RF), XGBoost, support vector machine

(SVM), etc.,] were trained and validated. Model performance was rigorously

assessed via AUC-ROC, precision-recall curves, and decision curve analysis

(DCA). SHapley Additive exPlanations (SHAP) values provided interpretable

risk quantification.

Results: The RF model achieved superior predictive performance (test

AUC = 0.88, sensitivity = 0.77, specificity = 0.87), outperforming conventional

approaches. Notably, we identified scoliosis (SHAP = 0.14), mental disorders

(0.12), and CKD (0.10) as the three top risk factors, with biomechanical

and comorbidity interactions playing pivotal roles. DCA confirmed

high clinical utility, with RF providing the greatest net benefit across

risk thresholds.
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Conclusion: This pioneering study establishes ML as a transformative tool for

re-fracture prediction in OVCF patients with underlying diseases, uncovering

previously underappreciated risk factors. Our findings highlight the critical

need for integrated management of spinal deformity, mental health, and renal

function in this vulnerable population. This ML framework offers a paradigm shift

in personalized risk stratification and postoperative care.

KEYWORDS

OVCF, re-fracture, machine learning, risk factor, underlying diseases

1 Introduction

Osteoporotic vertebral compression fractures (OVCF)
represent one of a major health burden in aging populations, with
postoperative re-fractures following percutaneous vertebroplasty
(PVP) posing significant challenges to clinical management.
Despite advancements in surgical techniques, re-fracture rates
remain alarmingly high (5.5%–52%), necessitating secondary
interventions and severely impairing patients’ quality of life (1–4).
Traditional risk prediction models, predominantly based on linear
statistical methods, focus on conventional factors such as bone
mineral density (BMD) and age. However, these models often
overlook the intricate interplay of comorbidities and non-linear
interactions inherent to elderly patients with multimorbidity,
limiting their predictive accuracy and clinical utility.

The multifactorial nature of re-fracture risk—encompassing
age, bone density, comorbidities, and lifestyle factors—necessitates
predictive frameworks capable of deciphering complex, non-linear
interactions. Traditional statistical methods often falter in this
context due to their reliance on linear assumptions and limited
capacity to handle heterogeneous, high-dimensional clinical data
with frequent missing values (5). In contrast, machine learning
(ML) has emerged as a transformative tool, demonstrating superior
performance in capturing intricate patterns across diverse medical
domains, from cardiovascular risk stratification to postoperative
complication prediction in spinal surgery (6–8). Recent studies
have begun leveraging ML to address these challenges. For instance,
Ju and Liu (9) developed a nomogram model incorporating
age, bone mineral density (BMD), and anti-osteoporosis therapy,
achieving moderate predictive accuracy (AUC = 0.81). However,
their linear approach overlooked critical comorbidity-driven
pathways, such as chronic kidney disease (CKD) and impaired
mental status, which are prevalent in elderly populations. Similarly,
Cai et al. (10) employed a SVM algorithm but were constrained
by a limited cohort (n = 385) and a narrow feature set
excluding key comorbidities, thereby inadequately representing the
heterogeneous risk profiles of elderly patients.

These limitations highlight two persistent gaps: (1) the need for
ML models that explicitly address non-linear interactions between
biomechanical factors and comorbidities, and (2) the imperative to
bridge model predictions with clinically interpretable insights. Our
study advances the field through three pivotal innovations. First,
we analyze a comprehensive cohort of 560 elderly OVCF patients,
integrating 14 characteristic variables spanning comorbidities (e.g.,

hypertension, CKD), mental health status, and spinal biomechanics
(e.g., scoliosis)—dimensions largely neglected in prior studies.
Second, we rigorously compare six ML algorithms (including
Random Forest, XGBoost, and SVM) to identify the optimal
model for clinical translation. Third, by employing SHapley
Additive exPlanations (SHAP), we quantify the contribution of
non-traditional predictors, unraveling their mechanistic roles in re-
fracture pathogenesis. This integration of comorbidity complexity
with interpretable ML not only refines risk stratification but also
unveils novel modifiable targets for personalized interventions.

2 Materials and methods

2.1 Study design and cohort selection

This retrospective cohort study enrolled 560 patients diagnosed
with OVCF who underwent PVP between August 2015 and August
2024 at a tertiary medical center. Re-fractures were defined as
radiologically confirmed new vertebral compression fractures at
any level (adjacent or non-adjacent) occurring post-PVP, excluding
fractures at the initially treated level. In this analysis, mental
disorders included documented diagnoses such as depression,
anxiety disorders, bipolar disorder, and schizophrenia, based on
ICD-10 codes from electronic medical records. Inclusion criteria
were: (1) confirmed fresh vertebral fracture via MRI (low T1
and high T2 signals) with localized tenderness and low back
pain; (2) osteoporosis diagnosis based on dual-energy X-ray
absorptiometry (DXA) or quantitative computed tomography
(QCT) (T-score ≤ −2.5 or bone mineral density < 80 mg/cm3); (3)
absence of pathological fractures (e.g., spinal tumors or infections)
or high-energy trauma. Patients with prolonged bedridden status or
incomplete follow-up data were excluded. The cohort was stratified
into re-fracture and non-re-fracture groups based on postoperative
imaging and clinical evaluations.

2.2 Data preprocessing and feature
engineering

Data were extracted from electronic health records and
standardized to ensure consistency. Missing values were
addressed using predictive mean matching, a multiple imputation
method preserving data distribution integrity (11). Continuous
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FIGURE 1

Machine learning workflow from data preprocessing to model prediction and SHAP-based explanation.

variables (e.g., age, bone density) were normalized via z-score
transformation. Feature selection was performed using logistic
regression (LR), which identified 14 non-zero coefficients by
minimizing the binomial deviance through 10-fold cross-validation
(12)

2.3 ML model development

The dataset was randomly split into a training set (70%) and a
testing set (30%). Six ML models were developed and evaluated: RF,
LR, XGBoost, SVM, GBM, and MLP (13, 14). Model training and
evaluation were conducted using Python (version 3.9) with libraries
such as Scikit-learn, XGBoost, and SHAP.

2.4 Model evaluation and interpretability

Model performance was assessed using the AUC-ROC,
accuracy, sensitivity, specificity, F1 score, and PR curves.
Calibration curves evaluated prediction reliability, while DCA
quantified clinical utility by calculating net benefit across threshold
probabilities (0.0–1.0) (15). To enhance interpretability, SHAP

values were computed to rank feature importance and visualize
directional impacts on predictions (16).

The flow chart for the study was shown in Figure 1.

3 Results

3.1 Baseline characteristics of the cohort

The study cohort comprised 560 patients with OVCF, divided
into a training set (n = 392, 70%) and a testing set (n = 168,
30%). Baseline characteristics, including demographic and clinical
variables, were well-balanced between the two sets, with no
significant differences observed in most indicators (all p > 0.05,
Table 1). The mean age of the cohort was 69.91 ± 6.77 years,
with a slightly higher proportion of females (54.5%) compared to
males (45.5%). Key comorbidities included hypertension (62.1%),
diabetes mellitus (DM) (42.3%), chronic obstructive pulmonary
disease (COPD, 54.8%), and CKD, 29.5%. Notably, the prevalence
of re-fractures was consistent across the training (33.4%) and
testing sets (33.9%, p = 0.984), ensuring comparable risk profiles for
model development and validation. The balanced data partitioning,
supported by p-values > 0.05 for all indicators, confirms the
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TABLE 1 Baseline demographic and clinical characteristics of elderly osteoporotic vertebral compression fracture patients: overall cohort and training
vs. testing set comparison.

Variables Category Overall
(n = 560)

Test (n = 168) Train (n = 392) P

Sex (%) Male 255 (45.5) 87 (51.8) 168 (42.9) 0.064

Female 305 (54.5) 81 (48.2) 224 (57.1) –

Age [mean (SD)] 69.91 (6.77) 69.39 (6.81) 70.14 (6.75) 0.233

Career (%) Farmer 151 (27.0) 40 (23.8) 111 (28.3) 0.319

Retire 409 (73.0) 128 (76.2) 281 (71.7) –

Smoking_gte_10a (%) No 361 (64.5) 119 (70.8) 242 (61.7) 0.049

Yes 199 (35.5) 49 (29.2) 150 (38.3) –

Alcohol_gte_10a (%) No 376 (67.1) 110 (65.5) 266 (67.9) 0.652

Yes 184 (32.9) 58 (34.5) 126 (32.1) –

Health insurance (%) No 29 (5.2) 10 (6.0) 19 (4.8) 0.739

Yes 531 (94.8) 158 (94.0) 373 (95.2) –

OP_lte_1 (%) No 292 (52.1) 85 (50.6) 207 (52.8) 0.698

Yes 268 (47.9) 83 (49.4) 185 (47.2) –

Hyp (%) No 212 (37.9) 60 (35.7) 152 (38.8) 0.556

Yes 348 (62.1) 108 (64.3) 240 (61.2) –

DM (%) No 323 (57.7) 89 (53.0) 234 (59.7) 0.167

Yes 237 (42.3) 79 (47.0) 158 (40.3) –

COPD (%) No 253 (45.2) 70 (41.7) 183 (46.7) 0.317

Yes 307 (54.8) 98 (58.3) 209 (53.3) –

ST (%) No 318 (56.8) 91 (54.2) 227 (57.9) 0.468

Yes 242 (43.2) 77 (45.8) 165 (42.1) –

P.ST (%) No 423 (75.5) 124 (73.8) 299 (76.3) 0.607

Yes 137 (24.5) 44 (26.2) 93 (23.7) –

CHD (%) No 316 (56.4) 91 (54.2) 225 (57.4) 0.539

Yes 244 (43.6) 77 (45.8) 167 (42.6) –

PCI (%) No 480 (85.7) 143 (85.1) 337 (86.0) 0.895

Yes 80 (14.3) 25 (14.9) 55 (14.0) –

Trauma (%) No 330 (58.9) 96 (57.1) 234 (59.7) 0.639

Yes 230 (41.1) 72 (42.9) 158 (40.3) –

Mental (%) No 427 (76.2) 120 (71.4) 307 (78.3) 0.1

Yes 133 (23.8) 48 (28.6) 85 (21.7) –

OST (%) No 332 (59.3) 89 (53.0) 243 (62.0) 0.058

Yes 228 (40.7) 79 (47.0) 149 (38.0) –

Gout (%) No 535 (95.5) 162 (96.4) 373 (95.2) 0.655

Yes 25 (4.5) 6 (3.6) 19 (4.8) –

Tumor (%) No 542 (96.8) 162 (96.4) 380 (96.9) 0.958

Yes 18 (3.2) 6 (3.6) 12 (3.1) –

Scoliosis (%) No 269 (48.0) 84 (50.0) 185 (47.2) 0.605

Yes 291 (52.0) 84 (50.0) 207 (52.8) –

Operating (%) No 531 (94.8) 160 (95.2) 371 (94.6) 0.934

Yes 29 (5.2) 8 (4.8) 21 (5.4) –

(Continued)
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TABLE 1 (Continued)

Variables Category Overall
(n = 560)

Test (n = 168) Train (n = 392) P

CKD (%) No 395 (70.5) 119 (70.8) 276 (70.4) 1

Yes 165 (29.5) 49 (29.2) 116 (29.6) –

Re-fra (%) No 372 (66.4) 111 (66.1) 261 (66.6) 0.984

Yes 188 (33.6) 57 (33.9) 131 (33.4) –

Group (%) Test 168 (30.0) 168 (100.0) 0 (0.0) < 0.001

Train 392 (70.0) 0 (0.0) 392 (100.0) –

FIGURE 2

Variable selection by the LASSO regression model. (A) Lasso coefficient paths illustrating the shrinkage of regression coefficients as the penalty
parameter [log(λ)] increases. The vertical axis represents coefficient magnitudes, with coefficients shrinking toward zero as λ increases, reflecting
the sparsity-inducing property of Lasso. (B) Cross-validation results evaluating model performance across different λ values.

FIGURE 3

Performance assessment of ML models on training and testing datasets. (A) Receiver operation characteristic (ROC) curves for the training set,
displaying the true positive rate against the false positive rate for the six ML models. The area under the curve (AUC) values indicate high predictive
performance. (B) ROC curves for the testing set, showing consistent performance across models (C) DCA for the testing set, depicting the net
benefit of each model across threshold probabilities. (D) Calibration curves for the testing set, comparing the predicted probabilities with the
observed fraction of positives. (E1) Precision-Recall (PR) curves for the training set, highlighting the trade-off between precision and recall. (E2) PR
curves for the testing set, demonstrating consistent performance across models.
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TABLE 2 Comparative performance evaluation of machine learning models for postoperative re-fracture prediction in elderly osteoporotic vertebral
compression fracture patients: training vs. testing set metrics.

Model Label Data set Threshold AUC Accuracy Sensitivity Specificity F1

Logistic
regression

LR Train 0.26 0.88 0.78 0.89 0.72 0.73

Logistic
regression

LR Test 0.26 0.87 0.79 0.88 0.75 0.74

Random forest RF Train 0.43 0.99 0.95 0.98 0.94 0.93

Random forest RF Test 0.41 0.88 0.84 0.77 0.87 0.77

MLP MLP Train 0.48 0.96 0.9 0.82 0.94 0.85

MLP MLP Test 0.36 0.88 0.82 0.79 0.83 0.74

SVM SVM Train 0.22 0.94 0.85 0.9 0.82 0.8

SVM SVM Test 0.31 0.86 0.78 0.75 0.79 0.7

XGBoost XGB Train 0.37 0.98 0.92 0.95 0.9 0.88

XGBoost XGB Test 0.26 0.87 0.8 0.84 0.77 0.74

GBM GBM Train 0.4 0.97 0.9 0.94 0.88 0.86

GBM GBM Test 0.3 0.88 0.82 0.88 0.78 0.76

absence of significant bias between the two groups, validating the
rationality and robustness of the dataset for ML analysis.

3.2 LR was utilized to select 14 variables
for model construction

The LR analysis identified 14 characteristic variables of 22
variables. As illustrated in the coefficient trajectory plot (Figure 2A),
which visualizes the regularization paths of variables during
parameter tuning, increasing penalty parameters (λ) progressively
eliminated non-contributory variables, retaining 14 features with
non-zero coefficients. Cross-validation (Figure 2B) determined
the optimal λ by minimizing binomial deviance, balancing
model simplicity and predictive accuracy. Characteristic variables
included scoliosis, mental status, CKD, trauma history, number of
treated vertebrae ≤ 1 in the initial surgery (OP_lte_1), coronary
heart disease (CHD), hypertension, DM, alcohol consumption ≥ 10
year (Alcohol_gte_10a), COPD, osteoarthritis (ost), coronary
stent implantation, gout, tumor. These selected features were
subsequently utilized for training and validating ML models,
ensuring robust risk stratification while avoiding over fitting.

3.3 ML model performance

Six ML models were evaluated on an independent testing
set (30% of the cohort), with the RF algorithm demonstrating
superior performance across both training and testing phases.
On the training set, RF achieved near-perfect discrimination
(AUC = 0.99, 95% CI: 0.96–1.03; Figure 3A) and exceptional
PR performance (AUC = 0.99; Figure 3E1), indicating robust
learning without over fitting. Other models, including XGBoost
(training set PR AUC = 0.96), GBM (0.95), and MLP (0.93), also
showed strong performance, while SVM (0.90) and LR (0.82)
lagged behind. This superiority extended to the test set, where

RF maintained an AUC of 0.88 (95% CI: 0.83–0.93; Figure 3B),
significantly outperforming LR (0.87), SVM (0.86), and XGBoost
(0.87). Detailed performance metrics (Table 2) further validated
RF’s dominance: on the training set, RF achieved the highest
accuracy (0.95), sensitivity (0.98), and F1 score (0.93), while
on the test set, it retained robust performance with accuracy
(0.84), sensitivity (0.77), and specificity (0.87), surpassing SVM
(accuracy = 0.78, F1 = 0.70) and LR (accuracy = 0.79, F1 = 0.74).
DCA (Figure 3C) highlighted RF’s clinical utility, yielding the
highest net benefit across threshold probabilities (0%–100%), while
calibration curves (Figure 3D) confirmed strong alignment between
predicted and observed outcomes (Brier score = 0.12). PR analysis
on the test set (Figure 3E2) further reinforced RF’s reliability
(AUC = 0.78), exceeding SVM (0.81) and GBM (0.82). Collectively,
these results underscore RF’s consistency, generalizability, and
clinical applicability in post-PVP re-fracture risk prediction.

3.4 Clinical utility and DCA

The RF model demonstrated robust performance across
multiple evaluation metrics, as detailed in Figure 4. On the training
set, RF exhibited near-perfect discriminative ability with an AUC
of 0.99 (95% CI: 0.96–1.03; Figure 4A), while maintaining strong
generalizability to the test set (AUC = 0.88, 95% CI: 0.83–0.93;
Figure 4B). PR analysis on the test set (Figure 4C) further validated
RF’s reliability, achieving an AUC of 0.78, which, although slightly
lower than SVM (0.81) and GBM (0.82), reflected its balanced
performance in clinical risk stratification. DCA (Figure 4D)
highlighted RF’s superior clinical utility, yielding the highest
net benefit across threshold probabilities (0%–100%), particularly
at the clinically relevant 20% threshold (net benefit = 0.6),
outperforming alternative strategies. The Kolmogorov-Smirnov
curve (Figure 4E) underscored RF’s discriminative power, with a
KS statistic of 0.646, indicating clear separation between high-
and low-risk patients. Finally, the confusion matrix (Figure 4F)
quantified RF’s classification performance on the test set: 100 true
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negatives (specificity = 0.83), 36 true positives (sensitivity = 0.78),
and an overall accuracy of 0.81, aligning with its robust calibration
(Brier score = 0.12). Collectively, these results position RF as
a comprehensive tool for post-PVP re-fracture risk prediction,
excelling in both statistical rigor and clinical applicability 0.5.

3.5 Interpretability of predictive features
via SHAP

SHAP analysis elucidated feature variables contributions to RF
predictions (Figures 5A, B). The SHAP scatter plot (Figure 5A)
further elucidated the relationship between feature values and their
impact on the model’s output. Directional impacts were visualized
through a SHAP scatter plot (Figure 5A), where binary features
(e.g., “scoliosis_Yes”) exhibited strong positive associations with
elevated risk (red dots, SHAP > 0). Conversely, absence of these
features (blue dots, SHAP < 0) correlated with reduced risk. SHAP
analysis revealed scoliosis (mean SHAP value = 0.14), impaired
mental status (0.12), and CKD (0.10) as the top three predictors
of re-fracture risk (Figure 5B). Secondary contributors included
trauma history (SHAP = 0.08), severe osteoporosis (0.07), and
coronary heart disease (0.06). Positive SHAP values for these
features emphasizing the clinical relevance of these predictors (17).

4 Discussion

This study represents the first comprehensive integration of
biomechanical, comorbidity, and mental health factors into a ML
framework for predicting re-fracture risk in elderly OVCF patients
with comorbidities following PVP. Our RF model demonstrated
superior discriminative performance (AUC = 0.88 in the test set).
SHAP analysis identified scoliosis, mental disorders, and CKD as
the top three predictors of re-fracture risk. The model’s robustness
was further confirmed by DCA, which highlighted its clinical utility
across various threshold probabilities. These findings underscore
the potential of ML models, particularly RF, in enhancing risk
stratification and postoperative management in elderly OVCF
patients with comorbidities.

4.1 ML implications and comparative
analysis

While SVM and LR demonstrated comparable AUC
performance (0.86–0.88) on the test set, the RF model exhibited
significantly greater clinical net benefit (DCA curve area,
Figure 3C), underscoring its superior decision-making utility
for high-risk thresholds. This finding contrasts with Cai et al.
(10), potentially due to their limited sample size (n = 385)
compromising model stability. The RF model’s outperformance
is consistent with established literature highlighting its efficacy
in modeling complex, non-linear clinical data (18), particularly
in capturing interactions among heterogeneous variables (e.g.,
comorbidities and biomechanical factors) often overlooked
by linear models (19, 20). Notably, our results align with Xu
et al. (21), who demonstrated RF’s robustness with imbalanced

medical data—a frequent challenge in fracture risk prediction.
The observed advantage of ensemble methods (RF/XGBoost)
over simpler models (e.g., LR) reinforces the hypothesis that re-
fracture risk is driven by multifactorial, non-additive interactions.
Nevertheless, LR’s competitive AUC (0.88) implies that linear
relationships may still dominate certain risk pathways, suggesting
the need for future research into hybrid modeling strategies.

The model’s ability to provide interpretable predictions through
SHAP values is a significant advancement over traditional “black-
box” ML models. SHAP analysis not only identified the most
important predictors but also quantified their impact on the
model’s output, offering clinicians actionable insights (22). This
level of interpretability is crucial for clinical adoption, as it
allows healthcare providers to understand the rationale behind
each prediction and tailor interventions accordingly. Similar
approaches have been successfully applied in other medical
domains, such as cardiovascular risk prediction (23) and cancer
prognosis (24), further validating the utility of explainable ML
models in healthcare.

4.2 Interpretation of key risk factors

Scoliosis has been identified as the strongest predictor
of re-fractures in elderly patients with underlying diseases
and OVCF (SHAP = 0.14). This result is supported by the
previous studies (25–27) which demonstrating its significant
biomechanical and metabolic impact. The abnormal spinal
curvature disrupts load distribution, creating asymmetric stress
concentrations that increase fracture susceptibility—evidenced
by a postoperative Cobb angle ≥ 20◦ doubling the hazard ratio
(HR = 6.243, p < 0.001) and finite element analyses highlighting
uneven stress patterns in the “vertebral fractured arc” (T10–
L4), where 93.6% of re-fractures occur. Additionally, scoliosis
exacerbates osteoporosis progression through a bidirectional
relationship: spinal malalignment accelerates bone loss via
mechanical strain-induced osteoclast activation and impaired
nutrient diffusion, leading to lower BMD at fracture sites (−3.7
vs. −3.2, p = 0.014) and further weakening structural integrity.
This vicious cycle of biomechanical stress and bone fragility
underscores scoliosis as a critical risk factor for post-surgical
re-fractures, particularly after procedures like percutaneous
kyphoplasty, where cement augmentation intensifies adjacent-
segment stress. The identification of scoliosis as a top predictive
factor in machine learning models highlights its critical role in
vertebral re-fracture risk stratification. Clinically, this enables early
intervention for high-risk patients—particularly elderly individuals
with degenerative scoliosis—through multimodal approaches:
biomechanical stabilization (bracing to correct load imbalance),
osteoporosis management (antiresorptives, calcium/vitamin D
supplementation), and nutritional optimization (protein-calorie
support). Future interventions should combine these strategies
with close monitoring of Cobb angle progression and BMD changes
to disrupt the vicious cycle of spinal deformity and bone fragility.

Mental disorders (SHAP = 0.12) increased fracture risk may
through neuroendocrine dysregulation, chronic inflammation,
and oxidative stress, which impair bone remodeling and reduce
bone density. Depression disrupts bone homeostasis through
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FIGURE 4

Comprehensive evaluation of the RF model using diverse performance metrics. (A) ROC curves for the training set, demonstrating the RF model’s
high discriminative ability. The curve shows the trade-off between the true positive rate and false positive rate. (B) ROC curves for the testing set,
where the RF model maintains robust performance with an AUC of 0.88 (95% CI: 0.83–0.93), indicating effective generalization to unseen data. (C)
PR curves for the testing set, comparing the original and calibrated RF models. The calibrated model shows improved PR trade-offs, reflecting better
probabilistic calibration. (D) Decision Curve Analysis (DCA) for the RF model, illustrating the net benefit across threshold probabilities. (E)
Kolmogorov-Smirnov (KS) curve for the RF model, highlighting the separation between cumulative positive and negative distributions. The KS
statistic of 0.646 indicates strong discriminatory power. (F) Confusion matrix for the RF model on the test set, showing the distribution of true and
predicted labels. The matrix reveals the model’s accuracy, with 100 true negatives, 36 true positives, 11 false positives, and 21 false negatives.

FIGURE 5

SHAP analysis for the RF model on the test set, illustrating feature importance and their impact on model predictions. (A) SHAP scatter plot for the RF
model, displaying the relationship between feature values and their SHAP values (impact on model output). The color gradient represents feature
values, with high values in red and low values in blue. (B) SHAP summary plot, ranking features by their mean absolute SHAP values, which reflect
their average impact on model output magnitude. “scoliosis_Yes” and “CKD_Yes” are among the top contributors, highlighting their importance in
driving the model’s decisions. Each point represents a SHAP value for a single instance, with the horizontal axis indicating the SHAP value and the
vertical axis listing the features in order of importance.

chronic inflammation, hypothalamic-pituitary-adrenal axis
dysregulation, and oxidative stress, impairing osteoblast function
and accelerating bone loss, as evidenced by a pooled hazard ratio of
1.24 for fractures in depressed individuals (28). Pharmacologically,
selective serotonin reuptake inhibitors exacerbate fracture risk
by inhibiting serotonin transporters in bone cells, suppressing
osteoblast activity and enhancing osteoclastogenesis, with cohort

studies showing adjusted HRs of 1.43 and 1.48 for major
osteoporotic and hip fractures, respectively, even after adjusting for
depression severity (29, 30). Notably, conventional risk assessment
tools like FRAX underestimate fracture risk by 29%–36% in these
populations due to the exclusion of mental health and psychotropic
medication parameters, delaying critical interventions such as bone
mineral density (BMD) monitoring or anti-resorptive therapies
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(30). To mitigate re-fracture risk, a multidisciplinary approach
is essential: integrating mental health history into risk models,
optimizing psychotropic prescriptions (e.g., favoring serotonin-
norepinephrine reuptake inhibitors), addressing modifiable
lifestyle risks, and prioritizing anti-osteoporotic therapies. Future
studies should evaluate SSRIs as a potential mediator of fracture
risk given their possible contribution to bone fragility, while
also working to disentangle the independent contributions
of mental disorders versus psychotropic medications, explore
serotonin’s role in bone metabolism, and validate mental health-
inclusive prediction models to refine preventive strategies for this
vulnerable cohort.

Chronic kidney disease (SHAP value = 0.10) has been
increasingly recognized as a significant risk factor for re-fracture
following osteoporotic fractures, supported by converging clinical
and epidemiological evidence. The association is multifaceted,
involving direct skeletal alterations and systemic complications.
First, CKD-induced mineral and bone disorders impair bone
quality by disrupting calcium-phosphate homeostasis, leading to
secondary hyperparathyroidism, abnormal bone turnover, and
adynamic bone disease, which collectively reduce mechanical
integrity. Additionally, uremia-induced oxidative stress and
chronic inflammation accelerate bone resorption while suppressing
osteoblast activity, as noted in Shimizu et al.’s (31) machine learning
study, which ranked CKD as a top predictor of re-fracture due
to dysregulated bone remodeling. Second, CKD patients often
have comorbidities—such as cardiovascular disease, neuropathy,
and muscle wasting—that synergistically increase fracture risk.
Lourenço et al. (32) observed that CKD shortened the time
to contralateral hip re-fracture, partly due to heightened fall
propensity from frailty and uremia-related cognitive impairment.
Third, suboptimal bone health management exacerbates risk;
despite guidelines, Lin et al. (33) found only 6.8% of dialysis
patients received anti-osteoporotic therapy, while Lourenço et al.
(32) noted 78.9% of hip fracture patients (including CKD cases)
lacked postoperative bone protection. This gap is critical, as
CKD accelerates bone loss and complicates treatment (e.g.,
bisphosphonate contraindications in severe renal impairment).
In conclusion, CKD drives re-fracture through bone metabolism
disruption, fall-related risks, and systemic under treatment,
necessitating integrated strategies targeting mineral homeostasis,
fall prevention, and renal-adjusted osteoporosis therapy.

In addition to the top three risk factors, the model
identified six other significant predictors: trauma history, OP_lte_1,
CHD, hypertension, DM, and an Alcohol_gte_10a. Our SHAP
analysis identified OP_lte_1 (≤ 1 surgical vertebra) as a
significant predictor of re-fracture (SHAP = 0.07). This finding
aligns with biomechanical studies demonstrating that single-
level vertebroplasty increases adjacent-segment stress, whereas
multi-level augmentation distributes forces more evenly (34, 35).
Additionally, patients with OP_lte_1 may have untreated weak
vertebrae, leading to subsequent fractures (27). Notably, multi-
level cases (> 1 vertebra) often involve more aggressive surgical
management, potentially masking their inherent risk (25). Thus,
limited surgical intervention (≤ 1 vertebra) may serve as a marker
for incomplete stabilization, warranting closer postoperative
monitoring. Other factors are also supported by existing literature.
For example, trauma history has been linked to increased fracture
risk due to weakened bone structure (36). Hypertension and

diabetes have been associated with bone loss and increased fracture
risk due to their impact on bone metabolism (37). Alcohol
consumption, particularly in long-term excessive alcohol intake,
can cause alcohol-induced osteoporosis and increase fracture risk
(38, 39).

4.3 Clinical integration and workflow
implications

Our RF model translates theoretical risk stratification into
actionable perioperative pathways. Pre-operatively, it generates
individualized risk scores using routine EHR data, enabling
targeted interventions for high-risk patients (probability ≥ 30%):
scoliosis stabilization consultations, psychiatric evaluations, and
renal optimization prior to PVP. Postoperatively, risk-stratified
monitoring tailors follow-up: high-risk patients receive 3 months
clinical/imaging surveillance with osteoporosis/fall management,
while low-risk patients (< 15%) follow standard 6 months
schedules. SHAP interpretability (Figure 5) visualizes dominant
risk drivers (e.g., scoliosis/CKD interaction), enabling personalized
interventions beyond binary classification. We emphasize that this
approach translates predictive net benefit (DCA) into modified care
pathways—a pivotal advance toward real-world deployment.

4.4 Strengths and limitations

Strengths: one of the key strengths of this study is the
comprehensive evaluation of multiple ML models, which allowed
for a robust comparison of their predictive performance. The use of
SHAP values for model interpretability is another notable strength,
as it provides clinicians with a clear understanding of the factors
driving re-fracture risk. Additionally, the inclusion of a relatively
large cohort of 560 patients, with a balanced distribution of re-
fracture and non-re-fracture cases, enhances the generalizability
of our findings.

However, limitations must be acknowledged. First, the
retrospective design introduces potential selection bias, and
unmeasured confounders (e.g., genetic predispositions, detailed
lifestyle factors) were not included. Second, external validation
in diverse populations is needed to confirm generalizability, as
the cohort was derived from a single center. Third, while we
adjusted for key comorbidities, unmeasured confounders—such as
nutritional status (e.g., vitamin D/calcium levels), physical activity
levels and genetic predispositions to osteoporosis—may influence
re-fracture risk.

5 Conclusion

This study demonstrates the potential of ML, particularly RF,
in predicting post-PVP re-fracture risk in OVCF patients. The
identification of scoliosis, mental disorders, and CKD as key
predictors provide actionable targets for preventive interventions.
Future research should focus on prospective validation and
integration of ML tools into clinical workflows to optimize
patient outcomes.
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