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Introduction: Manual scoring of polysomnography data is a laborious and 
complex process. Automatic scoring by current computer algorithms shows 
high agreement with manual scoring. The primary objective of this study was to 
measure the overall validity of the Somnolyzer 24×7 automatic polysomnography 
scoring system in children.

Materials and methods: We conducted a single-center, prospective, 
observational study in children undergoing diagnostic polysomnography for 
suspected obstructive sleep apnea (OSA) from December 2023 to December 
2024. We included children aged three to 15 years with suspected obstructive 
sleep apnea (OSA). Each polysomnogram was scored manually by three experts 
and automatically by the Somnolyzer 24×7 system.

Results: Our analysis included 75 children (60% girls), of whom 9% did not have 
OSA, 20% had mild OSA, 31% moderate OSA, and 40% severe OSA. There was a 
high level of agreement between manual and automatic scoring of the respiratory 
disturbance index (RDI). The mean correlation (Pearson correlation coefficient) 
of RDI scored by the three experts was 0.93 (95% confidence interval [CI] 0.92–
0.95), similar to the correlation between manual and automatic scoring (0.92, 
95% CI 0.90–0.94). The correlation between the different manual scorings and 
between manual and automatic scoring was maintained in the different sleep 
stages (N1: 0.93 vs. 0.90, N2: 0.76 vs. 0.73, N3: 0.72 vs. 0.76, REM: 0.86 vs. 0.82).

Conclusion: The Somnolyzer 24×7 automatic scoring system shows strong 
correlation with manual scoring in respiratory events and sleep architecture. 
Our results suggest this system could be used for polysomnography scoring in 
children.
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1 Introduction

Obstructive sleep apnea (OSA) is characterized by partial or total obstruction of the upper 
airway, which alters alveolar ventilation and sleep quality (1–3). In children, OSA has an 
estimated prevalence of 1–4%. The most common etiology is adenotonsillar hypertrophy (4), 
which defines the predominant phenotype. The second main phenotype involves concomitant 
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diseases or comorbidities (with or without tonsillar hypertrophy) such 
as craniofacial abnormalities, neuromuscular diseases, or complex 
syndromes (Down syndrome, Prader-Willi syndrome, or Beckwith-
Wiedemann syndrome) (5). In addition to anatomical characteristics, 
childhood obesity is a growing risk factor for sleep disorders in the 
pediatric population (6). Pediatric OSA has been associated with the 
development of neurocognitive and behavioral disorders, delayed 
growth, cardiovascular diseases, metabolic disorders, and reduced 
quality of life due to a proinflammatory state, increased sympathetic 
activity, altered coagulation, and oxidative stress (7, 8). For these 
reasons, early diagnosis is crucial. While polysomnography is the 
diagnostic gold standard (9), home respiratory polygraphy has 
demonstrated similar validity in detecting sleep-disordered breathing 
in children (10).

Manual scoring of polysomnographic data is a laborious and 
complex process with marked interscorer variability, especially in the 
identification of arousals and sleep stages (11). In response to these 
limitations, computerized algorithms were developed to analyze 
electrophysiological signals and classify sleep stages and respiratory 
events, achieving a high level of agreement with manual scoring by 
sleep medicine experts. Notably, computerized algorithms have been 
validated with manual scoring as a reference standard (12). An 
automated scoring system could be considered a valid alternative if 
the level of agreement between automated and manual scoring were 
comparable to the level of interscorer agreement observed with 
manual scoring. Recently, sleep medicine has benefited from Artificial 
Intelligence (AI), which offers innovative solutions to the limitations 
of traditional diagnostic methods. AI has enabled the classification of 
sleep stages and the detection of sleep-disordered breathing through 
the analysis of complex physiological data. AI can process datasets, 
identify patters and make predictions with high accuracy respect to 
manual scoring. One of the limitations of AI in pediatric sleep is the 
lack of pediatric dataset for training AI model. This can limit the 
generalizability of AI models to childen (13, 14).

The following machine learning algorithms have been employed 
in pediatric sleep apnea: Convolutional Neural Networks (CNNs), 
Support Vector Machines (SVM), Random Forest (RF), Transformer-
based Model long short-term memory (LSTM)-based and Sleep 
Staging Model (CSleep Net). These algorithms have achieved high 
levels of accuracy (13–15). Moeller and colleagues (16, 17) reported 
that U-Sleep performed an overall accuracy in sleep stages of 83.9% 
and a kappa value of 0.77 comparable to human experts. 
Somaskandhan and colleagues (16, 18) developed a combined 
convolutional and long short-term memory neural network 
architecture. Their model achieved an overall accuracy of 84.1% 
(Cohen’s kappa κ = 0.78), comparable to interrater reliability between 
manual scorers without evidence of difference between children with 
sleep-disordered breathing and control groups.

The most widely employed computer-assisted sleep staging system 
is the Somnolyzer 24×7, which has Food and Drug Administration 
(FDA) approval and follows the American Academy of Sleep Medicine 
(AASM) scoring guidelines (19). This supervised system analyzes 
sleep stages, respiratory events, desaturations, limb movement, and 
arousals, but cannot evaluate paroxysmal activity or bruxism. The 
steps of the analysis are: (1) artifact processing (minimization, 
identification, channel selection), (2) feature extraction (slow wave, 
sleep spindles, k complexes, delta, theta, alpha, slow and fast beta 
background activities, dominant alpha frequency, arousals, various 

artifact types, slow and rapid eye movements, eye blinks, tonic and 
transient muscle activity), (3) AI classifier (bi-directional long-short-
term memory recurrent neural network [RNN]), and (4) rule-based 
sub-classification of non-rapid eye movement (NREM) sleep 
(configuration option). Based on RNN probability, the system uses 
traffic light color coding to indicate the confidence in its scoring 
(green: high confidence, yellow: medium confidence, red: low 
confidence). This automatic scoring system has been validated in 
several adult studies (20–28), achieving very high agreement with 
manual analysis (Table 1). However, no studies have validated the 
Somnolyzer system in children.

The main objective of this study was to determine the overall 
validity of the Somnolyzer 24×7 automatic system for reading 
pediatric polysomnography data. Secondary objectives included 
evaluating the validity of the Somnolyzer system for classifying sleep 
stages and identifying respiratory events.

2 Materials and methods

2.1 Study design

We conducted a single-center, prospective, observational study in 
children undergoing diagnostic polysomnography for suspected OSA 
from December 2023 to December 2024.

2.2 Study population

Inclusion criteria were age 3–15 years, polysomnography due to 
suspected OSA, and high-quality recording (at least 6.5 h, with at least 
3 h of sleep). Children with a primary diagnosis other than OSA 
(insomnia, circadian rhythm disturbances, parasomnias, narcolepsy, 
idiopathic or recurrent hypersomnia, restless legs syndrome, and 
periodic leg movement disorder) were excluded from the study. Split-
night recordings were also excluded.

2.3 Variables

We collected demographic variables, clinical variables, and all 
sleep study parameters (respiratory disturbance index [RDI]; 
hypopnea index [HI]; obstructive apnea index [OAI]; central apnea 
index [CAI]; oxygen desaturation index [ODI]; arousal index; 
percentage of total sleep time with oxygen saturation below 90% 
[T90]; total sleep time; sleep efficiency; and time in N1, N2, N3, and 
REM stages). A respiratory event is scored as an apnea if there is a 
drop in peak signal excursion by ≥90% of the pre-event baseline 
and the duration of this drop lasts at least the minimum duration 
specified for obstructive, mixed, or central apnea. A central apnea 
is further defined as an event that is associated with absent 
inspiratory effort throughout the event, and at least one of the 
following: the event lasts 20 s or longer or the event lasts at least the 
duration of two breaths during baseline breathing and is associated 
with an arousal or ≥3% oxygen desaturation. An obstructive apnea 
is defined as a complete cessation of airflow due to upper airway 
obstruction, accompanied by continued respiratory effort, lasting 
at least 10 s or the duration of two baseline breaths, and also 
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associated with an arousal or a decrease in oxygen saturation of 3% 
or more. A respiratory event is scored as a hypopnea if the peak 
signal excursions drop by ≥30% of the pre-event baseline, the 
duration of this drop lasts for at least two breaths and there is ≥3% 
desaturation from pre-event baseline or the event is associated with 
an arousal (19). We classified OSA severity according to AHI (mild 
OSA: AHI of 1–5/h−1, moderate OSA: AHI of 5–10 h−1, severe OSA: 
AHI above 10/h−1).

All polysomnograms were performed using the SomnoStar Alfa 
(SensorMedics, CA, USA). For automatic scoring, we  used the 
Somnolyzer system (Philips-Respironics, Murrysville, PA, USA, 
version 4.0). Three pulmonologists specialized in sleep medicine 
performed independent manual readings following the AASM criteria 
for scoring sleep stages and respiratory events (19). All the scorers 
were blinded to each other’s assessment and to the AI output. No 
inter-rater variability controls were performed.

2.4 Sample size calculation

The sample size was adjusted to 75 children, given a confidence 
level (1-α) of 95%, a precision (d) of 3% and a power of 80%.

2.5 Statistical analysis

We analyzed the concordance between manual scoring and 
automatic scoring. After applying the Kolmogorov–Smirnov test for 
normality of distribution, we  used parametric (Student’s t) or 
non-parametric (McWhitney) tests to compare continuous variables. 
We used the Chi-square test or Fisher’s test for categorical variables. 
To evaluate differences between manual and automatic scoring, 
we applied analysis of variance (ANOVA). To evaluate the level of 

correlation between manual and automatic scoring, we used either the 
Pearson or Spearman correlation coefficient, depending on the 
distribution of the variable. We used intraclass correlation coefficients 
(ICCs) and the Bland–Altman method to evaluate agreement (29). For 
all comparisons, p values below 0.05 indicated statistical significance. 
All statistical analyses were performed using IBM SPSS Statistics v25 
(Arming, NY).

2.6 Ethical considerations

The study was conducted in accordance with the Declaration of 
Helsinki and approved by the Clinical Research Ethics Committee of 
San Juan de Alicante University Hospital (ref 23/016). Participants’ 
parents or legal guardians signed an informed consent form.

3 Results

Our study included 75 children (60% girls) with a mean age of 8 
(standard deviation [SD] 4) years and a mean body mass index (BMI) 
of 17.5 (SD 3.8) kg/m2. Seven children (9%) were not diagnosed with 
OSA, 15 (20%) had mild OSA, 23 (31%) had moderate OSA, and 30 
(40%) had severe OSA. Normally distributed variables were BMI; RDI; 
number of hypopneas; arousal index; percentage of sleep in N1, N2, 
and N3; duration of N1, N2, and N3; and total sleep time. Table 2 
shows the polysomnographic parameters of manual and automatic 
scoring and the comparison of mean scores (ANOVA) between the 
scoring methods. Regarding to respiratory events, there were no 
significant differences in the means of OAI, CAI and HI between 
manual and automatic corrections and these differences were not 
relevant in the RDI (p = 0.98). Concerning to sleep stages, the N2 
phase evidenced the greatest difference in mean scores compared to 

TABLE 1 Summary of the results of the most relevant articles comparing manual scoring with Somnolyzer system scoring.

Anderer et al. (21) Epoch-by-epoch agreement: 80% (Cohen’s kappa: 0.72) between Somnolyzer 24×7 and human expert scoring. Inter-rater reliability (2 

experts): 77% (Cohen’s kappa: 0.68), Inter-rater reliability (2 Somnolyzer 24×7 analysis with quality control by 2 human experts): close 

to 1 (Cohen’s kappa: 0.991).

Barbanoj et al. (22) Epoch-by-epoch agreement: 80%.

Anderer et al. (23) Epoch-by-epoch agreement between manual scoring 1 and semi-automated scoring 1: 82% (kappa: 0.76) and between manual scoring 

2 and semi-automated scoring 2: 81% (kappa 0.75). Cohen’s kappa between automated and manual scoring 1: 0.71. Cohen’s kappa 

between automated and manual scoring 2: 0.72. Spearman rank correlation between manual and semi-automated scoring: N1(%): 

0.76, N2(%): 0.74, N3(%): 0.89, REM(%): 0.85.

Griessenberger et al. (24) Overall agreement of all epochs: 80.9% (Cohen’s kappa: 0.69). Significant correlation in light sleep (r = 0. 480) and deep sleep (r = 695).

Punjabi et al. (20) Pearson correlation coefficient (r) of AHI between manual and automated score: 0.93 (95% CI 0.91–0.96). Average bias in AHI: 2.48 

events/h (95% CI 0.40–4.55). Pearson correlation coefficient between manual and automated score of sleep architecture (N1: 0.63, 95% 

CI 0.57–0.70; N2: 0.66, 95% CI 0.59–0.74; N3: 0.65, 95% CI 0.57–0.7; REM: 0.92, 95% CI 0.91–0.94).

Magnusdottir et al. (25) Sensitivity: 93%, specificity: 79%, Cohen’s kappa: 0.74, agreement: 87%

Bakker et al. (26) Intraclass correlation coefficient for all sleep stages between automatic and manual score: 0.91 (Wake: ≥ 0.93, N1: 0.72–0.74, N2: 0.88–

0.89, N3: 0.85–0.94, REM: 0.96–0.97).

Cheng et al. (27) Accuracy of sleep staging: 77% (76.8–77.35), Cohen’s kappa: 0.68, accuracy: 72.57%, recall: 76.09%. Correlation coefficient of wake: 

0.91, N1: 0.65, N2: 0.86, N3: 0.73, REM: 0.85.

Gomes et al. (28) Pearson correlation coefficient (r) of AHI: 0.98, OAI: 0.87, CAI: 0.88, ODI: 1. AUC for altered OSA: 0.85, mild OSA: 0.70, moderate 

OSA: 0.73 and severe OSA: 0.93.

AHI, apnea-hypopnea index; N(1,2,3), non-rapid eye movement stages of sleep; OAI, obstructive apnea index; ODI, oxygen desaturation index; OSA, obstructive sleep apnea; REM, rapid eye 
movement stage of sleep.
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the other sleep stages, although this difference did not reach statistical 
significance. Moreover, there were also no significant differences in 
the comparison of means for ODI, arousals index, T90, total sleep 
time, and there was a trend toward statistical significance in 
sleep efficiency.

3.1 Correlation between manual and 
automatic RDI scoring

We found a high correlation in RDI among the three manual 
scorings and between manual and automatic scoring (Figure 1a). The 
mean correlation (Pearson correlation coefficient) between the three 
manually scored RDIs was 0.93 (95% confidence interval [CI] 0.92–0.95), 
while the mean correlation between manual and automatic RDI scoring 
was 0.92 (95% CI 0.90–0.94). Therefore, interscorer correlation in the 
manual results was similar to the correlation between manual and 
automatic results.

When comparing the mean difference in manual RDI scorings 
versus the mean difference between manual and automatic scorings 
using the Bland–Altman matrix, we  found no significant difference 
(Figure 1b). The mean difference in manually scored RDI values among 
the three experts was 0.04 events/h (95% CI −0.27 to 0.30), while the 
mean difference in manually versus automatically scored RDIs was 0.05 
(95% CI −0.39 to 0.56). This mean difference in RDI had diagnostic 
relevance in only three patients between the three manually scored and 
in two patients between manual and automatic scoring and for severity 

classification in three patients for the mild–moderate category and none 
for the moderate–severe category.

We also calculated ICCs for all combinations of RDI between 
manual and automated scoring (Supplementary Table S1). There was a 
high level of agreement between RDI values recorded by the three 
experts (ICC: 0.93–0.98), and between manual scoring and automatic 
scoring (ICC: 0.91–0.99). Agreement was maintained when stratified by 
OSA severity and according to age (children [from 2 year to 6 years], 
middle childhood [from 6 to 12 years] and teens [from 12 to 16 years]).

In addition, there was substantial agreement between the three 
experts for OAI and CAI (ICC: 0.60–0.86 and 0.75–0.98, respectively), 
as well as between manual and automatic scoring (ICC: 0.67–0.86 and 
0.72–0.89, respectively). However, there was lower correlation for the HI 
(ICC: 0.27–0.75 and 0.36–0.68, respectively). Agreement was maintained 
when stratified by OSA severity and according to age.

Also, there was also adequate agreement between the three experts 
for ODI (ICC: 0.94–1.00), arousal index (ICC: 0.68–0.94) and T90 
(ICC: 0.89–0.99), as well as between manual and automatic scoring 
(ICC: 0.92–0.99, ICC: 0.69–0.92 and ICC: 0.90–1.00, respectively).

3.2 Correlation between manual and 
automatic scoring of sleep architecture

ANOVA showed no significant differences between the mean 
percentage and duration of the different sleep phases obtained through 
manual and automatic scoring (Table 2).

TABLE 2 Analysis of variance of manual and automatic scoring.

Expert 1 Expert 2 Expert 3 Somnolyzer p value

RDI, events/h (mean ± SD) 9.5 ± 7.2 9.7 ± 6.7 9.6 ± 6.9 9.9 ± 6.4 0.98

Total obstructive apneas (median [IQR]) 11 (2–22) 9 (3–21) 16 (5–27) 13 (7–25) 0.48

OAI, events/h (median [IQR]) 1.7 (0.4–3.2) 1.3 (0.3–2.8) 2.7 (1.5–6.1) 2.2 (1–4) 0.30

Total central apneas (median [IQR]) 1.5 (0–4) 1 (0–2) 2 (0.5–3) 2 (0.5–6) 0.37

CAI, events/h (median [IQR]) 0.2 (0–0.5) 0.1 (0–0.2) 0.2 (0–0.6) 0.3 (0.1–0.8) 0.40

Total hypopneas (mean ± SD) 45 ± 32 50 ± 45 42 ± 29 40 ± 26 0.26

HI, events/h (median [IQR]) 5.8 (2.6–9.9) 6.2 (1.9–10.6) 4.8 (1.7–9.8) 5.3 (2.9–8.4) 0.28

N1, minutes (median [IQR]) 60 (18–100) 71 (15–120) 54 (12–97) 46 (27–99) 0.65

N1, % (mean ± SD) 15.8 ± 12.2 16.2 ± 9.5 14.8 ± 9.7 15.5 ± 13.3 0.88

N2, minutes (mean ± SD) 204 ± 66 175 ± 48 163 ± 42 198 ± 58 0.16

N2, % (mean ± SD) 50 ± 14 44.2 ± 10.8 43.6 ± 10.8 48 ± 15 0.34

N3, minutes (mean ± SD) 98 ± 60 102 ± 78 109 ± 87 103 ± 81 0.65

N3, % (mean ± SD) 23.1 ± 13.3 24.2 ± 12.1 25.8 ± 10.6 24 ± 17 0.71

REM, minutes (median [IQR]) 36.5 (20–70) 42 (19–62) 45 (17–59) 38 (15–66) 0.88

REM, % (median [IQR]) 8.5 (5–17.2) 10 (5–15) 11 (6–15) 9 (3–16) 0.81

ODI, events/h (median [IQR]) 5.1 (1.7–11.9) 5.6 (2–13.3) 6 (2.7–12.8) 6.4 (2.3–14) 0.62

Arousal index, events/h (mean ± SD) 8.6 ± 5.3 10.6 ± 8.2 11.1 ± 8.2 9.6 ± 5.1 0.68

T90 (median [IQR]) 0.5 (0–2.5) 0.4 (0–2.4) 0.5 (0–2.7) 0.5 (0.1–2.6) 0.98

Total sleep time, min (mean ± SD) 422 ± 64 415 ± 72 430 ± 70 408 ± 75 0.20

Sleep efficiency, % (median [IQR]) 90.5 (84–95.2) 87.6 (76–92) 84.2 (73–89) 89.6 (79.8–93) 0.07

CAI, central apnea index; HI, hypopnea index; IQR, interquartile range; N(1,2,3), non-rapid eye movement stages of sleep; OAI, obstructive apnea index; ODI, oxygen desaturation index; RDI, 
respiratory disturbance index; REM, rapid eye movement stage of sleep; SD, standard deviation; T90, proportion of cumulative sleep time with oxygen saturation below 90% in total sleep time.
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Figures 2–5 show the results of the bivariate and Bland–Altman 
analysis of the different sleep architecture variables, comparing the 
different manual scorings and the manual and automated scorings. For 
N1(%), the mean correlation between manual scorings was 0.93, while 
the mean correlation between manual and automatic scoring was 0.90. 
The Bland–Altman analysis (Figure 2b) showed that the mean differences 
between manual scorings and between manual and automatic scoring 
were not significantly different (−0.08% vs. 0.35%, p > 0.05).

For N2(%), the mean correlation of manually scored results was 
0.76. When we compared the mean correlation between the different 
manual scorings versus the mean correlation between manual and 
automatic scoring, we found no significant difference (0.76 vs. 0.73, 

p > 0.05). The Bland–Altman analysis of stage N2 (Figure 3b) showed 
that the mean difference between automated and manual scoring was 
significantly lower than the mean difference between manual scorings 
(0.45% vs. 4.2%, p = 0.01).

Similarly, for N3(%), there was good correlation between the 
different manual scorings and between manual and automatic scoring 
(Figure 4a). When we compared the mean differences between the 
different manual scorings versus between manual and automated 
scoring using Bland–Altman plots for N3 (Figure 4b), we found no 
significant difference (−0.90% vs. 0.88%, p > 0.05).

For the REM stage, there was adequate correlation between 
manual and automatic scoring without significant differences between 

FIGURE 1

Correlation matrix (left panel) and Bland–Altman (right panel) plots for the respiratory disturbance index (RDI). Pearson correlation coefficients and the 
average bias (95% confidence interval) are in the left and right panels, respectively.

FIGURE 2

Correlation matrix (left panel) and Bland–Altman (right panel) plots for the sleep stage N1 (%). Pearson correlation coefficients and the average bias 
(95% confidence interval) are in the left and right panels, respectively.
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FIGURE 4

Correlation matrix (left panel) and Bland–Altman (right panel) plots for the sleep stage N3 (%). Pearson correlation coefficients and the average bias 
(95% confidence interval) are in the left and right panels, respectively.

the different manual scorings or between manual and automatic 
scoring (Spearman correlation coefficient 0.86 vs. 0.82, p > 0.05), as 
shown in Figure 5a. The Bland–Altman analysis (Figure 5b), which 
compared the mean differences between the three manual scorings 
versus between manual and automated scoring, showed no significant 
difference (−0.71% vs. 0.75%, p > 0.05). The correlation observed in 
sleep architecture was maintained in total sleep time (Pearson 
correlation coefficient between different manual scorings versus 
between manual and automatic scoring: 0.84 vs. 0.78, p > 0.05). The 
correlation was lower for sleep efficiency, without a significant 
difference (Spearman coefficient: 0.51 vs. 0.44, p > 0.05).

We also calculated ICCs between manual and automated scoring 
for all combinations of sleep stages (Supplementary Table S2). There 
was adequate agreement between the three experts for all sleep phases 
(ICC of N1[%]: 0.91–0.98; N2[%]: 0.65–0.94; N3[%]: 0.72–0.91 and 
ICC of REM[%]:0.85–0.97), as well as between manual and automatic 
scoring (ICC of N1[%]: 0.88–0.98; N2[%]: 0.78–0.92; N3[%]: 0.66–0.91 
and ICC of REM[%]:0.81–0.97). The agreement was maintained when 
the data were stratified by OSA severity. However, when the data were 
stratified by age, there was a lower correlation between the manual and 
automatic corrections for (N1%) and N2(%) in middle childhood (from 
6 to 12 years), and particularly in children (from 2 year to 6 years).

FIGURE 3

Correlation matrix (left panel) and Bland–Altman (right panel) plots for the sleep stage N2 (%). Pearson correlation coefficients and the average bias 
(95% confidence interval) are in the left and right panels, respectively.
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4 Discussion

Our study is the first validation study of Somnolyzer 24×7 
computer-assisted sleep scoring system in pediatric population. Our 
results evidenced that automatic polysomnography scoring system 
based on AI showed strong correlation with manual scoring in 
respiratory events and sleep architecture.

Automatic scoring systems have been used in sleep studies for more 
than 20 years. The first algorithms were able to detect desaturations, 
snoring, heart rate, and position (30, 31), whereas current algorithms can 
also detect sleep stages, respiratory events, and arousals using one or more 
channels, evaluating the spectral power threshold of the frequency bands 
and detecting waveforms through pattern recognition (32, 33). Although 
several automatic sleep study correction systems have been validated with 
high correlations to manual corrections, only Somnolyzer (Philips 
Respironics), Ensosleep (Ensodata) and Domino (Somnomedics AG) 
have been certified by the AASM. Regarding Somnolyzer, the latest 
version includes an AI classifier with bi-directional long-short-term RNN 
which allows a more accurate correction. Several studies in adults 
evidenced a high correlation in both sleep architecture and the detection 
of respiratory events (20–28). Despite the potential benefits of automatic 
scoring systems, validation of Somnolyzer 24×7 in the pediatric population 
has not yet been realized.

Polysomnography scoring is laborious and technically complex, 
with differences in the definitions of respiratory events in children 
versus adults. Despite the potential benefits of automatic scoring 
systems, Somnolyzer 24×7 has not yet been validated in the pediatric 
population. Automated scoring systems with proven validity and 
reproducibility could increase access to pediatric polysomnography 
in sleep units. Our validation study of the Somnolyzer 24×7 automatic 
scoring system showed a high level of agreement between manual and 
automatic scoring in sleep architecture and respiratory events. Manual 
scoring served as our reference standard, though it is limited by the 
inherent interscorer variability. To mitigate this limitation, 

we compared the agreement between the different manual scorings 
versus the agreement between manual and automatic scoring.

Regard the scoring of respiratory events, we found no significant 
differences when comparing the means using ANOVA for manual 
versus automatic correction for respiratory events and 
RDI. Furthermore, the analysis of the degree of agreement using the 
ICC revealed a high agreement in RDI, a substantial agreement in OAI 
and CAI, and a moderate agreement in HI. HI maintains a strong 
positive linear correlation between manual and automatic correction. 
This lower agreement in HI may be due to a detection of obstructive 
apneas rather than hypopneas and has no relevance to RDI. In 
addition, there was a strong positive linear relationship between 
manual and automatic scoring (Figure 1a) in RDI with a low mean 
difference detection which has no diagnostic relevance (Figure 1b). 
These results demonstrate that Somnolyzer 24×7 shows a high level of 
correlation with expert correction in the detection of respiratory 
events. Furthermore, this high level of correlation is maintained when 
the data is stratified by age group and OSA severity.

Concerning to sleep architecture, we  found no significant 
differences when comparing the means using ANOVA for manual 
versus automatic correction for sleep stages. However, there is a 
tendency toward statistical significance in N2. In the analysis of the 
degree of agreement using the ICC there was an almost perfect 
agreement in all sleep stages but when the data were stratified by age, 
there was a lower correlation between the manual and automatic 
corrections for (N1%) and N2(%) in middle childhood, and 
particularly in children. This may be because the Somnolyzer 24×7 has 
only been validated in adults, there are fewer studies of pediatric 
patients, and sleep wave differences exist between adults and pediatric 
patients. During initial years of life electroencephalogram power 
increases in particular in the slow wave frequency range during 
NREM sleep. Then, maximal power values in the faster frequency 
bands, such as theta, alpha and beta activity, are reached at 2–5 years 
of age. Power in these frequency bands decreases steadily thereafter 
(34). This difference in the sleep waveform, especially in children, 

FIGURE 5

Correlation matrix (left panel) and Bland–Altman (right panel) plots for the sleep stage rapid eye movement (REM). Pearson correlation coefficients and 
the average bias (95% confidence interval) are in the left and right panels, respectively.
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justifies the discrepancy between manual and automatic correction 
and also the results with a tendency toward statistical significance in 
the mean comparison analysis on sleep efficiency. Regarding the other 
results, there was a very strong positive linear relationship between 
manual and automatic scoring in N1(%) (Figure 2a), a strong positive 
linear relationship in N2(%), N3(%) and REM(%) (Figures 2a–5a) 
with a low mean difference detection in all sleep stages which has no 
diagnostic relevance (Figures 2b–5b). Therefore, automatic correction 
shows a very high degree of correlation with manual correction with 
respect to sleep architecture, despite limitations arising from changes 
in sleep waveforms in the pediatric population relative to adults.

In a validation study of the Somnolyzer system in adults (20), Punjabi 
and colleagues found a very strong correlation between manual and 
automatic scoring of AHI (Pearson correlation coefficient: 0.93), 
practically the same value that we obtained for RDI (Pearson correlation 
coefficient: 0.92). For sleep architecture, we found a stronger correlation 
in most sleep phases compared with Punjabi and colleagues (N1: 0.90 vs. 
0.63, N2: 0.73 vs. 0.66, N3: 0.76 vs. 0.65 and REM: 0.82 vs. 0.92). This 
difference may be attributable to the different versions of Somnolyzer 
employed. While we used Somnolyzer 4.0, which classifies respiratory 
events and sleep architecture using artificial intelligence (RNN), Punjabi 
and colleagues used version 3.0. The main changes of Somnolyzer 4.0 are 
spindle detection from both hemispheres, improved slow-wave detection 
using empirical mode decomposition (improve rule-based 
sub-classification of NREM sleep stages), new channels and the use of 
LSTM and RNN classifiers with a confidence score based on RNN 
output probabilities.

The results obtained in our study promote the implementation of 
polysomnography in sleep units that do not currently perform it on 
pediatric patients with suspected OSA and may reduce waiting lists in 
units that do perform polysomnography in pediatric patients. The 
Somnolyzer 24×7 software is user-friendly and uses traffic light color 
coding to indicate the confidence of its scoring. This allows sleep 
reviewers to focus on the yellow and red codes, improving time efficiency. 
However, the implementation of automated sleep study correction 
systems requires caution to avoid over-reliance on AI and requires 
clinician training, so we  propose a hybrid scoring workflow, using 
Somnolyzer 24×7 as a complementary to enhance and standardized 
sleep staging and improve patient diagnosis.

Despite our results of Somnolyzer 24×7 validation in patients with 
suspected OSA, further validation is required in pediatric patients with 
comorbidities, patients at different stages of child development and 
patients with sleep disorders other than OSA, such as insomnia, circadian 
rhythm disturbances, parasomnias, narcolepsy, idiopathic or recurrent 
hypersomnia, restless legs syndrome, and periodic leg movement disorder.

One main limitation of our study is that the three sleep medicine 
experts worked in the same clinic so we recommend the development 
of multicenter external validation studies. Another limitation is that 
we  did not perform both manual and automatic joint correction. 
Therefore, randomized trials in pediatric population are needed to 
compare correction by AI alone, manual correction alone, and 
combined correction by AI and manual correction. A further 
limitation is the heterogeneity of the population, as we  included 
children from all stages of development. However, when we analyzed 
the data by age group, we found that there were high correlations 
between respiratory events and sleep stages across the age groups, 
except for the correlation between manual and automatic corrections 
for N1% and N2%.

The main strengths of our study are its prospective and robust 
methodology, which has been replicated in other validation studies, 
and the involvement of three medical experts in manual scoring, 
allowing for a more reliable comparison with automated scoring. 
Another strength is the sample size and the favorable results obtained 
despite the technical difficulties of performing polysomnography in 
pediatric patients.

5 Conclusion

Somnolyzer 24×7 automatic polysomnography scoring system 
showed strong correlation with manual scoring in respiratory events 
and sleep architecture. By simplifying the diagnostic process, this 
automatic system may facilitate broader implementation of 
polysomnography in sleep units.
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