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The global prevalence of Metabolic Dysfunction-Associated Steatotic Liver

Disease (MASLD) has reached alarming levels, a�ecting nearly one-third

of the world’s population. This review analyzes current evidence on the

intricate relationships between MASLD, insulin resistance, and type 2 diabetes

mellitus (T2DM), with particular emphasis on gut microbiome interactions.

As MASLD progresses from simple steatosis to Metabolic Dysfunction-

Associated Steatohepatitis (MASH), it can lead to severe complications

including fibrosis, cirrhosis, and hepatocellular carcinoma. The pathogenesis

of MASLD is multifactorial, involving hepatic lipid accumulation, oxidative

stress, inflammation, and dysregulation of the gut-liver axis. Insulin resistance

is a central driver of disease progression, closely linked to obesity and

metabolic syndrome. Recent research highlights how gut microbiome

dysbiosis exacerbates MASLD through mechanisms such as increased

intestinal permeability, systemic inflammation, and altered metabolic signaling.

Identification of microbial signatures o�ers promise for novel diagnostic and

therapeutic strategies. By integrating metabolic, inflammatory, and microbial

perspectives, this review provides a comprehensive overview of MASLD

pathogenesis and its association with obesity, insulin resistance, and T2DM.
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Introduction

MASLD has emerged as the most common liver disease worldwide and has become a

major health burden in both developed and emerging countries (1, 2). Its global prevalence

is high, affecting roughly 30% of the population, and has shown an alarming 50.4%

relative increase between 1990 and 2019 (3). MASLD is a disorder characterized by hepatic

steatosis [fat deposition in > 5% hepatocytes (4)]; when no other cause for secondary fat

accumulation like excess alcohol consumption can be identified. It can be diagnosed in

a patient meeting one out of five cardiovascular risk factors (5). It ranges from benign

non-inflammatory condition (NAFL) to severe MASLD which includes portal and lobular
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inflammation (6). Without intervention, MASLD may progress

to fibrosis, cirrhosis, or even hepatocellular carcinoma (HCC) (7,

8). MASLD is the hepatic manifestation of metabolic syndrome

(metS), driven by genetic variants like PNPLA3 rs738409G

and strongly associated with metabolic comorbidities, including

obesity, T2DM, hyperlipidaemia and hypertension (8–10). MASLD

is now recognized as a multifactorial disease, and recent literature

proposes this renaming to better reflect its metabolic origins and

remove alcohol-related exclusions (11).

The beginning of the concept of non-alcoholic fatty liver disease

(NAFLD) was reported in the year 1980 by Ludwig et al. as a

condition that can progress to cirrhosis without consumption of

significant alcohol (12). The patients had diabetes mellitus and were

obese. There have been significant changes in this nomenclature

over the years giving the strong association of NAFLD with

various metabolic factors. A new term for the condition “Metabolic

(dysfunction) associated fatty liver disease (MAFLD)” was coined

by Eslam et al. in 2020, that correlated with hepatic steatosis that

could be diagnosed with at least two metabolic risk abnormalities,

obesity, blood biomarkers or in the presence of T2DM (13). An

important factor in this new nomenclature was to avoid any

reference to alcohol in the MAFLD acronym. This has been further

supported by the Asian Pacific Association for the Study of the

Liver (APASL), multiple national societies including the Malaysian

Abbreviations: ALT, Alanine Aminotransferase; AST, Aspartate

Aminotransferase; BMI, Body Mass Index; CAP, Controlled Attenuation

Parameter; ChREBP, Carbohydrate Response Element-Binding Protein;

CRP, C-Reactive Protein; CVD, Cardiovascular Disease; DAG, Diacylglycerol;

DAMPs, Damage-Associated Molecular Patterns; DNL, De Novo Lipogenesis;

ER, Endoplasmic Reticulum; FFAs, Free Fatty Acids; FFAR2, Free Fatty Acid

Receptor 2; FGF15/19, Fibroblast Growth Factor 15/19; FMT, Fecal Matter

Transplant; FOS, Fructooligosaccharides; FOXA2, Forkhead Box Protein A2;

FXR, Farnesoid X Receptor; GF, Germ-Free; GLP-1, Glucagon-Like Peptide-1;

HbA1c, Hemoglobin A1c; HCC, Hepatocellular Carcinoma; HFD, High-Fat

Diet; HFHC, High-Fat/High-Cholesterol; HSCs, Hepatic Stellate Cells; IECs,

Intestinal Epithelial Cells; IL, Interleukin; IKK-β, Inhibitor of Nuclear Factor

Kappa B Kinase Subunit Beta; IR, Insulin Resistance; JNK, c-Jun N-Terminal

Kinase; LA-AG, Larch Wood Arabinogalactan; LPS, Lipopolysaccharides;

LSECs, Liver Sinusoidal Endothelial Cells; MD, Mediterranean Diet; MDA,

Malonaldehyde; MAFLD, Metabolic-Associated Fatty Liver Disease; MASLD,

Metabolic Dysfunction-Associated Steatotic Liver Disease; MASH, Metabolic

Dysfunction-Associated Steatohepatitis; metS, Metabolic Syndrome;

NAFLD, Non-Alcoholic Fatty Liver Disease; NAFLD-HCC, NAFLD-Associated

Hepatocellular Carcinoma; NAS, Non-Alcoholic Fatty Liver Activity Score;

NASH, Non-Alcoholic Steatohepatitis; NETs, Neutrophil Extracellular Traps;

NF-κB, Nuclear Factor Kappa B; NK, Natural Killer; OPN, Osteopontin; PAI-1,

Plasminogen Activator Inhibitor-1; PAMPs, Pathogen-Associated Molecular

Patterns; PKC, Protein Kinase C; PNPLA3, Patatin-like Phospholipase Domain

Containing 3; PPARγ, Peroxisome Proliferator-Activated Receptor Gamma;

RCT’s, Randomized Controlled Trials; ROS, Reactive Oxygen Species;

SCFAs, Short-Chain Fatty Acids; SFAs, Saturated Fatty Acids; SIBO, Small

Intestinal Bacterial Overgrowth; SREBP-1c, Sterol Regulatory Element-

Binding Protein 1c; T2DM, Type 2 Diabetes Mellitus; TG, Triglyceride; TLRs,

Toll-Like Receptors; TMA, Trimethylamine; TNF-α, Tumor Necrosis Factor

Alpha; TOS, Transgalactooligosaccharides; TZDs, Thiazolidinediones; UDCA,

Ursodeoxycholic Acid; VLDL, Very-Low-Density Lipoprotein.

Society of Gastroenterology and Hepatology and a wide range of

global stakeholders (11, 14, 15).

Several years later, the term MASLD was proposed, and its

diagnosis can be done based on the patient meeting one of five

cardiovascular risk factors, unlike MAFLD, which underlines a

requirement that the patients meet two of seven parameters of

metabolic dysfunction (5). MetALD is a term coined for patients

with MASLD along with consumption of alcohol (140–350 g/week

and 210–420 g/week for females and males, respectively).

The severe form of MASLD is MASH, a replacement of the

term non-alcoholic steatohepatitis (NASH), characterized by the

presence of lobular inflammation and ballooning of hepatocytes

and is associated with a greater risk of fibrosis progression

(Figure 1). A multi-society Delphi consensus statement on a new

fatty liver disease nomenclature was published in 2023, thereby

introducing the term metabolic dysfunction-associated steatotic

liver disease (MASLD) and effectively letting go of the term

NAFLD and MAFLD (16). The nomenclature was based on

diagnostic criteria that was non-stigmatizing and aims to improve

patient awareness.

Dysbiosis of the gut microbiota has been consistently linked

to both obesity and T2DM—two metabolic disorders closely

associated with MASLD. By examining the gut-liver axis as the

central integrative pathway, this review explores how microbial

dysbiosis mechanistically contributes to MASLD initiation and

progression, and how hepatic metabolic dysfunction reciprocally

alters gut microbiome composition. Our goal is to integrate

essential factors such as obesity, insulin resistance, the gut-liver

axis, immune system changes, and the role of the microbiome,

providing a comprehensive overview of this increasingly common

and complex metabolic disorder.

Pathophysiology of MASLD/MASH

MASLD is characterized by excessive fat accumulation in the

liver, with a spectrum ranging from simple steatosis to MASH and

potentially cirrhosis (Figure 1).

The development of MASLD occurs in a coordinated fashion

and was proposed earlier as a two-hit hypothesis (17). The first hit

is the steatosis through de novo lipogenesis (DNL) in the liver which

increases the insulin resistance (17, 18). The second hit means

the progression from MASLD to MASH, representing a critical

escalation in liver disease severity involving additional cellular

and molecular stresses like endoplasmic reticulum (ER) stress,

mitochondrial damage, oxidative stress [involving the production

of reactive oxygen species (ROS)] (19, 20). Accumulation of

saturated fatty acids (SFAs) increases DNL resulting from increased

fructose uptake, or cholesterol accumulation in the ER leading

to cellular stress (Figure 1) (17, 21). Increased fructose levels

are also one of the key contributors to the progression of

MASLD to MASH by increasing gut permeability, which initiates

a cascade of inflammatory responses by releasing cytokines

and promoting microbiota dysbiosis (22). This dysregulation

is compounded by heightened activation of hepatic toll-like

receptors (TLRs), changes in bile acid metabolism, and local

alcohol production by gut microbes, all of which can exacerbate

inflammation and tissue damage (23). Elevated blood ethanol
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FIGURE 1

Progressive stages of MASLD and its complications. This diagram shows the progressive nature of MASLD, encompassing a spectrum of liver

conditions ranging from simple steatosis to advanced stages such as MASH, cirrhosis, and hepatocellular carcinoma. In healthy individuals, fat

content within hepatocytes typically remains low. In NAFL, fat accumulation increases, but the condition is often reversible with lifestyle

modifications. MASH, however, involves not only fat accumulation but also inflammation, increasing degeneration of hepatocytes, and the formation

of fibrosis. Cirrhosis, the most advanced stage, is characterized by extensive scarring that disrupts liver function, leading to serious complications like

liver failure and increasing the risk of developing hepatocellular carcinoma. The diagram also depicts key pathological mechanisms contributing to

MASH progression, including lipid accumulation due to increased uptake of free fatty acids and de novo lipogenesis (DNL), mitochondrial

dysfunction, ER stress, oxidative stress, and inflammation mediated by immune cell activation and cytokine release.

levels in MASH patients further indicate the presence of alcohol-

producing bacteria, which potentially elevate the production

of ROS, adding another layer of hepatic inflammation and

stress (24).

However, at present it is referred as the “multi-hit hypothesis”

as the development and progression of the disease arises from a

combination of factors that are interconnected and contribute to

the advancement of the disease.

Lipogenesis is fuelled by the uptake of glucose and free fatty

acids (FFAs) and their incorporation into lipid-synthesis pathways.

In most cases, steatosis is an early event in MASLD, but it does

not necessarily transition to MASH. Lipogenesis in the liver and

lipolysis of the adipose tissue result in elevated circulating FFA

and their metabolites which can induce inflammatory responses.

This further activates TLR4 signaling that activates the NF-kB

pathway; these are crucial to progression to MASH (5). This

leads to inflammation, fibrosis and hepatocarcinogenesis (25).

Beyond lipid accumulation, insulin resistance is important in

MASLD as its presence leads to increased FFA in blood and

lipid accumulation. Interleukins and cytokines are released by

adipocytes and ROS are generated due to oxidation of excess FFA

(26, 27). Oxidative stress in such conditions is a step forward during

development of fibrosis in MASH. Another factor that contributes

to progression of MASLD is autophagic dysfunction in cellular

degradative organelles. Damaged mitochondria during MALSD,

unable to undergo autophagy also contribute to build-up of ROS

and lowering the defense system of the liver (28). Ultimately,

dysbiosis of the gut microbiota plays a key role in driving

hepatic fibrogenesis. Excess lipid accumulation compromises

the gut barrier, and hence microbial toxins translocate into

the bloodstream. The cumulative effect of these pathogenic

processes promotes hepatic inflammation and triggers apoptosis

of hepatocytes. These cellular damages lead to release of pro-

inflammatory mediators such as ATP, extracellular vesicles,

and chemokines, subsequently reinforcing the inflammatory

process and leading to the development of fibrosis. Further,

the prolonged inflammation may progress to cirrhosis and

ultimately HCC.
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The interplay between MASLD, insulin
resistance, and metabolic syndrome

MASLD is strongly associated with metabolic syndrome, which

includes obesity, T2DM, dyslipidemia, and hypertension (Figure 2)

(29–32). As the global prevalence of obesity and T2DM rises,

so does the prevalence of MASLD, emphasizing its connection

to metabolic dysfunction (33–35). Given its nature, the disease’s

progression is marked by insulin resistance (IR), particularly in the

liver. Impaired ability of insulin to suppress endogenous glucose

synthesis, 45–50% reductions in glucose disposal and a measure of

whole-body insulin sensitivity are the indicative of hepatic insulin

resistance (30, 36).

Obesity is widely recognized as a key factor in promoting

systemic inflammation, which is closely linked to the development

of IR (37). Specifically, abdominal visceral fat plays a significant

role in both peripheral and hepatic IR in individuals with T2DM,

while excessive subcutaneous fat in men has also been associated

with IR in the liver and peripheral tissues (38). Adiponectin, an

adipokine secreted by adipocytes, shows an inverse relationship

with the amount of fat in the abdomen and liver, which is closely

tied to both hepatic and peripheral IR (39, 40). Obesity activates

various proinflammatory pathways, which includes elevated level

of cytokines such as tumor necrosis factor-α (TNF-α), interleukin-6

(IL-6), C-reactive protein (CRP), plasminogen activator inhibitor-

1 (PAI-1), and leptin (Figure 2) (37, 41). These molecules are the

main causative factors in the pathophysiology of IR. Conditions of

obesity or excessive nutrient intake induce ER stress, production

of ROS, and accumulation of ceramides, which activate the NF-κB

and JNK pathways, leading to insulin signaling inhibition (42–45).

Inhibition of JNK1 and IKK-β (which activates NF-κB) in mouse

models has shown improvements in IR both locally in the liver and

systemically, highlighting the role of inflammation in exacerbating

IR (46, 47). This mutual reinforcement of inflammation and IR

creates a vicious cycle that worsens both conditions (48).

IR is considered a central mechanism in the development and

progression of MASLD to MASH and cirrhosis, impairing the

liver’s ability to manage fat (49–51). The liver’s supply of fatty

acids, a primary source of triglyceride (TG) synthesis, comes from

dietary fat, lipolysis in adipocytes, and DNL (Figure 2) (49). Both

high-fat and high-carbohydrate diets promote fat accumulation in

the liver, with FFAs from adipocytes playing a critical role (52).

Normally, insulin suppresses lipolysis, but in the state of IR, this

suppression is impaired, leading to excessive FFAs that accumulate

in the liver (53, 54). Additionally, hyperinsulinemia, a hallmark of

IR, further exacerbates liver fat accumulation by promoting DNL

through the activation of sterol regulatory element-binding protein

1c (SREBP-1c) (55). In addition to increasing liver fat synthesis,

hyperinsulinemia elevates triglyceride production and promotes

very-low-density lipoprotein (VLDL) synthesis. However, insulin

resistance impairs fatty acid oxidation, a process regulated by

forkhead box protein A2 (FOXA2) (55). In normal conditions,

FOXA2 promotes lipid metabolism, but it remains inactive in

hyperinsulinemic states, leading to the accumulation of fat in

the liver. As part of the liver’s adaptation to excessive FFAs,

mitochondrial respiration rates increase, yet excessive fatty acid

oxidation results in oxidative stress and hepatocellular damage,

contributing to the progression to MASH (56). While IR is a major

cause of fatty liver, some evidence suggests that fatty liver itself can

exacerbate IR (57, 58). The influx of FFAs into the liver leads to an

abnormal increase in long-chain fatty acyl-CoA and diacylglycerol

(DAG), which in turn activates protein kinase C-δ (PKC-δ) (59).

This activation disrupts insulin signaling and promotes glucose

production in the liver. FFAs also activate the IKK-β and JNK

pathways, further exacerbating IR via PKC-θ activation (60). These

inflammatory pathways, activated by fatty acid influx, play a central

role in the vicious cycle of liver fat accumulation and IR. In

MASLD, a paradoxical relationship exists in which increased DNL

coexists with inappropriately elevated gluconeogenesis despite

hyperinsulinemia. This has led to the concept of pathway-specific

hepatic insulin resistance, where the insulin activation pathway

involving protein kinase B/forkhead box protein O1 is inhibited,

while the SREBP-1c pathway remains activated (61). Activation

of carbohydrate response element-binding protein (ChREBP) also

induces an increase in precursors of DNL and an increase in

enzymes that further aggravate hepatic steatosis, especially under

exposure to lipogenic substrates (62).

As MASLD progresses, hepatic inflammation, particularly

involving M1 macrophages (Kupffer cells), becomes a key factor

in disease progression (63). These macrophages, when activated by

TLR ligands and interferon-γ, release proinflammatory cytokines

such as TNF-α and IL-6, which contribute to the progression of

MASLD and systemic IR by modulating other immune cells (64)

(Table 1).

Gut microbiome and MASLD: a key
connection

Building on the understanding of MASLD and its progression

to MASH, the role of the gut microbiome has emerged as a

significant factor in disease pathogenesis. Reviewing microbial

signatures with respect to various stages of progression of liver

disease would be very useful for predicting biomarkers as well

for designing therapeutic approaches (Table 2). Gut microbiota,

the collective genome of gut-residing microbes, is increasingly

recognized as an environmental factor that influences metabolic

health by impacting energy balance, inflammation, and IR (65–70).

It has been demonstrated in both mice and human studies that

obesity and T2DM are associated with changes in gut microbiota,

though it is not clear whether these are the cause or effect of the

underlying metabolic changes (71). Specifically, obese people and

mice have fewer Bacteroidetes and more Firmicutes compared with

their lean counterparts. More importantly, the relative proportion

of these two major bacterial divisions is positively correlated

with body weight, i.e., a higher proportion of Firmicutes and a

lower proportion of Bacteroidetes. This altered ratio is associated

with increased energy harvest from food, potentially exacerbating

obesity (71). High-fat diets (HFD) in mice have also been

shown to reduce beneficial bacteria such as Bifidobacteria, which

improve mucosal barrier function, reducing gut permeability and

inflammation (72). Such microbiota shifts promote inflammation

and metabolic dysfunction, creating a cycle that worsens insulin

resistance and metabolic syndrome (71, 73).
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FIGURE 2

Association of MASLD with metabolic syndrome. This diagram shows the complex interplay of factors contributing to the development and

progression of MASLD/MASH. Key processes include increased lipolysis in obese individuals, leading to elevated FFA levels. Insulin resistance impairs

hepatic insulin signaling, promoting DNL, reducing fatty acid oxidation, and increasing glucose production. Excessive FFA influx, coupled with

impaired fatty acid oxidation and increased DNL, results in triglyceride accumulation within the liver. This lipid accumulation triggers ER stress,

leading to the activation of inflammatory pathways. Activated Kup�er cells release pro-inflammatory cytokines such as TNF-α and IL-6, exacerbating

inflammation and tissue damage. Furthermore, increased fatty acid oxidation generates ROS, contributing to oxidative stress and hepatocellular

damage.

The genome of the microbiome bears information to coding

of several enzymes that are absent in the human host, and they

cooperate with contribution to individualized traits in the host

(74). Obesity and improper eating habits have been significant

co-occurrences with MASLD; however, presence/absence of many

bacterial species have altered the microbiome in such conditions.

Studies have shown increased abundance of bacteria from the

Proteobacteria phylum, especially within the Enterobacteriaceae

family and the Escherichia genus in individuals with MASLD

and MASH compared to their healthy counterparts (24). An

increased abundance of Bacteroides genus was reported in MASH

(75). Pathogenesis of MASH has been influenced by increased

fecal content of deoxycholic acid, raffinose, choline, D-pinitol and

stachyose in patients.

A 16S rRNA cohort study of biopsy proven Asian population

was done to explore microbial markers for assessment of severity

of fibrosis between obese and non-obese subjects (76). An increase

in levels of total bile acid, especially primary bile acids and

ursodeoxycholic acid (UDCA), and propionate levels was seen in

stool samples of subjects with worsening fibrosis. A dominance

of bacterial population of Veillonellaceae was found in non-obese

individuals with MASLD. Six genera of Gram- negative bacteria

(Megasphaera, Veillonella, Dialister, Allisonella, Anaeroglobus, and

Negativicoccus) are a part of the familyVeillonellaceae and these are

known to produce propionate-and can utilize lactate as a substrate.

It has been proposed that accumulation of these populations lead

to more propionate production that is absorbed into the liver and

hence progression to MASLD. On the contrary, Ruminococcaceae

members were found to decrease in numbers in fibrosis in

MASLD non-obese patients and are responsible for maintaining

homeostasis of the gut microbial environment (Table 2). R. faecis

exerted a protective effect on liver damage. It was concluded that

assessment of gut microbes and stool metabolites could be used for

diagnosis of fibrosis in non-obese subjects with MASLD.

The impact of diet on gut microbiota composition further

influences MASLD progression, as evidenced by studies showing

that Bacteroides thrive on high-fat animal-based diets, while

Prevotella is more prevalent with plant-based polysaccharide

diets (77, 78). Contents of branched chain fatty acids due to

Bacteroides population produced by fermentation of amino acids

are correlated with insulin resistance that further gives impetus

to development of MASH. A study conducted with stool samples

of mice with MASLD-MCC revealed that oral administration

of a species of Bifidobacterium pseudolongum was successful

in preventing hepatocellular carcinogenesis (10). Ramos et al.

performed a detailed analysis of the gut microbiome of patients

with biopsy proven MASLD and their study concluded an

enrichment of Parabacteroides distasonis and Alistipes putredenis

species in MASLD patients. They also found that Prevotella copri,

was a dominant species for MASLD disease progression also
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TABLE 1 Engagement of di�erent cells of the immune system in severity and progression of MASH.∗

Name of immune cell Engagement and role of cell in MASH Reference

B cells Pro-inflammatory; they accumulate in livers of patients with MASH and high lobular inflammation & cirrhosis;

B2 cell depletion takes place

(20, 305)

Dendritic cells Capable of participation in local inflammation via engaging Toll-like receptors; cDC1 are known to increase in

MASH patients.

(306–308)

Inflammatory cytokine IFNγ (TH1

associated cytokine)

Decreased levels inhibit liver fibrosis; maybe caused due to decrease in infiltration of macrophages/Kupffer cells

and suppressing the inflammatory response.

(309)

TNF-α and TNF receptor 1

transcripts

Levels increased in patients with steatohepatitis. (310)

CD8+T cells Produce IFNγ , TNF and perforins; numbers of CD8+T cells are increased during MASH; these promote

hepatocellular carcinoma through interactions with hepatocytes. Natural killer cells along with CD8+T cells.

(311)

LIGHT TNF cytokine family member, expressed on lymphocyte acting as a key regulator of enzyme that control lipid

metabolism. LIGHT signaling is shown to positively regulate hepatic lipid uptake.

(312)

iNKT cells Levels increased in patients with MASH; promote liver fibrosis by promoting expression of osteopontin (OPN;

pro-inflammatory cytokine & extracellular matrix protein). OPN promotes Hedgehog pathway activity and

progression of fibrosis.

(313, 314)

Platelets Activation and adhesion of platelets promote MASH, liver steatosis and promote accumulation of inflammatory

cells in a glycoprotein dependant manner.

(315)

Neutrophils Hepatic infiltration of neutrophils is seen during MASH and production of ROS, cytokines, proteases and NETs

(neutrophil extracellular traps).

(316)

Macrophages Kupffer cells, the tissue dominant macrophages are lost during MASH progression due to lipotoxic stress and

they lose their ability for self-renewal.

(317)

∗Understanding the role of various immune system cells in MASH offers valuable potential for identifying new therapeutic targets and advancing more effective treatment strategies for this

complex and increasingly common liver disease (318–320). However, preclinical evidence is still needed before considering the use of these cell populations as therapeutic targets in MASLD

&MASH.

linked to higher intestinal permeability (79). Iljazovic et al. (80)

demonstrated that Prevotella populations, previously associated

with colitis in animal studies, can worsen intestinal inflammation

and potentially lead to systemic autoimmune responses condition

(24). This may occur by reducing IL-18 production, which further

intensifies gut inflammation. Increased population of Prevotella

has been linked to mucosal sites with inflammation and increase

in T-helper type 17 cells mediating this process (81). These

bacteria have also been implicated in activation of TLR-2, that

lead to production of Th17- polarizing cytokines by antigen

presenting cells such as IL-23 and IL-1. They mediate spreading

of inflammatory mediators and bacterial products. Additionally,

elevated blood ethanol levels in MASH patients indicate the

presence of alcohol-producing bacteria, which contributes to the

production of ROS, further increasing hepatic inflammation and

oxidative stress.

In patients with MASH, gut microbiota changes extend

beyond metabolic influences to play a direct role in liver

pathology. The composition of gut microbiota can affect the

liver due to the portal circulation of venous blood from the

gut to the liver. Changes in gut microbes and their derived

products can have effects on systemic and hepatic immunity,

inflammation, and liver architecture and function (82–88). It

is now recognized that MASLD is the hepatic expression of

metabolic syndrome and given the association of gut microbiota

with obesity and insulin resistance, several studies have sought

to investigate the role of gut microbiota in MASLD (89–91).

The most abundant species traced during advanced fibrosis are

E.coli and Bacteroides vulgatus (4, 79). B. vulgatus is known to

increase with obesity, increment in BMI, Hb1Ac and insulin

resistance (92). The bacterial populations in advanced stages of

cirrhosis undergo a major transformation, with an increase in

pathogenic bacteria and decrease in beneficial bacteria. A reduction

in Faecalibacterium prausnitzii, an anti-inflammatory species has

been reported in subjects with cirrhosis (92, 93). Its decrease is

also seen in other conditions such as obesity, T2DM and bowel

diseases (4).

Several animal studies have analyzed the changes in gut

microbiota in response to high fat feeding (73, 91, 94). Mice

deficient in the hormone leptin are called ob/ob and the

ones deficient in leptin receptor are called db/db that mimic

conditions of obese and diabetic strains respectively. In the ob/ob

mouse, the changes in microbiota occurred rapidly following

the administration of a high fat diet resulting in an increase in

proportional weight in Firmicutes and a decrease in Bacteroidetes

(71, 85) and an increase in intestinal permeability. A decrease

in Bacteroidetes was also seen in the TLR4 knockout mouse

whilst there were no differences in wild type mice. More

recent studies have found that high fat diets in mice lead

to increased presence of gram-negative bacteria, malonaldehyde

(MDA) modified end products, and reduced defensin expression.

An MDA rich environment may cause induction of bacterial

cytolysins and affect antimicrobial defense mechanisms in the

gut. Several studies have examined diet-induced changes in gut

microbiota in mice strains fed a high fat or high sucrose

diet and, in each case, a significant proportional increase in

Firmicutes and decrease in Bacteroidetes was seen (95–99). High

fat or high sucrose feeding also led to increased Dorea and
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TABLE 2 Microbial species distribution across di�erent stages of MASLD

and MASH.

Disease stage Microbial species
changes

References

Initial MASLD development

Stool microbiome profile • ↑ Lachnospiraceae

bacterium 6091
(91)

• ↑ Barnesiella

intestinihominis1

• ↑ Lactobacillus spp. (L.

gasseri, L. taiwanensis)1
(94)

Disease progression

Mild/moderate MASLD • ↑ Eubacterium rectale2 (114)

• ↑ Bacteroides vulgatus2

• ↑ Firmicutes (dominant

phylum)2

• ↓ Rikenellaceae2 (4, 136)

• ↓ Ruminococcaceae2 (4, 136)

• ↑ Enterobacteriace2 (4)

• ↑ Dorea 2 (4, 136)

• ↑ Peptoniphilus 2 (4)

• ↓ Anaerosporobacter 2 (4)

• ↓ Coprococcus2 (4)

• ↓ Faecalibacterium 2 (4)

Advanced fibrosis • ↑ B. vulgatus3 (114, 321)

• ↑ Escherichia coli3

• ↑ Proteobacteria phylum3

• ↑ Gammaproteobacteria3

• ↑ Prevotella spp.3

• ↓ Firmicutes3

• ↓ Ruminococcus obeum

CAG:393

• ↓ R. obeum3

• ↓ E. rectale3

MASH • ↑ Bacteroides spp.4 (75)

• ↓ Prevotella spp.4

1Species overrepresented in stool with potential to induce MASLD. 2Characteristic of early

disease stage. 3Associated with disease progression 4Markers of inflammatory progression.

Key Finding: Advanced MASH fibrosis is characterized by a significant decrease in

Gram-positive Firmicutes and increase in Gram-negative Proteobacteria (including E.

coli). The presence of lipopolysaccharides and endotoxins from gram-negative bacteria

contributes to hepatic fibrosis progression (322, 323) (Symbols: ↑, increased abundance; ↓,

decreased abundance).

Eubacterium rectale and decreased Bifidobacterium (100–103).

To date, the only human dietary intervention study found that

weight loss by energy restriction with a Mediterranean or low-fat

diet increased Firmicutes and reduced Bacteroidetes: Eubacterium

rectale in obese individuals (101, 104–106). This is important as

it shows that specific changes in human gut microbiota can be

linked to dietary patterns and may be relevant to the etiology of

MASLD (90).

Gut barrier dysfunction and
endotoxemia

Intestine is one of the most crucial internal barriers and its

disturbance leads to an immune response as bacterial products

pass through the gut, and evidence shows that the immune

systems of patients with MASLD are primed toward a pro-

inflammatory state. This explains why the severity of MASLD

is often associated with the presence of an inflammatory state,

and the immune response is closely linked with the mechanism

of liver damage and inflammation. Intestinal permeability refers

to ability of the extracellular barrier to allow any exchange

between tissues and intestinal lumen. The gut barrier limits passage

of potentially pathogenic molecules and microorganisms to the

systemic circulation (107). Passage of bacteria and their products

from the gut lumen to the bloodstream and liver and spleen

is known as intestinal bacterial translocation. Livers of Healthy

individuals have an exposure of small bacterial products such

as lipopolysaccharides (LPS), a dominant molecule on surface

of Gram-negative bacteria. Increased levels of LPS are found

in patients of inflammatory diseases. Hepatic inflammation is

resultant of a complex interaction of Kupffer cells, neutrophils,

hepatocytes and sinusoidal cells. Metabolic dysfunction in the

liver takes place because of interaction of hepatocytes and Kupffer

cells with pathogen-associated molecular patterns (PAMPs) and

damage-associated molecular patterns (DAMPs) and initiating a

series of inflammatory events.

Increased blood endotoxin levels have been detected in patients

with MASLD on comparison with healthy liver controls which

also suggests that these could be used an indicative biomarker

for progression of liver disease (108). The LPS present on the

outer cell membrane of Gram-negative bacteria in the intestine

constitute these endotoxins that can induce inflammatory activities.

Dysbiosis coupled with disturbance of the intestinal barrier leads to

release of endotoxins from the lumen of the gut into the circulation

and it enters the liver via the portal vein (Figure 3). Increase in

levels of endotoxins is also coupled with a simultaneous increase

in C- reactive protein (CRP) that is considered as a marker for

systemic inflammation (Figure 3). Excessive growth of aerobic and

anaerobic gram-negative bacteria is known to cause a condition

called small intestinal bacterial overgrowth (SIBO) (109). This

contribution of SIBO can be due to increased oxidative stress,

insulin resistance, increased ethanol production and bymodulating

choline metabolism by promoting the excessive conversion of

choline into trimethylamine (TMA) by gut bacteria, leading to

potential choline deficiency and contributing to the development

of MASLD. Increase in gut permeability due to disruption of the

tight cell junctions in SIBO affected individuals would lead to entry

of bacteria and their products—endotoxins. This in turn induces

expression of nuclear kappa B expression that activates TLR-4

and proinflammatory cytokines such as TNF-α and IL-6 and IL-8

(Figure 3) (110, 111).

Impact of dysbiosis in MASLD

Gut dysbiosis disrupts the bile acid metabolism pathway,

which in turn causes dysfunction of the gut-liver axis (112).
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FIGURE 3

Pathogenic mechanisms linking gut dysbiosis to MASLD progression. Intestinal dysbiosis and SIBO lead to barrier dysfunction through disruption of

tight junction proteins (ZO, Claudin, JAM-A). This results in increased intestinal permeability and translocation of bacterial endotoxins (LPS) via the

portal vein. In the liver, LPS activates Kup�er and stellate cells, triggering inflammatory cascades (TNFα, IL1, IL18, CXCL) and oxidative stress (ROS).

Concurrent metabolic alterations include increased ethanol production, altered SCFA metabolism, and choline deficiency due to enhanced bacterial

conversion to trimethylamine. These pathways collectively promote hepatic steatosis, inflammation, and fibrosis characteristic of MASLD.

Evidence showing an increase in potential harmful bacteria (e.g.

Escherichia coli, and Bacteroides) and a decrease in beneficial

bacteria (e.g. Bifidobacteria and Lactobacillus), strengthened the

fact that dysbiosis is associated with MASLD (113–116). Studies

have shown MASLD alterations like hepatic triglyceride elevated

levels, upregulation of genes related to lipid uptake and lipogenesis

in germ free mice upon fecal matter transplant (FMT) from

hepatic steatosis suffering obese mice (91). In another study,

it was found that inflammasome-mediated gut dysbiosis can

cause hepatic steatosis in wild-type mice when cohoused with

MASH-affected mice (117). The metabolites produced by gut

microbiome are essential component that can modulate the

pathophysiology of MASLD and MASH. One of the most common

metabolites produced by gut bacteria in response to dietary fiber

breakdown is SCFA which plays a crucial role in maintaining

metabolic, nervous, and immune system (118). By influencing

host epigenetics, activating G protein-coupled receptors, and

preventing pathogenic microbial infections, SCFAs function as

vital mediators between the gut microbiota and the host, acting

as energy substrates for intestinal epithelial cells and preserving

homeostasis in host immune and energy metabolism (119). Acetic

acid, propionic acid, and butyric acid are the most common SCFA

accounting for 90–95% of the colon’s total SCFA content (118).

The acetate boosts liver fat oxidation by facilitating changes in

mitochondria and activating AMP-activated protein kinase (120),

while propionate may promote the release of leptin, which helps to

suppress the formation of new lipids (121). Butyrate is primarily

utilized by colon cells as their main energy source and displays

anti-inflammatory properties (122). Butyric acid has also the

ability to hinder the activation of ChREBP and SREBP-1, then,

suppress the process of lipogenesis (123). Researchers have found

in high-fat-fed mice, commensal microbe that produces acetate

can suppress MASLD progression by modulating free fatty acid

receptor 2 (FFAR2) signaling in the liver (124). Several other studies

have demonstrated that butyrate can regulate gut microbiota,

hepatic Glucagon-like peptide-1 (GLP-1) receptor expression,

TLR4 pathways and intestinal tight junctions thus attenuating

the development of MASLD (125–128). Decreased production of

butyrate results in increased intestinal inflammation, increased

gut permeability, endotoxemia and systemic inflammation (129).

In addition to SCFA, bile acid and ethanol are other metabolites

that plays a vital role in MASLD. Preclinical trials have shown

that microbiota derived endogenous ethanol can accelerate liver

steatosis and inflammation (24, 130). Additionally, there are

evidence showing increased level of blood ethanol in MASLD

patients (131). Gut microbiota is also involved in Bile acid

metabolism. They have the capacity to convert primary bile acid

into secondary bile acid. However, due to decreased abundance

of related bacteria this ability is compromised in case of MASLD

(132). By targeting genes linked to fatty acid synthesis and oxidative

stress, a lower amount of deconjugated bile acid can further reduce

taurine production and cause hepatic steatosis and inflammation

(133). In addition, the receptor for bile acids, farnesoid X receptor

(FXR) is found to be downregulated inMASLD (132). The decrease

in the level of intestinal FXR is correlated with decrease in the

secretion of an enterokine that regulate synthesis of hepatic bile
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acid fibroblast growth factor 15/19 (FGF15/19), which in turn can

reduce liver steatosis (134). Amino acids and choline are some

other gut microbial metabolites that are reported to modulate

MASLD (129).

Diet plays a pivotal role in shaping the composition and

function of the gut microbiome. A Western-style diet, rich in fats

and refined carbohydrates, has been shown to induce dysbiosis and

compromise gut barrier integrity. Interestingly, it has been found

by investigators that obese infant mice with a western diet have

excess weight gain and accelerate the progression of MASLD (135).

It is hypothesized that onset of MASLD is triggered by high fat

diet which induces an increase in FFAs and LPS which are derived

from the gut anaerobic bacteria (114, 136). Endotoxemia occurs

when there are elevated levels of LPS in the blood and is commonly

observed in states of obesity, insulin resistance and in MASLD

patients. Increased endotoxemia occurs due to higher levels of gut

derived LPS and translocation of bacteria, particularly due to a high

fat diet. In response to LPS, Kupffer cells, which are resident liver

macrophages, and hepatic stellate cells are activated and release

pro-inflammatory cytokines, this further elevates insulin resistance

and promotes hepatic inflammation and fibrosis, thus having a

central role in MASLD progression (137–139). LPS also induces

fat accumulation in the liver and ROS production. Kupffer cells

along with liver sinusoidal endothelial cells (LSECs), hepatic stellate

cells (HSCs), and local immune cells, specifically unconventional

T cells, natural killer (NK) cells, and hepatic dendritic cells make

up the nonparenchymal liver cells, which are significant chemokine

sources and responders. PAMPs or DAMPs are released when

hepatocytes are damaged, whether by infection or other causes.

These signals attach to TLR4 and other TLRs on Kupffer cells

and trigger the release of proinflammatory cytokines, such as TNF,

chemokines, and reactive oxygen and nitrogen species (140). TNF

released by Kupffer cells is thought to play a key role in exacerbating

liver damage, primarily by causing hepatocyte death but also

by degrading the hepatic microcirculation by causing endothelial

cells to swell and become activated, which leads to sinusoidal

platelet aggregation and makes it easier for peripheral immune

cells to enter. Interleukin (IL)-1β and CXC chemokines, including

CXCL1, CXCL2, and CXCL8 (IL-8), are secreted by activated

Kupffer cells. Key chemokines CXCL1, CXCL2, and CXCL8 draw

neutrophils primarily through the chemokine receptors CXCR1

and CXCR2, which release proteases and ROS, causing hepatocyte

necrosis (141).

Therapeutic approaches

The existing diagnosis of MASLD relies on clinical evaluations

as well as biopsy results, with liver biopsy being the only

diagnostic method that can accurately determine its severity (142).

Nonetheless, this invasive technique carries the risk of serious and

potentially fatal complications. As a result, effectively forecasting

and promptly taking measures to avert the onset of MASLD

continues to be a challenge. Several studies which focus on blood

biochemical markers, gut microbiota, and fecal SCFAs, uncover a

close association between gut microbiota and the progression of

MASLD, thereby improving its clinical diagnosis (142–144). While

we emphasizes on improving clinical diagnosis using microbial

signatures, we acknowledge that future validation studies should

also include head-to-head comparisons with established non-

invasive tests such as FIB-4 and elastography to determine the

relative diagnostic performance and clinical utility of microbiome-

based approaches.

As discussed, gut–liver axis is an important bridge between

gut and liver. The dysbiosis/malfunction of the gut–liver axis plays

one of the most important roles in the onset and progression

of MASLD by altering the intestinal permeability, increasing the

level of portal toxic metabolites, promoting hepatic inflammation.

Thus, microbiota based pharmacological modulation of gut–

liver axis is an emerging and promising therapeutic method for

MASLD treatment (145–148). There are numerous pathways by

which microbiota can affect liver health, and several approaches

that have been proposed to target these in order to improve

liver health (148–153). There are several drug candidates that

are in later stage clinical trials which includes PPAR agonists,

anti-fibrotic therapies, anti-inflammatory agents, antioxidants, and

treatments targeting the gut-liver axis (154). The gut microbiota

can be therapeutically modulated through several approaches,

including antibiotic therapy, probiotic supplementation, prebiotic

administration, synbiotic interventions (155, 156) and FMT (157,

158). Obesity and T2DM are linked to substantial compositional

and functional alterations of the gut microbiota. Therefore,

modulation of the gut microbiota represents an attractive approach

for the management of diabetes in the context of MASLD (68, 91,

159, 160).

Modulation of gut microbiota

Gut microbiota may be altered using prebiotics, probiotics or

their combination known as synbiotic. According to FAO/WHO,

Probiotics are live non-pathogenic microorganisms, which when

administered in adequate amounts, confer a health benefit on the

host (161, 162). The most widely used bacterial populations are of

Lactobacillus, Bifidobacterium and Streptococcus that are capable

of suppressing growth of Gram-negative pathogens (163, 164).

These beneficial bacteria can reduce lipid deposition, endotoxemia,

oxidative stress, and inflammation by regulating the expression

levels of TNF-α, NF-κB, and collagen (162). Improving the gut

barrier is the primary way that probiotics protect against MASLD

in the gut–liver axis. Lactobacillus rhamnosus, L. acidophilus, L.

plantarum, and Streptococcus thermophilus are a few probiotics that

have shown the ability to activate tight junction proteins to improve

the intestinal permeability (165). A recent randomized controlled

trial has shown that probiotics stabilizes the mucosal immune

function that in turn protects the MASLD patients from increased

intestinal permeability (166). A variety of probiotics, particularly

well-known like Lactobacillus, Bifidobacterium, and Streptococci,

have been studied clinically in relation to the prevention and

treatment of MASLD. Wong et al. treated MASH patients for

6 months with a variety of probiotics and discovered that the

subjects receiving probiotics had a considerably lower liver fat

level than the placebo group (167). According to clinical data,

probiotics can help MASLD patients’ liver histology and liver

injury indices like alanine aminotransferase (ALT) and aspartate
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aminotransferase (AST) (168). But according to a different clinical

study conducted during the same time, giving multiple-strain

probiotics to MASLD patients only improved liver steatosis and

not liver enzymes (169). Probiotics have consistently been shown

to reduce liver enzyme levels (e.g., ALT, AST) in MASLD patients,

but improvements in liver histology like inflammation, fibrosis, or

steatosis have not been demonstrated in biopsy-confirmed settings.

Several meta-analyses confirm this pattern (162, 169–177). A 2024

network meta-analysis of 37 randomized controlled trials (RCTs,

n=1,921) found that probiotics significantly lowered ALT and AST,

and improved liver stiffness and steatosis based on elastography

and controlled attenuation parameter (CAP) scores but did not

show histological resolution (178). Similarly, a 2019 meta-analysis

reported significant reductions in liver enzymes and steatosis by

ultrasound, but histological effects were unassessed (162, 174,

179). Most trials rely on biochemical or imaging measures (e.g.,

ultrasound or FibroScan), and rarely include sequential liver

biopsies to confirm tissue-level changes. Probiotics effectively

lower liver enzymes in MASLD without proven histological

improvements, likely due to non-tailored approaches. Personalized

microbiome modulation using patient-specific microbial profiling,

strain selection, prebiotic support, and mechanistic biomarkers

offers a promising path to bridge this efficacy gap. Ongoing research

in precision microbiome interventions (pharmacomicrobiomics,

host-microbe profiling) will be critical for developing such

customized therapeutic strategies (180).

Prebiotics are non-digestible food ingredients that have

beneficial effects on the host by selectively stimulating the

growth and/or activity of one or a limited number of bacteria

in the colon, and thus improving host health (181, 182).

Prebiotics are capable of increasing activity of good bacteria and

resisting growth of detrimental species. Fructooligosaccharides

(FOS), inulin, transgalactooligosaccharides (TOS), and lactulose

are examples of common prebiotics. Prebiotics are a safe and

efficient way to control the gut microbiota since they can

boost the growth and activity of probiotics (183). Prebiotics can

prevent the growth of harmful bacteria like Salmonella enteritidis,

Klebsiella pneumoniae, and Escherichia coli while simultaneously

activating the advantageous bacteria (184). This characteristic

can enhance the gut barrier, support gut microbial homeostasis,

and ultimately slow the advancement of MASLD. Through

fermentation, prebiotics can also protect against MASLD by

producing SCFAs, which have been shown to protect against

MASLD and the gut-liver axis (183). Larch wood arabinogalactan

(LA-AG), a novel complex soluble dietary fiber was discovered by

Sun et al., as a potential prebiotic. By promoting the fermentation

of organic acids, LA-AG was able to reduce the activity of

harmful bacteria and enhance intestinal health (185). Therefore,

by controlling the gut-liver axis, LA-AG may be effective in

preventing MASLD.

In a clinical trial Bomhof et al. (186) showed, using

oligofructose as an example, that giving patients with MASH a

supplement of the prebiotic can improve their liver steatosis and

non-alcoholic fatty liver activity score (NAS) (186). Furthermore,

according to a meta-analysis prebiotic treatment can enhance

anthropometric and biochemical parameters such as body mass

index (BMI), ALT, AST, fasting insulin, and insulin resistance in

individuals with MASLD (187).

Apart from probiotic and prebiotics, their combination called

synbiotic can be used that is capable of boosting metabolism of

heathy bacteria and modulate the gut microbiome (161). Several

studies have shown the protective effect of synbiotics on liver

and cardio related disorders (171, 179, 188–190). More studies

to define the health benefits of pre and probiotics in the context

of MASLD and T2DM are required. If these therapies are shown

to be beneficial, an important issue will be the best strains of

probiotics or types of prebiotics to use, and the optimal duration of

therapy. This microbe directed therapy for MASLD, and diabetes

could also involve the use of antibiotics with selective action in

the intestine, although this is unlikely to be an attractive strategy

for patients or doctors. The idea that antibiotics can reduce the

effects of microbiota and their metabolites on host metabolism via

the gut–liver axis is the foundation for their use in the treatment

of MASLD. Preclinical trials have shown that by inhibiting gut

bacteria, antibiotics can control the amount of portal secondary

bile acid, reducing liver fibrosis and inflammation and preventing

the progression of MASLD (191). Another study demonstrated that

neomycin and polymyxin B can significantly lower hepatic lipid

build-up by decreasing the translocation of endotoxin in a MASLD

mouse model (192). In a Phase II clinical trial, the powerful next-

generation macrolide antibiotic Solithromycin was shown to lower

the ALT andNAS ofMASH patients (193). There are several studies

in animal models demonstrating that broad-spectrum antibiotics

can prevent and reverse MASLD, although the side effects of

long-term antibiotic use are considerable (194–196). Antibiotics

should be used with caution as they may eradicate certain bacterial

species linked to good health and result in the emergence of some

antibiotic-resistant bacteria (197).

An exciting potential future alternative is the use of FMT from a

healthy lean donor to a patient withMASLD and obesity or diabetes

(174, 198, 199). FMT is an effective therapeutic option for liver and

metabolic diseases associated with intestinal microbiota dysbiosis

(85, 198, 200). There have been several studies demonstrating

the therapeutic effects of FMT on ulcerative colitis, T2DM and

patients, which were associated with improved insulin resistance,

restored healthy microbiota, and normalized blood lipid levels

(201–205). Several investigations have demonstrated that FMT

is an effective bacteriotherapy for MASLD as well. Zhou et al.

discovered in an early preclinical investigation that FMT might

reduce High fat diet (HFD)-induced MASH by enhancing the gut

barrier, raising SCFA levels, and controlling gut microbiota (206).

Another study in 2021 by Zhang et al., demonstrated that germ-free

(GF) mice receiving FMT had less hepatic lipid accumulation and

inflammation than normal chow-fed animals in contrast to mice

fed high-fat/high-cholesterol (HFHC) and receiving FMT (207).

Recent human trials have also shown that FMT can lower intestinal

permeability and hepatic steatosis in MASLD patients, which is in

line with animal investigations (208). However, some side effects,

like bacteremia and perforations, have still been documented in

FMT (209). Therefore, additional clinical trials must be carried out

to increase the effectiveness and lower the negative effects of FMT

treatment in MASLD/MASH.
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Microbiota-based therapies, such as probiotics and FMT, are

being explored as adjunct treatments for MASLD, primarily due

to the gut-liver axis’s role in disease progression. However, current

evidence reveals several critical limitations.

For probiotics, therapeutic effects vary widely depending

on the strain, dose, and treatment duration. While some

studies report reductions in liver enzymes and steatosis, results

are inconsistent, and few trials assess histological endpoints

(174, 178, 210). Moreover, the adult gut microbiome exhibits

strong ecological resilience, often reverting to its original state

after probiotic intervention (174), limiting long-term efficacy.

There’s also no consensus on optimal strains or treatment

regimens (211).

FMT shows some promise in early MASLD trials (212,

213), but results are mixed. Engraftment of donor microbes

is unpredictable and often influenced by host factors, such as

baseline microbiota composition and diet (214). Safety concerns

have also been raised—cases of extended spectrum beta lactamase

(ESBL)-producing E. coli infection following FMT prompted

FDA safety alerts (215), underscoring the need for rigorous

donor screening.

Furthermore, both therapies lack standardized protocols

regarding delivery method, donor/strain selection, and outcome

measurement. Most trials are short-term and fail to evaluate

long-term outcomes like fibrosis reversal. Given that MASLD

is a complex, multifactorial disease, targeting the microbiome

alone may be insufficient without concurrent lifestyle or metabolic

interventions (4, 216).

In conclusion, while microbiota-based therapies hold promise

as adjunctive treatments for MASLD, they are currently limited

by inconsistent efficacy, methodological heterogeneity, safety

concerns, and incomplete understanding of long-term outcomes.

Well-designed RCT’s with standardized protocols, mechanistic

endpoints, and extended follow-up periods are urgently needed

to clarify their role. Until such data are available, these therapies

should be considered experimental and used with caution in the

clinical setting.

Other promising agents as adjunctive
therapy

Using FXR agonists
FXR agonists are a class of drugs that have been reported to

decrease hepatic steatosis and improving insulin sensitivity and

hence a promise in treatment of various gastrointestinal diseases

(217). FXRs are nuclear receptors present in liver, kidney, intestine,

pancreas and adipose tissue and are actively involved in bile

acid, lipid and glucose metabolism and inflammation. The FXR

agonists bind to the receptors and activate them and regulate

target genes involved in the biological pathways. These agonists

have been a part of successful clinical trials which showed that

they assist in improvement in liver inflammation as well as insulin

sensitivity. These receptors are activated endogenously by bile

acids and are regulators of bile acid production, conjugation,

and transport.

Several FXR agonists that have been assessed in clinical trials

and their effects are:

• Obeticholic Acid (OCA): A derivative/synthetic variant of

bile acid, it improves insulin sensitivity, liver inflammation,

hepatocellular ballooning and reduces fibrosis (218). When

bound to the FXR receptors, lipophilic bile acids decrease

gluconeogenesis and triglycerides in the liver, promote insulin

sensitivity. This also increases the expression of hepatic

scavenger receptors (SRB1), a liver protein crucial for

cholesterol homeostasis (219). It is responsible for reverse

cholesterol transport by increasing the clearance of HDL by

liver cells (220). Several studies have also reported a side effect

of its use: pruritus as well limiting its use (218).

• Cilofexor: Non-steroidal molecule that reduces steatosis,

downstages hepatic fibrosis (221).

• Tropifexor: Novel and highly potent agonist of FXR and is

being used in stage 2 human clinical trials in patients (222).

• Vonafexor: A non-steroidal FXR agonist that has an action of

reduction of liver fat content, fibrosis biomarkers, body weight

and improving kidney function (223).

Using SGLT inhibitors and incretin-based
approaches

Incretin-based therapies and sodium-glucose cotransporter 2

(SGLT-2) inhibitors are now being worked on as novel classes of

glucose-lowering drugs used in the management of T2DM and are

proving to be playing a simultaneous role in improving liver health

(224) (Table 3).

• SGLT-2 inhibitors are antihyperglycemic agents that target

SGLT-2 proteins expressed in the proximal convoluted tubules

of the kidneys, where they normally mediate the reabsorption

of glucose from the urine; by inhibiting this process, these

agents promote increased urinary glucose excretion and help

lower blood glucose levels (225).

• These drugs exert their effect by preventing the reabsorption

of filtered glucose from the tubular lumen.

• Their beneficial effects range from weight loss, regulation of

stress in the endoplasmic reticulum, oxidative stress, low-

grade inflammation, apoptosis and autophagy (226).

• Incretins are hormones derived from the intestinal mucosa

that play a key role in regulation of blood sugar levels as

they stimulate secretion of insulin from pancreas post glucose

intake (227).

Role of AMP-activated protein kinase (AMPK)
AMPK activators are now gathering attention as alternatives to

conventional treatments (228). These are involved in modulating

energy metabolism under conditions of increased AMP:ATP ratio

during energy deprivation. It further inhibits DNL gene expression

by suppressing the actions of the enzyme acetyl-CoA carboxylase 1

pathway and promotes lipolysis through activation of the carnitine

palmitoyl transferase 1 pathway in the liver.
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TABLE 3 Antidiabetic drugs with potential hepatic benefits.

Drug class Name of drug Mechanism of action and e�ect

SGLT-2 inhibitors Dapagliflozin Reduced expression of hepatic inflammatory cytokines (TNF-α, IL-1β, IL-18) and improved hepatic

steatosis; decrease in body weight as well (324).

Empagliflozin Improvement in hepatic inflammation and steatosis as seen in downregulation of inflammatory

markers (325, 326).

Incretins Glucagon-like peptide-1 (GLP-1) Released from L-cells of the intestinal in response to nutrient ingestion and enhances glucose-

stimulated insulin secretion; GLP-1 agonists & DPP-4 (enzyme dipeptidyl peptidase-4 that degrades

GLP-1) inhibitors are of great interest for reduction of liver fat.

GLP-1 agonists have shown action in weight loss as well as suppression of appetite and improvement

in sensitivity of insulin. Examples are liraglutide and exenatide (327).

Glucose-dependent insulinotropic

polypeptide (GIP)

These are released from K-cells of the small intestine in response to glucose or fat ingestion, and

potentiates glucose-stimulated insulin secretion (327, 328).

Various agents that function as AMPK activators can be

classified broadly into two categories:

A. Direct activators: Examples such as: A-769662 (229),

Salicylate [both implied for improving liver function and

reduction of hepatic fat].

B. Agents that mimics AMPK’s downstream activity: Such

as metformin (230) and aramchol (231) [reduction of

hepatic fat content and inhibition of fatty acid synthesis in

liver respectively].

AMPK is a critical regulator of cellular energy metabolism and

oxidative stress defense. It has been identified as a central protein

capable of mitigating cytotoxicity, suppressing inflammation, and

preventing fibrosis. Hence, it has been positioned as a promising

therapeutic target for addressing the primary drivers of MASLD.

Targeting liver health

Currently, most of the effective therapeutic methods are

targeting liver health. MASLD can’t only be thought of as a

precursor to T2DM, as liver damage has been shown to exacerbate

diabetes by causing insulin resistance and beta cell failure. There are

several molecular pathways that are thought to be involved in the

process, and these are potential targets for therapeutic intervention.

First, hepatocyte lipid overload and the presence of fat metabolites

have been shown to activate serine kinase cascades that cause

insulin resistance (44, 62, 232–235). So, blockade of these kinases

may prevent the progression from MASLD to T2DM. There is an

ongoing trial to assess the effectiveness of pioglitazone in treating

advanced liver disease due to its insulin sensitizing effects, while

lifestyle modification is a rational and safe therapy for MASLDwith

T2DM (236, 237). However, diabetes is typically characterized by

compromised antioxidant capacity and increased oxidative stress.

In patients with concurrent MASLD and diabetes, this oxidative

imbalance exacerbates hepatic inflammation and fibrogenesis,

worsening disease prognosis and dramatically increasing the risk

of hepatocellular carcinoma and other liver diseases, while also

elevating the risk of microvascular and macrovascular diabetic

complications (238–244). High-dose vitamin E therapy has been

shown to improve all aspects of liver histology in adults with

MASLD (236, 245). It has also been shown to prevent the onset

of T2DM in adults with metabolic syndrome and/or diabetes.

High-dose statin therapy has been suggested as a treatment

of MASLD. Triglyceride-lowering effects and improvement of

aminotransferase levels were seen in early studies. However, recent

evidence suggests that there is a risk of further liver damage (246,

247). These drug therapies are probably inappropriate for mild liver

disease in T2DM and will have to be balanced with the risks and

benefits. Ultimately, drug therapy for the liver in T2DM must be

tailored to the individual.

Lifestyle interventions and diabetes
management

Lifestyle variables like excessive consumption of foods high in

calories and a decrease in physical activity and exercise, are closely

linked to the development of MASLD. Despite many negative

effects as stated earlier, currently there are no pharmacological

treatments for MASLD. Therefore, healthy lifestyle is the most

important management of MASLD which involves diet, exercise

and weight loss (248). Healthy lifestyle for both adults and children

include eating a diet high in fruits, nuts, seeds, whole grains, fish,

poultry along with regular physical exercise and avoiding excessive

intake of red meat, ultra-processed foods, sugar-sweetened

beverages, and meals fried at high temperatures (248). Several

randomized controlled trials have shown lifestyle interventions

reduce body weight, improve hepatic triglyceride content and

improve MASLD activity score in patients suffering from MASLD

(249–254). Furthermore, most studies show that changes in lifestyle

are associated with improvements in cardiovascular disease (CVD)

risk variables, including insulin resistance and blood cholesterol

levels. Several clinical practice guidelines promote weight loss

through calorie restriction as the best evidence-based strategy

to improve MASLD across the disease spectrum (250, 252,

255). Comprehensive lifestyle modification should include dietary

change to lower calorie intake, lifestyle and behavioral training, and

increase physical activity. Avoiding smoking should also be part of

the changes, as it has been linked to MASLD, fibrosis progression

and HCC (256). Although several hypo energetic diets can

reduce liver fat and promote weight reduction, the Mediterranean

diet (MD) offers additional cardiometabolic benefits related to

CVD risk reduction, which is the leading cause of mortality

in most people with MASLD (257). However, their real-world

feasibility across diverse, resource-constrained populations hinges

on overcoming significant implementation barriers.
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A mixed-methods trial in Northern England involving 19

MASLD patients demonstrated that after 12 weeks of MD

counseling using meal plans and recipes, adherence increased

from moderate to high, yielding modest weight loss (∼2.4 kg)

and HDL improvements. However, significant obstacles emerged,

including an obesogenic environment, everyday stress, demand

for convenience foods, and limited understanding of MASLD’s

health implications factors that adversely affected commitment

to dietary changes (258–260). Similarly, a qualitative study in

Australia with multicultural participants revealed that while the

MD was perceived as more enjoyable and sustainable than a

low-fat diet, barriers included access to culturally appropriate

foods and sustaining changes post-interventions (260). A Tunisian

study found patients could adhere to MD principles when fresh

ingredients were affordable, and recipes were culturally tailored.

Tunisian NAFLD patients had low MD adherence due to financial

constraints and dietary adaptation challenges (261).

Systematic reviews highlight recurrent themes affecting MD

adoption beyond Mediterranean regions: economic constraints,

such as higher costs of fresh produce and olive oil; limited

availability in local markets; cultural mismatches, and low

nutrition literacy hindering behavior change. In regions with low

socioeconomic status, MD adherence is strongly associated with

greater food costs and younger age, while access to affordable,

healthy food options especially in food deserts poses practical

limitations (259, 262, 263).

Incorporating physical activity and exercise with dietary

changes should be emphasized in the treatment of MASLD.

Numerous randomized controlled trials have shown that exercise

alone lowers liver fat in people with MASLD (264), whereas

inadequate physical activity is linked to an increased risk for

MASLD progression (265). Additionally, several recent studies

have shown that a higher level of physical activity is linked to

a lower risk of cirrhosis, liver fibrosis, and all-cause mortality

(266–268). Exercise regardless of weight loss has hepatic and

cardiometabolic benefits and it should be regularly advised and

customized to patients’ physical capabilities and preferences (269).

Individuals with sedentary lifestyle and no physical activity should

set achievable goals minimum of at least 150min per week (30min

per day on 5 days per week) of moderate activity that includes

anything that will raise the heart best and break a sweat still

allowing to talk (269). According to current recommendations, a

mix of resistance (also known as “strength,” like weight-lifting) and

aerobic (often known as “cardio,” like brisk walking, cycling, and

swimming) exercise should be employed (265, 269). Dietary and

lifestyle changes must be adopted for life to prevent the progression

of MASLD and its common comorbidities—namely, CVD and type

2 diabetes.

Treatment approaches for MASLD in diabetic patients

primarily focus on improving insulin control and reducing liver

fat accumulation. Achieving better glycemic control, as indicated

by lower HbA1c levels, has been associated with reductions in

ALT levels, which serve as a marker of liver inflammation (270,

271). For T2DM, effective management of hyperglycemia and

improved insulin sensitivity are critical for lowering rates of DNL

and reducing hepatic fat. These changes are difficult to achieve

in practice and there are no current treatments that are highly

effective. One promising therapeutic avenue involves enhancing

the activity of peroxisome proliferator-activated receptor gamma

(PPARγ). Thiazolidinediones (TZDs), which target this receptor,

have shown potential in improving insulin sensitivity and reducing

ALT levels in MASH patients (272, 273). However, due to

their cardiovascular side effects, TZDs are not recommended

for MASLD treatment (274). Additionally, anabolic hormone

therapy to correct deficiencies or counteract the muscle wasting

associated with MASLD/MASH represents a compelling area for

future research.

Low glycemic index diets rich in monounsaturated fatty

acids are associated with improvement in hepatic steatosis and

ALT levels, and in a recent study, ad libitum low carbohydrate

diets resulted in greater weight loss and improvement in insulin

resistance compared to energy-restricted high carbohydrate diets

(275–277). Weight loss has been associated with improvements

in liver enzymes and histology in a number of different patient

populations, and the associated metabolic improvements are likely

to be mediated via reduction in adipose tissue inflammation and

secretion of pro-inflammatory adipokines (278–281).

Animal studies have shown that a combination of exercise

and dietary modification results in an alteration of the intestinal

microbiota, an increase in the production of intestinal mucins, and

a reduction of endotoxin and inflammatory cytokine production,

which in turn prevents the development of steatosis (74, 143,

282–285). In human studies, increased physical activity has

been associated with a reduced prevalence of hepatic steatosis,

and a recent randomized control trial has shown that 12

months of moderate-intensity exercise in patients with T2DM

resulted in reduced hepatic triglyceride content (286–289). Lifestyle

interventions such as physical activity, dietary modification, and

weight loss are the first line of therapy for the management of

T2DM and are the most effective interventions for prevention of

diabetes in high-risk populations (279, 290–292). Evidence is now

emerging to suggest that these interventions may be effective in

the prevention and management of MASLD and, in doing so, may

influence the intestinal microbiota (286, 293, 294).

Altogether, these studies suggest that the beneficial effects

of lifestyle interventions on both diabetes and MASLD

could be mediated via modulation of the gut microbiota,

and as our understanding of the mechanisms involved

increases, it may be possible to make targeted therapeutic

recommendations (154).

Can conclusions drawn from animal
studies su�ciently support translation
to human pathophysiology?

While animal models especially mouse such as diet induced,

deficiency induced, toxin induced, genetically induced or as a

mixture of these modalities have provided foundational insights

into the mechanisms of MASLD and MASH, the translation of

these findings to human pathophysiology remains limited due to

significant biological and metabolic disparities between species

(295, 296).

The ob/ob and db/db models, for instance, exhibit key features

of human metabolic syndrome and develop hepatic steatosis
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on a standard diet. When exposed to a secondary insult (e.g.,

methionine- and choline-deficient [MCD] diet), these models can

progress to MASH like phenotypes. However, their translational

relevance is restricted by the fact that congenital leptin deficiency

(as seen in ob/ob mice) or leptin resistance (db/db mice) is

extremely rare in humans (297–299). This limits their capacity to

represent the etiology of human obesity, insulin resistance, and

hepatic steatosis.

Moreover, the MCD diet model, while useful in inducing liver

injury and inflammation, leads to metabolic alterations such as

weight loss and decreased insulin levels that contrast starkly with

human MASH, which is typically associated with obesity and

insulin resistance. This explains the fact that many animal models

either replicate histopathological features or metabolic features but

rarely both (296).

Significantly, human clinical data have highlighted the

limitations of these models. A study utilizing a human liver

chimeric mouse model revealed striking differences in molecular

responses between murine and human hepatocytes when exposed

to a Western diet, indicating species-specific liver functions and

responses (300). Another study revealed there was partial overlap

in liver transcriptome profiles between mice and humans, the gene

expression patterns in mouse models remained distinctly different

from those in humans, indicating that the pathophysiology in mice

does not fully replicate human MASLD (301). In another study

Vacca et al., did a retrospective study and assessed mouse models

using a human proximity score derived frommetabolic phenotypes,

liver histopathology and transcriptomic similarity to human liver

data (302). They concluded from the study that Western style

diets especially those with added cholesterol and longer feeding

are the closest match across metabolic, histological, and molecular

layers and Choline-deficient or genetically driven models may help

elucidate specific fibrosis mechanisms but do not recapitulate the

full human disease spectrum (302).

Thus, animal models remain invaluable for understanding

discrete mechanisms or stages of MASLD/MASH. However,

no single mouse model accurately recapitulates the integrated

metabolic, histological, and molecular complexity of human

disease. While existing models continue to guide mechanistic

research and therapeutic testing, further development of models

that more closely align with human pathophysiology is crucial to

improve translational validity (295, 303, 304).

Conclusions and perspectives

The multifaceted nature of MASLD emerges through

its complex interactions with IR and T2DM, with the gut

microbiome serving as a central orchestrator of disease

progression. Current cross-sectional studies inadequately

address fundamental relationships between gut dysbiosis and

hepatic dysfunction, demanding comprehensive longitudinal

microbiome investigations with standardized protocols to

delineate temporal disease progression patterns. Rigorous

randomized controlled trials evaluating microbiome-targeted

therapies, including FMT and precision probiotics, are essential

for clinical translation of emerging mechanistic insights. The

complex host-microbe-metabolic interactions underlying MASLD

pathophysiology require sophisticated multi-omics integration

strategies, employing advanced computational approaches

to identify novel biomarkers and therapeutic targets. These

complementary research strategies will accelerate the development

of precision diagnostics and mechanism-based interventions,

transforming MASLD management from reactive treatment to

proactive, personalized medicine approaches. Given projected

increases in global MASLD prevalence, this integrated research

framework represents our most promising pathway toward

effective therapeutic solutions for this increasingly prevalent

metabolic liver disorder.
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