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Background: Colorectal cancer (CRC) is a highly lethal gastrointestinal 
malignancy with substantial global health implications. Although mitochondrial 
metabolism genes play a crucial role in CRC development, their prognostic 
significance remains unclear.

Methods: This study systematically analyzed the expression and prognostic 
value of mitochondrial metabolism-related genes in CRC patients, establishing 
a risk model using data from TCGA and GEO databases. We also investigated 
the tumor microenvironment (TME), immune cell infiltration, tumor mutation 
burden, microsatellite instability (MSI), and drug sensitivity. Core mitochondrial 
metabolism-related gene, TMEM86B was identified and its functions validated 
through cell-based assays and in vivo mouse models.

Results: Fifteen mitochondrial metabolism-related genes were identified, 
including HSD3B7, ORC1, GPSM2, NDUFA4L2, CHDH, LARS2, TMEM86B, FABP4, 
TNFAIP8L3, HMGCL, GDE1, ACOX1, ARV1, HDC, and GSR. The nomogram, which 
incorporates independent prognostic genes TMEM86B, TNFAIP8L3, HDC, and 
key clinical features pTNM stage (pathological Tumor-Node-Metastasis), age, 
was created to predict patient outcomes. Notable differences in immune cell 
infiltration were observed between risk groups. The risk score was associated 
with TME genes and immune checkpoints, indicating an immunosuppressive 
environment in high-risk groups. Furthermore, TIDE analysis revealed that 
integrating the risk score with immune score, stromal score, or microsatellite 
status improved the prediction of immunotherapy response across different CRC 
patient subgroups. Core mitochondrial metabolism-related gene, TMEM86B 
promotes colorectal cancer progression by enhancing cell proliferation, 
migration, and invasion, and its downregulation significantly inhibits tumor 
growth both in vitro and in vivo.
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Conclusion: Our findings indicate that the risk model associated with 
mitochondrial metabolism may serve as a dependable prognostic indicator, 
facilitating tailored therapeutic strategies for CRC patients. TMEM86B promotes 
colorectal cancer progression, and its downregulation inhibits tumor growth 
in vitro and in vivo.
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Introduction

Colorectal cancer (CRC) was the third most commonly diagnosed 
cancer, with around 1.9 million new cases globally, representing 9.6% 
of all cancer diagnoses. Additionally, CRC was the second leading 
cause of cancer-related deaths, responsible for approximately 0.9 
million fatalities, or 9.3% of all cancer deaths worldwide (1). 
Geographically, CRC incidence and mortality rates are rising swiftly 
in many low- and middle-income nations, while highly developed 
countries tend to exhibit stabilizing or declining trends, although their 
rates remain among the highest worldwide (2). Patients with 
metastatic CRC face a much poorer prognosis, with a 5-year survival 
rate below 20% (3). Therefore, it is crucial to identify more reliable 
biomarkers for prognosis prediction, and to explore potential 
therapeutic targets in colorectal carcinogenesis.

Mitochondrial metabolism has emerged as a promising 
approach for developing new anticancer therapies, with various 
strategies currently under investigation (4, 5). Otto Warburg 
observed that cancer cells favor glycolysis over oxidative 
phosphorylation, even in the presence of oxygen, resulting in excess 
lactate production, a phenomenon termed “aerobic glycolysis” or the 
“Warburg effect” (6, 7). Subsequent studies have demonstrated that 
mitochondrial function alterations, such as changes in mitochondrial 
biogenesis, dynamics, and metabolism, play a crucial role in 
tumorigenesis, progression, and resistance to therapy (8). 
Mitochondrial metabolism crucial role in every stage of cancer 
development, which ranging from malignant transformation to 
tumor progression and therapy response has now been 
acknowledged (9, 10). In fact, research has shown that increased 
mitochondrial metabolism can compensate for the absence of the 
Warburg effect in promoting the growth of B16 melanoma tumors 
(11). Moreover, mitochondrial metabolism is essential for 
tumorigenesis in Kras-driven mouse models of lung 
adenocarcinoma (12).

Mitochondrial metabolism plays a critical role in shaping the 
tumor microenvironment (TME) and influencing colorectal 
cancer progression. Altered mitochondrial function supports 
tumor growth and metastasis by adapting metabolic and genetic 
responses to TME changes (13). Damaged mitochondria release 
ROS, mtDNA, and mtDAMPs under stress, activating immune 
pathways and triggering T-cell responses (14–16). However, 
increased mitochondrial oxidative phosphorylation (OXPHOS) 
can worsen tumor hypoxia, promoting immunosuppression and 
reducing the effectiveness of therapies like anti-PD-1 (17, 18). 
This immunosuppressive TME favors immune evasion by 
promoting M2 macrophages and regulatory T cells (Tregs) (19), 
while mitochondrial alterations can also upregulate PD-1/PD-L1 

pathways, further diminishing immunotherapy response (20). 
These findings highlight the close link between mitochondrial 
metabolism and immune suppression in the 
CRC microenvironment.

Recognizing the importance of mitochondrial metabolism in 
tumor development, the identification of biomarkers related to 
mitochondrial metabolism for CRC prognosis represents a 
promising area of research. Although multiple studies have 
formulated models to predict patient survival in CRC (21, 22), few 
of them focused on establishing prognostic models for CRC linked 
to mitochondrial metabolism, which effectively predicts prognosis 
and immunotherapy responsiveness in patients with colorectal 
adenocarcinoma and rectal adenocarcinoma. We further analyzed 
the relationship between risk scores and TME characteristics, 
including immune cell infiltration, immune checkpoint expression, 
and responses to immunotherapy. Additionally, we assessed the 
drug sensitivity of patients to 198 drugs. In summary, our 
mitochondrial metabolism-related risk model serves as a reliable 
prognostic biomarker for CRC, offering potential guidance for 
personalized treatment strategies. By linking mitochondrial 
metabolism to the immunosuppressive TME, this model enhances 
our understanding of CRC pathogenesis and paves the way for 
improved therapeutic interventions.

Materials and methods

Data collection

RNA-seq data and microsatellite status for 620 COADREAD 
samples were retrieved from the TCGA database.1 Clinical data 
were obtained from UCSC Xena.2 In total, 671 samples were 
analyzed, including 620 tumor samples and 51 healthy samples. 
Validation cohorts included GSE17536 which comprised 177 
samples. Levels of the 15 Prognosis-Related genes were validated 
in the GSE39582 Cohort, which comprised 585 samples. To 
eliminate batch effects, we used the removeBatchEffect function 
from the limma package in R. Mitochondrial metabolism-related 
genes were sourced from the MSigDB database.3 This gene set was 
curated through a combination of literature review and 
experimental validation, and it encompasses genes involved in 
mitochondrial metabolic pathways (23, 24).

1 https://www.cancer.gov/tcga

2 http://xena.ucsc.edu

3 https://www.gsea-msigdb.org/gsea/msigdb
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Construction and validation of prognostic 
mitochondrial metabolism-related risk 
score signature

Differentially expressed genes (DEGs) between normal and 
tumor samples, as well as between high- and low-risk groups in the 
training set, were identified using the “limma” R package, with 
criteria of |log2 fold change| > 1.3 and adjusted p-value < 0.05. 
Volcano plots and Venn diagrams visualized these DEGs and their 
overlap with mitochondrial metabolism-related genes, resulting in 
582 differentially expressed mitochondrial metabolism-
related genes.

Univariate Cox regression analysis identified 65 of these genes 
as significantly associated with colorectal cancer prognosis. To 
construct a robust prognostic model based on mitochondrial 
metabolism-related genes, we applied the Least Absolute Shrinkage 
and Selection Operator (LASSO) regression for feature selection. 
A 10-fold cross-validation approach was employed to identify the 
optimal penalty parameter (λ) by minimizing the partial likelihood 
deviance, thereby reducing the risk of overfitting. The selected λ 
corresponded to the model with the lowest cross-validation error, 
ensuring optimal predictive performance. By shrinking regression 
coefficients toward zero with increasing λ, the LASSO algorithm 
retains only the most informative features, thus simplifying the 
model and enhancing its generalizability.

The risk score for each sample was calculated as:

 β∗= ∑Risk score expgenei i

where expgene, i, and βi represent the expression level of gene, 
the number of signature genes, and the coefficient index, 
respectively. Samples were then classified into high- and low-risk 
groups based on the median risk score. Clinical data, including 
gender, age, and TNM stage, were obtained from TCGA. Both 
univariate and multivariate Cox regression analyses confirmed that 
the risk score independently predicted prognosis (p < 0.05). To 
evaluate the reliability and applicability of the constructed risk 
model, the signature’s performance was validated in the external 
cohort GSE17536 and assessed using ROC curves, risk plots, and 
the concordance index (C-index). Gene details were sourced from 
the National Center for Biotechnology Information (NCBI).

Construction and validation of nomogram

Risk scores and clinical factors (age, gender, pTNM stage) were 
analyzed using univariate Cox regression to identify survival-
related factors (p < 0.05). Multivariate Cox regression identified 
significant survival predictors (p < 0.05). Based on these predictors, 
nomograms were constructed, assigning scores to each variable. 
The total score for each patient was calculated by summing the 
scores of the predictors in the nomogram. Patient survival 
outcomes at 1, 3, and 5 years were estimated using the total score 
and corresponding probability of survival. The nomogram model’s 
discrimination and accuracy were evaluated using ROC curves, 
calibration curves.

Gene ontology (GO) and Kyoto 
encyclopedia of genes and genomes 
(KEGG) analyses

This study used the R packages “clusterProfiler,” “org.Hs.eg.db,” 
“enrichplot,” and “ggplot2” (R version 4.3.3) to analyze the functions 
of mitochondrial metabolism-related DEGs and DEGs between high- 
and low-risk groups, conduct enrichment analysis, and visually 
represent GO and KEGG data. An adjusted p-value < 0.05 was used 
to filter significant functional candidates.

Gene set enrichment analyses (GSEA)

Curated sets v7.4 collections from the MSigDB were used for 
GSEA, performed with GSEA 4.2.1 software. The total transcriptome 
of tumor samples was analyzed.

Tumor microenvironment

Stromal scores and immune scores were calculated using the 
ESTIMATE algorithm in R (version 4.3.3) “estimate” package. The 
TME-related biomarker list was extracted from GSEA.4 
RNA-sequencing expression (level 3) profiles and clinical information 
for COADREAD were downloaded from the TCGA dataset.5 To 
ensure reliable immune score evaluation results, the immuneeconv R 
package was used, integrating EPIC and quanTIseq algorithms, each 
with unique advantages.

Prediction of therapeutic sensitivity in 
patients with different risk scores

This study assessed the risk score’s ability to predict responses to 
immunotherapy and 198 chemotherapeutic/targeted drugs. The IC50 
values for these drugs were calculated using the “oncopredict” package 
in R (version 4.3.3) and normalized. Predicted chemotherapeutic 
responses were based on the GDSC database.6 Potential 
immunotherapy response was inferred using the TIDE score.7

Mutation analysis

Somatic mutation data were downloaded from the cBioPortal 
database.8 The “maftools” R package (version 3.5.1) was used to create 
a waterfall plot illustrating the mutation landscape in high- and 
low-risk COADREAD patients and to calculate the TMB score for 
each sample. The microsatellite instability (MSI) data for COADREAD 
in the TCGA (The Cancer Genome Atlas) project can be downloaded 

4 http://www.gsea-msigdb.org/gsea/index.jsp

5 https://portal.gdc.cancer.gov

6 https://www.cancerrxgene.org/

7 http://tide.dfci.harvard.edu

8 https://www.cbioportal.org/
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and accessed from the TCGA Data Portal. These data are typically 
stored in the Genomic Data Commons (GDC) data portal of TCGA.

Ethics approval statement

Our study was approved by an institutional review board from the 
Human Research Ethics Committee of Ruijin Hospital (approval no. 
2020-115) and conducted in accordance with ethical guidelines 
(Declaration of Helsinki). Animal experiments were approved by the 
local Laboratory Animal Ethics Committee of Ruijin Hospital and 
conducted in accordance with animal use guidelines.

Cell lines and culture

Human colorectal cancer (CRC) cell lines RKO and HCT116 were 
were purchased from the American Type Culture Collection (ATCC, 
United States), cells were authenticated by STR profiling and free of 
mycoplasma contamination. Cells were cultured in DMEM medium 
(Meilunbio, Dalian, China) containing 10% fetal bovine serum 
(Gibco, Grand Island, NY, United States), 100 U mL − 1 of penicillin, 
and 100 μg mL − 1 of streptomycin, in a humidity culture incubator 
at 37°C with 5% CO2.

Lentiviral-mediated knockdown of 
TMEM86B

For the knockdown of TMEM86B, target shRNA sequences 
(5’-3’GAAGACGTTTGAGGACGATTT) were subcloned into 
pGreenPuro (CMV) vector. For shRNA lentivirus infection, target 
cells were seeded in a 6-well plate 24 h before infection and were 
grown to 60–80% confluency upon transduction. Culture medium 
was removed, and cells were incubated with virus supernatant along 
with 10 μg/mL polybrene (Sigma) overnight. Virus-containing 
medium was replaced with fresh medium. Puromycin (Sigma) (10 μg/
mL) was applied to kill non-infected cells 48 h after infection to 
produce stably transfected cells (RKO/shTMEM86B, HCT116/
shTMEM86B).

Western blotting

Cell sample were washed 3 times with 1 × PBS and protein 
extracts were prepared in RIPA cell lysis buffer (Kangwei, Beijing, 
China) supplemented with phosphatase inhibitor Cocktail III (Roche). 
The concentration of protein sample was quantified by using 
bicinchoninic acid protein assay kit (Pierce, Rockford, IL, 
United States) against a bovine serum albumin standard curve. A total 
of 20 μg of protein was loaded onto a 10% sodium dodecyl sulfate 
polyacrylamide gel and transferred onto 0.22 μm PVDF membranes 
(Millipore, MA, United States). The membranes were then blocked 
with 1 × TBST buffer containing 5% nonfat milk and incubated with 
corresponding antibodies at 4°C overnight. Anti-GAPDH (CAT# 
HRP-60,004, use a concentration of 0.02 μg/mL) was purchased from 
Proteintech (Rosemont, IL, United  States). Anti-TMEM86B 
(H00255043-D01P) was purchased from Thermo Fisher Scientific. 

Membranes were then exposed to HRP-conjugated secondary 
antibody (32,460, Thermo Fisher Scientific) and developed with 
Thermo Pierce chemiluminescent (ECL) Western Blotting Substrate 
(Thermo, Waltham, MA, United States). Membranes were imaged 
with Tanon 5,200 system (Tanon, Shanghai, China).

Proliferation and clone formation assays

CRC cells were seeded in 96-well plates at a density of 1,000/well 
(200 μL/well). A cell proliferation assay was conducted utilizing the 
cell counting kit8 (Dojindo, Kumamoto, Japan) according to the 
manufacture’s protocol. After being incubated with 20 μL of CCK-8 
reagent for 2 h, OD450 was then measured by spectrophotometry 
(BioTek, Vermont, United States). For colony formation assay, cells 
were seeded at a density of 1,000 cells/well into 6-well plates and 
incubated at 37°C for 10 days. Cells were then washed twice with PBS 
and fixed in 100% methanol for 15 min, prior to staining with Giemsa 
solution for 20 min. The number of colonies containing ≥50 cells were 
counted under a microscope (IX71). All experiments were performed 
in triplicate.

Migration and invasion assays

For the migration assay, cells were suspended in serum-free 
medium (1 × 105 cells/insert) and added to the upper chamber of the 
24-well insert (membrane pore size, 8 μm; Corning Life Sciences, MA, 
United States). Medium containing 10% serum was added to the lower 
chamber. After incubation for 12 h, the cells that migrated to the 
bottom of the membranes were fixed and stained with 0.1% crystal 
violet for 30 min. For the invasion assay, chamber membranes were 
coated with diluted Matrigel (BD Bioscience, San Jose, CA, 
United States). After incubation for 24 h, the cells that invaded to the 
bottom of the membrane were fixed and stained with 0.1% crystal 
violet for 30 min. The stained cells were counted using a microscope 
and photographed. Ten fields were randomly selected to count, and 
the average number was presented.

In vivo tumorigenicity assay

Male BALB/c nude mice (4–6 weeks old, purchased from SPF 
(Beijing) Biotechnology Co., Ltd., Beijing, China) were housed in a 
specific pathogen-free room in the Animal Experimental Center, Ruijin 
Hospital, Shanghai Jiao Tong University School of Medicine, China. 
Animal experiments were performed in accordance with the animal 
research principles and the Institution’s guidelines. Five mice were used 
per group (n = 5), based on preliminary data showing >80% statistical 
power (α = 0.05) to detect differences in tumor growth with acceptable 
variability (CV < 30%). This group size balances statistical reliability 
with ethical considerations under the 3Rs principle and is consistent 
with prior studies using similar xenograft models. A single-blind design 
was applied, in which the personnel measuring tumor size and weight 
were blinded to group assignments to minimize measurement bias.

Mice were subcutaneously injected with 2 × 106 tumor cells 
(RKO/shTMEM86B and HCT116/shTMEM86B) suspended in 150 μL 
PBS (five mice per group). Tumor length (L) and width (W) were 
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measured every 4 days using digital Vernier caliper. Tumor volume 
was determined using the following formula: volume = Length × 
Width2/2. All mice were sacrificed under general anesthesia 4 weeks 
after injection. Tumor grafts were weighed and observed systematically.

RNA extraction and qRT-PCR assays

Tumor tissues and matched adjacent normal tissues from patients 
with colorectal cancer (CRC) were obtained from Ruijin Hospital 
(Shanghai, China). Total RNA was isolated using TRIzol reagent 
(Invitrogen, United States) according to the manufacturer’s protocol. 
Complementary DNA (cDNA) was synthesized from 1 μg of total 
RNA using the HiScript III RT SuperMix for qPCR (+gDNA wiper) 
(Vazyme, #R323). Quantitative real-time PCR (qRT-PCR) was 
conducted using ChamQ SYBR Color qPCR Master Mix (Vazyme, 
China) on a standard real-time PCR system. Relative gene expression 
levels were calculated using the 2^−ΔΔCt method, with 18S rRNA 
used as an internal reference. The primer sequences used for qRT-PCR 
are provided in Supplementary Table 4.

Statistical analysis

Statistical analyses were performed using R (version 4.3.3) and 
GraphPad Prism 10 software. A Student’s t-test analyzed the expression 
and distribution of risk scores, stromal scores, immune scores, tumor 
purity, and TMB in different groups. The Chi-square test evaluated 
differences in immunotherapy response and clinical factors across 
groups. Correlation analyses were conducted using the Spearman 
method. The concordance index (C-index) estimated the predictive 
power of age and risk score for overall survival (OS). Univariate and 
multivariate Cox regression analyses estimated the predictive power 
of mitochondrial metabolism-related genes and clinical characteristics. 
For GO and KEGG enrichment analyses, p-values were adjusted using 
the Benjamini-Hochberg method, and the results were reported as 
false discovery rate (FDR)-adjusted p-values. For GSEA, normalized 
enrichment scores (NES) and FDR q-values were employed to assess 
significance, with an FDR < 0.25 considered statistically significant in 
accordance with standard GSEA criteria. For immune cell infiltration 
comparisons, FDR correction was applied to the p-values when 
comparing immune cell populations between the high- and low-risk 
groups. For genome-wide survival screening, p-values from univariate 
Cox regression analyses were adjusted using the Benjamini-Hochberg 
method to control the false discovery rate (FDR). For survival analysis 
of selected candidate genes or model components, raw p-values were 
reported without multiple testing correction. A p-value < 0.05 was 
considered statistically significant.

Results

Identification of DEGs related to 
mitochondria and functional enrichment 
analysis in COADREAD

In this study, we undertook a comprehensive analysis to identify 
differentially expressed genes (DEGs) related to mitochondrial 

metabolism in COADREAD. The overall workflow is illustrated in 
Figure 1. We identified a total of 7,868 DEGs, using volcano plots for 
visualization to compare normal and tumor samples (Figure 2A). The 
mitochondrial metabolism gene set was derived from the MSigDB 
database and curated through literature review and experimental 
validation, encompassing genes involved in mitochondrial metabolic 
pathways (23, 24). From these DEGs, we further narrowed down to 
582 genes related to mitochondrial metabolism by integrating genes 
selected from the Gene Set Enrichment Analysis (GSEA) with our 
identified DEGs (Figure 2B).

Gene Ontology (GO) enrichment analysis revealed significant 
involvement of these DEGs in various biological processes, cellular 
components, and molecular functions. The analysis highlighted their 
roles in small molecule catabolic processes and the regulation of 
mitochondrial components. In terms of biological processes, these 
DEGs were predominantly linked to small molecule metabolic processes 
and lipid metabolic processes (Supplementary Figure S1A). For cellular 
components, they were mainly associated with the mitochondrial 
matrix and inner membrane (Supplementary Figure S1B). Regarding 
molecular functions, the DEGs were significantly involved in catalytic 
binding and anion binding (Supplementary Figure S1C).

Additionally, KEGG pathway analysis identified several critical 
pathways in which these DEGs play a significant role, such as metabolic 
pathways, glycerophospholipid metabolism, purine metabolism, and 
carbon metabolism (Supplementary Figure S1D). These findings provide 
a comprehensive understanding of the molecular mechanisms and 
pathways through which mitochondrial metabolism-related DEGs 
contribute to the development and progression of COADREAD.

Construction and validation of a 
mitochondrial metabolism-related risk 
signature

To develop a robust mitochondrial metabolism-related prognostic 
signature for colorectal cancer (COADREAD), we first performed 
univariate Cox regression analysis to identify 65 differentially 
expressed genes (DEGs) significantly associated with overall survival 
(p < 0.05; Supplementary Figure S2). These candidate prognostic 
genes were subsequently subjected to feature selection using the Least 
Absolute Shrinkage and Selection Operator (LASSO) regression 
algorithm (Figures 2C,D). A 10-fold cross-validation procedure was 
employed to avoid overfitting and determine the optimal 
regularization parameter. The value of λ corresponding to the 
minimum partial likelihood deviance (lambda.min=0.0246) was 
selected as the optimal penalty parameter for model construction. 
Each patient’s risk score was calculated using the following formula:

 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( )

= × + − × + −
× + × + − ×
+ − × + × +
× + × + − ×
+ − × + − × + −
× + − ×

Risk score 0.1147 HSD3B7 0.13 ORC1 0.0259
GPSM2 0.012 NDUFA4L2 0.0317 CHDH

0.1246 LARS2 0.2367 TMEM86B 0.0779
FABP4 0.0759 TNFAIP8L3 0.0059 HMGCL

0.1341 GDE1 0.1125 ACOX1 0.0459
ARV1 0.2789 H ( )+ − ×DC 0.1676 GSR

The prognostic value of the 15 mitochondrial metabolism-related 
genes in CRC was evaluated using a forest plot (Figure 2E). These 
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genes constitute the foundation of our prognostic model, with detailed 
information provided in Supplementary Tables 1, 3. Analysis of the 
TCGA-COADREAD dataset revealed significant upregulation of 
GPSM2, HSD3B7, ORC1, NDUFA4L2, CHDH, LARS2, and 
TMEM86B, while ACOX1, ARV1, GSR, GDE1, FABP4, HDC, 
HMGCL, and TNFAIP8L3 were downregulated (Figure 2F).

The relationship between risk score and survival time, survival 
status, risk ranking, and a heatmap of the 15 gene expression levels are 
depicted in Figure 3A. Patients were categorized into high-risk and 
low-risk subgroups based on the median risk score. Kaplan–Meier 
curves demonstrated significantly poorer overall survival (OS) for 
patients in the high-risk group (p = 5.1e-09, Figure 3B). The prognostic 
model’s predictive accuracy for 1-, 3-, and 5-year OS was evaluated 
using ROC curves, yielding AUC values of 0.74, 0.73, and 0.74, 
respectively (Figure 3C). Comparative evaluations were conducted to 
assess the predictive performance of our model relative to established 
pathological prognostic factors such as TNM staging, age, and gender 
(Figure 3D). The mitochondrial metabolism-related gene signature 

significantly outperformed traditional prognostic indicators (TNM 
staging, age, and gender) in terms of predictive accuracy (AUC: 0.74 
vs. 0.70/0.59/0.53, respectively) and showed better stratification for 
5-year overall survival (Figure  3D). These findings confirm the 
robustness of our risk model in predicting the prognosis of 
COADREAD patients.

To evaluate the prognostic performance of our 15-gene 
mitochondrial metabolism–related risk model, we  conducted a 
comparative analysis with several existing CRC prognostic models 
based on different biological features. As shown in Figure 3E, our 
model achieved the highest AUC value of 0.74, surpassing the models 
based on nucleotide metabolism (AUC=0.67), general metabolism-
related genes (AUC=0.70), immunogenic cell death–associated 
signatures (AUC=0.70), immune-related markers (AUC=0.678), CD4⁺ 
conventional T cell genes (AUC=0.67), and combined metastasis and 
immune gene signatures (AUC=0.663). These results indicate that our 
signature offers improved prognostic discrimination compared with 
other published models.

FIGURE 1

Workflow diagram: the flowchart of this study.
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FIGURE 2

Identification of differentially expressed genes (DEGs) related to mitochondria metabolism and construction of a prognostic risk model using the 
TCGA-COADREAD cohort. (A) Volcano plot displaying 7,868 DEGs between COADREAD tumor and normal groups. (B) Venn diagram illustrating the 
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The prognostic model was further validated using the GSE17536 
dataset. Consistent with the TCGA-COADREAD cohort, higher risk 
scores were associated with poorer survival (Figures 4A,B). Heatmaps 
of the 15 gene expression levels are shown in Figure 4A. The ROC 
curves yielded AUCs of 0.76, 0.65, and 0.65 for 1-, 3-, and 5-year 
survival, respectively (Figure 4C). Similar expression patterns were 
observed in the GSE39582 dataset, where GPSM2, HSD3B7, ORC1, 
NDUFA4L2, CHDH, and LARS2 were upregulated, while ACOX1, 
ARV1, GSR, GDE1, FABP4, and TNFAIP8L3 were downregulated in 
COADREAD samples (Supplementary Figure S3). Additionally, 
higher risk scores correlated with more advanced T, N, M, and TNM 
stages (Supplementary Figure S4). However, no significant differences 
in other clinical characteristics were observed between high- and 
low-risk groups (Supplementary Table 2).

Construction of a nomogram

A nomogram integrating independent prognostic genes 
(TMEM86B, TNFAIP8L3, HDC) and clinical factors (pTNM stage, 
age) was constructed to quantitatively predict patient outcomes and 
support clinical decision-making (Supplementary Figure S5C). 
Univariate and multivariate analyses confirmed these variables as 
independent prognostic factors (Supplementary Figures S5A,B). The 
nomogram achieved AUCs of 0.78, 0.79, and 0.80 for 1-, 3-, and 5-year 
overall survival, respectively (Supplementary Figure S5D), with 
calibration curves showing strong agreement between predicted and 
observed survival (Supplementary Figure S5E). The C-index was 0.757 
(95% CI: 0.708–0.805, p = 6.272e-25). Compared to traditional 
prognostic indicators such as TNM stage (AUC = 0.70), age (0.59), 
and gender (0.53), the nomogram demonstrated superior predictive 
performance (AUC = 0.80; Figure 3D).

Tumor samples exhibited higher expressions of TMEM86B, lower 
expressions of HDC and TNFAIP8L3 compared to normal tissues 
(Figure  2F). Immunohistochemistry data from the HPA database 
corroborated these findings, showing upregulation of TMEM86B and 
downregulation of HDC and TNFAIP8L3 in CRC tissues compared 
to non-cancerous tissues (Supplementary Figures S6A–C). Kaplan–
Meier analysis revealed that patients with higher expression levels of 
TMEM86B (p = 0.00551) and TNFAIP8L3 (p = 0.018) had shorter OS, 
while higher levels of HDC were associated with longer OS (p = 0.037, 
Supplementary Figures S6D–F).

Functional enrichment analysis of DEGs in 
high-risk and low-risk groups

We performed functional enrichment analyses on differentially 
expressed genes (DEGs) within the high-risk and low-risk groups. 

Gene Ontology (GO) enrichment analysis indicated that DEGs linked 
to biological processes were primarily involved in extracellular 
structure organization (Figure 5A). Cellular component-related DEGs 
were predominantly associated with the extracellular region, 
extracellular space, and extracellular vesicle (Figure 5A). In terms of 
molecular functions, DEGs were enriched in extracellular matrix 
structural constituents (Figure 5A). The top 10 pathways identified by 
KEGG analysis included ECM-receptor interaction, chemical 
carcinogenesis, metabolic pathways, drug metabolism, pentose and 
glucuronate interconversions, caffeine metabolism, retinol 
metabolism, ascorbate and aldarate metabolism, and the PPAR 
signaling pathway (Figure 5B). Gene Set Enrichment Analysis (GSEA) 
revealed that mitochondrial metabolism-related risk scores in the 
high-risk group were significantly associated with collagen fibril 
organization, collagen-containing extracellular matrix, and the 
extracellular matrix (Figures 5C–E). GO and GSEA analyses were 
performed. Both the GO enrichment analysis and GSEA emphasized 
the role of the extracellular matrix, including terms like extracellular 
matrix organization, extracellular space, and extracellular vesicles. 
Moreover, identified by KEGG analysis, ECM-Receptor Interaction 
Pathway is closely linked to the TME. Interactions between cells and 
the ECM are crucial for signaling within the tumor microenvironment, 
impacting cell adhesion, migration, and invasion. Given that the 
tumor microenvironment consists largely of the extracellular matrix 
and signaling molecules that affect tumor behavior, our functional 
enrichment analyses highlight several key pathways (ECM 
organization, receptor interactions, collagen-related processes) that 
are integral to the TME. Therefore, this analysis provides evidence that 
TME-associated pathways were indeed enriched.

Mitochondrial metabolism-related risk 
score and TME signatures in COADREAD

Given the enrichment of TME-associated signaling pathways 
identified through functional analyses, we investigated the correlation 
between the risk score and TME signatures. As illustrated in 
Figure 6A, a strong positive correlation exists between the risk score 
and stromal score in COADREAD, with elevated stromal scores 
observed in the high-risk group relative to the low-risk group. 
Additionally, our analysis revealed a significant positive correlation 
between the risk score and the cancer-associated fibroblast (CAF) 
score (Figure 6B). Elevated CAF scores were notably present in the 
high-risk group compared to the low-risk group, highlighting the role 
of CAFs in tumor progression and prognosis in CRC. Our findings 
revealed significant positive correlations between the risk score and 
the expression of multiple CAF signatures (Figure 6C), as well as 
ECM-collagen and matrisome signatures (Figures  6D,E). These 
associations highlight the role of these signatures in CRC prognosis 

overlap of 7,868 DEGs and 1,234 mitochondrial genes, resulting in the identification of 582 hub genes. (C,D) LASSO regression of the 65 overall survival 
(OS)-related genes, with cross-validation in the LASSO regression model to select the tuning parameter. The x-axis represents the log (λ) value, and the 
y-axis represents partial likelihood deviance. The red dots indicate partial likelihood deviations ± standard error for various tuning parameters. (E) Forest 
plot assessing 15 prognosis-related genes in predicting the prognosis of COADREAD, revealing their association with patient prognosis. (F) Gene 
expression levels of the 15 prognosis-related genes in the TCGA-COADREAD cohort (tumor samples: n = 620; normal samples: n = 51). p-values are 
indicated as: ***p < 0.001, **p < 0.01, *p < 0.05.
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and potential therapeutic targeting. These observations suggest a close 
linkage between mitochondrial metabolism gene-related risk scores 
and TME signatures in COADREAD.

The tumor immune microenvironment (TIME) critically influences 
therapeutic efficacy and prognosis in malignant tumors. Investigating the 

association between risk scores and immune cell infiltration in 
COADREAD is important for optimizing treatment strategies. EPIC 
analysis revealed that high-risk patients were associated with significantly 
reduced levels of B cells and CD8+ T cells (Figure 7A), consistent with a 
potentially compromised immune response. Furthermore, the risk score 

FIGURE 3

Assessing the Performance of the Prognostic Risk Model in the Training Cohort. (A) Distribution of risk scores, survival status (blue dots indicate 
deceased, red dots indicate alive), and gene expression of the 15 model genes in the TCGA-COADREAD training cohort. (B) Kaplan–Meier curves of 
overall survival (OS) for patients in the high- and low-risk groups in the TCGA-COADREAD training cohort. (C) ROC curves for predicting 1-, 3-, and 
5-year OS in the TCGA-COADREAD training cohort. (D) Comparison of the risk score model, nomogram and clinicopathological characteristics in 
predicting the 5-year OS. (E) Comparison of gene expression-based prognostic signatures in CRC. Time-dependent ROC analysis for predicting overall 
survival outcomes at 5 years.
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FIGURE 4

Assessing the performance of the prognostic risk model in the validation cohort. (A) Distribution of risk scores, survival status (red dots indicate 
deceased, blue dots indicate alive), and gene expression of the 15 model genes in the GSE17536 validation cohort. (B) Kaplan–Meier curves of overall 
survival (OS) for high- and low-risk groups in the GSE17536 validation cohort (n=177). (C) ROC curves for predicting 1-, 3-, and 5-year OS in the 
GSE17536 validation cohort.
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demonstrated a negative correlation with activated CD8+ T cell signature 
expression (Figure 7B), suggesting a potential decrease in anti-tumor 
immunity among high-risk individuals. This finding was supported by a 
parallel negative correlation with central memory CD8+ T cell signatures 
(Supplementary Figure S7), indicating reduced abundance of these key 
immune cells in high-risk patients.

ESTIMATE analysis showed that high-risk patients tended to have 
higher immune scores than their low-risk counterparts, although the 

difference did not reach statistical significance (Figure 7C). Further 
immune infiltration analysis using quanTIseq revealed that macrophage 
M1, neutrophils, NK cells, and CD8⁺ T cells were significantly more 
abundant in the low-risk group (Supplementary Figure S8). Moreover, 
macrophage M1 and neutrophils—cell types commonly associated with 
anti-tumor functions—were negatively correlated with the risk score 
(Supplementary Figures S9A,C), while immunosuppressive macrophage 
M2 cells were more prevalent in the high-risk group and positively 

FIGURE 5

Enrichment analysis in the high-risk and low-risk groups. (A) Bubble map showing the 10 significant GO pathways, with bands of different colors 
representing biological process (BP), cellular component (CC), and molecular function (MF). The pathways were enriched by the genes listed on the 
left. (B) Bubble map illustrating the top 10 significant KEGG pathways, with bands of different colors representing each pathway. The pathways were 
enriched by the genes listed on the left. (C–E) GSEA identified different gene sets in the high-risk groups.
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FIGURE 6

Association of risk score with tumor microenvironment (TME) Signatures in COADREAD. (A) Association between stromal score and risk score, and its 
distribution in the low- and high-risk groups. (B) Association between carcinoma-associated fibroblast (CAF) score and risk score, and its distribution in 
the low- and high-risk groups. (C) Correlation analysis of risk score with the expression of carcinoma-associated fibroblast (CAF) up- and down-
signatures. (D) Correlation analysis of risk score with the expression of ECM and collagen signatures. (E) Correlation analysis of risk score with the 
expression of matrisome signatures. p-values are indicated as: ***p < 0.001, **p < 0.01, *p < 0.05.
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correlated with risk score (Supplementary Figure S9B). These 
associations suggest that differences in immune cell composition may 
contribute to the observed prognostic differences across risk groups, 
although causal relationships cannot be established.

In addition, ESTIMATE analysis indicated that high-risk patients 
exhibited elevated stromal scores and significantly lower tumor purity 
compared to the low-risk group (Figures  6A, 7D). The risk score 
showed a positive correlation with matrisome and cancer-associated 
fibroblast (CAF) signatures, and a negative correlation with activated 
CD8⁺ T cell signatures. Notably, activated CD8⁺ T cell signatures were 

inversely associated with ECM, collagen, matrisome, and CAF 
signatures (Supplementary Figure S10), suggesting that a fibroblast- 
and ECM-rich environment may be  unfavorable to CD8⁺ T 
cell activation.

Collectively, these findings reveal a complex association between 
the prognostic risk score and components of the TME, including 
immune and stromal features. While our data indicate that high-risk 
patients may harbor a more immunosuppressive TME, further 
mechanistic studies are required to confirm causality and elucidate the 
underlying biological interactions.

FIGURE 7

Immune profiles comparison between low- and high-risk groups in the TCGA-COADREAD dataset. (A) EPIC analysis. (B) Correlation between risk 
score and expressions of activated CD8+ T cell signatures. (C) Correlation between risk score and immune score, and its distribution in the low- and 
high-risk groups. (D) Correlation between risk score and tumor purity, and its distribution in the low- and high-risk groups. (E) Variation in immune 
checkpoint expression. p-values are indicated as follows: ***p < 0.001, **p < 0.01, *p < 0.05, ns (not significant).
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Mitochondrial metabolism-related risk 
score was associated immune checkpoint 
inhibitors and immunotherapy responses in 
COADREAD

Considering the potential of Immune checkpoint inhibitors (ICIs) 
as a treatment for cancer, we  examined the relationship between 
immune checkpoints and risk stratification. Our findings revealed that 
25 immune checkpoints were significantly altered in the high-risk 
group (Figure  7E). Moreover, the risk score showed a significant 
positive correlation with the expression levels of seven immune 
checkpoints, including CD40, OX40, TNFRSF9, TNFRSF14, 
TNFSF18, TNFRSF25, CD70, PSGL-1, TNFRSF8, and TNFSF14 (r > 
0.15, Supplementary Figure S11). In the context of advanced 
COADREAD treatment, inhibitors targeting PD-1 and CTLA-4 are 
currently areas of intense research interest. As illustrated in Figure 7E, 
the expressions of PD-L1 and CTLA-4 were significantly lower in the 
high-risk group. Consistently, the risk score exhibited a significant 
negative correlation with the expressions of PD-L1, PD-L2, and 
CTLA-4 (Supplementary Figure S11).

To corroborate these findings, we employed the TIDE algorithm 
to forecast immunotherapy responses in both low- and high-risk 
patient cohorts. The results indicated that the high-risk group 
exhibited a markedly higher TIDE score compared to the low-risk 
group (Figure  8A). Our analysis revealed a significant positive 
correlation between the risk score and the TIDE score (Figure 8B). 
The response rate to immunotherapy in the high-risk group (36.3%) 
was substantially lower than that in the low-risk group (51.7%) 
(Figure 8C). These findings suggest that patients in the low-risk group, 
with a lower TIDE score, are more likely to benefit from immune 
checkpoint inhibitor therapy and experience better survival outcomes 
following immunotherapy.

Conversely, immunotherapy response rates in the high-immune 
group (42.4%) were similar to those in the low-immune group (45.3%) 
(Figure  8D). Within the low-immune subgroup, immunotherapy 
response rates were 47.1% for the low-risk subgroup and 43.3% for the 
high-risk subgroup, similar to the overall low-immune group (45.3%). 
This indicates that combining the risk score with the immune score 
did not improve the prediction of immunotherapy response over the 
immune score alone for COADREAD patients with low immune 
scores. However, in the high-immune score subgroup, the 
immunotherapy response rate was significantly higher in the low-risk 
+ high-immune group (56.7%) compared to the high-immune group 
(42.4%), while the high-risk + high-immune group had a notably 
lower response rate (30.3%) than the high-immune group (42.4%) 
(Figure 8E). This strongly suggests that the combination of risk score 
and immune score provides a more accurate prediction of 
immunotherapy response in COADREAD patients with high immune 
scores (Figure 8E). Overall, integrating risk score and immune score 
proves to be  a robust predictor for immunotherapy responses 
in COADREAD.

As depicted in Figure 8F, the immunotherapy response rate in the 
low-stromal subgroup (60.1%) was significantly higher than in the 
high-stromal subgroup (27.6%). Notably, within the low-stromal score 
subgroup, the low-risk group had a considerably higher 
immunotherapy response rate (64.8%) compared to the high-risk 
group (54.5%) (Figure 8G). Additionally, in the high-stromal score 
subgroup, the low-risk group demonstrated a significantly greater 

immunotherapy response rate (35.1%) than the high-risk group 
(21.6%) (Figure 8G). These results indicate that combining risk score 
with stromal score enhances the prediction of immunotherapy 
responses in COADREAD.

The microsatellite instability-high (MSI-H) phenotype 
characterizes a distinct tumor type with a significant potential for 
immunotherapy. However, our analysis showed no significant difference 
in immunotherapy response rates between the MSI-H subgroup and 
the MSS and MSI-L subgroups (all p > 0.05, Figure 8H). Notably, within 
the MSS subgroup, the low-risk group exhibited a higher response rate 
(48.3%) compared to the high-risk group (37.3%) (Figure 8I). Similarly, 
the MSI-L subgroup demonstrated a higher response rate in the 
low-risk group (59.1%) versus the high-risk group (31.8%). In the 
MSI-H subgroup, the low-risk group had a response rate of 50.1%, 
significantly higher than the 23.9% observed in the high-risk group 
(Figure 8I). These results suggest that combining risk score with MSI 
status can reliably predict immunotherapy response in COADREAD 
patients (Figure  8I). Graph summarization of immunotherapy 
responses in CRC was depicted in Supplementary Figure S12. These 
results suggest that combining risk scores with various biomarkers, 
including immune scores, stromal scores, and microsatellite instability 
(MSI), has significantly enhanced our ability to predict immunotherapy 
responses in colorectal cancer (CRC).

Mutation status of CRC patients in 
high-risk and low-risk groups

Mutations accumulate over a person’s lifetime, contributing to 
cancer development. Advances in genome sequencing technology have 
significantly enhanced our understanding of the somatic mutations 
driving cancer, shedding light on mutational processes and identifying 
key oncogenes. Therefore, our study analyzed the mutation landscape 
of COADREAD, stratifying patients into high-risk and low-risk groups 
based on their risk scores. Among the most frequently mutated genes 
in both groups were APC, TP53, TTN, KRAS, MUC16, SYNE1, RYR2, 
FAT4, PIK3CA, ZFHX4, OBSCN, and CSMD3 (Figures 9A,B). The 
survival analysis revealed no significant difference in OS between the 
high-TMB and low-TMB groups (Supplementary Figure S13A). 
However, patients in the low-risk group exhibited better overall survival 
(OS) compared to those in the high-risk group across both high and low 
TMB subgroups (Figure  9C). Additionally, comprehensive analysis 
revealed no significant difference in tumor mutational burden (TMB) 
between the high-risk and low-risk groups (Figure 9D). Furthermore, 
there was no meaningful correlation between risk score and TMB 
(Figure 9D), indicating that TMB alone may not be sufficient to stratify 
risk in COADREAD. This suggests that the integration of risk score with 
TMB could provide a more nuanced prognostic biomarker, potentially 
guiding therapeutic decisions and improving patient outcomes.

These findings underscore the importance of integrating multiple 
biomarkers to improve prognostic accuracy in colorectal cancer. 
Microsatellite instability (MSI), a key immunotherapy marker, was 
significantly lower in the high-risk group and showed a negative 
correlation with the risk score (Figure 9F). While patients with high 
MSI (MSI-H) generally exhibited better overall survival than those 
with low MSI (MSS), the difference was not statistically significant 
(Supplementary Figure S13B). Importantly, within both MSI 
subgroups, patients in the low-risk category consistently demonstrated 
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FIGURE 8

Risk score as a potential biomarker for predicting benefits from immune therapies in COADREAD. (A) Comparison of TIDE scores between low- and 
high-risk groups. (B) Correlation analysis between risk score and TIDE score. (C) Predicted proportion of immunotherapy responders in low- and high-
risk groups within the TCGA-COADREAD cohort. (D) Predicted response rates to immunotherapy in patients with low and high immune scores 
(stratified by median cutoff), based on TIDE analysis. (E) TIDE-predicted response rates in four subgroups stratified by both risk score and immune 
score. (F) Predicted response rates in low- and high-stromal score groups (stratified by median cutoff). (G) TIDE-estimated immunotherapy 
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superior survival compared to those in the high-risk group 
(Figure 9E). This indicates that combining risk score with MSI status 
enhances prognostic prediction and may better inform treatment 
strategies for COADREAD patients.

Mitochondrial metabolism genes-related 
risk score and chemotherapy response

To explore the effectiveness of risk score as an indicator for 
predicting the response to drugs, we estimated the IC50 values for 198 
drugs in patients from the TCGA cohort. The top 10 sensitivity drugs 
in high-risk low-risk groups were shown in Figure 10. Our analysis 
indicated that individuals in the high-risk group might exhibit greater 
sensitivity to drugs such as AGI-5198_1913, AT13148_2170, and 
PRIMA-1MET-1131 (Figure 10). Conversely, those in the low-risk 
group might respond more favorably to treatments like YK-4-
279_1239, IGF1R_3801_1738, and Paclitaxel_1080 (Figure 10). These 
findings offer valuable insights for guiding clinical treatment strategies.

Verification of the expression levels of 
mitochondrial metabolism-related core 
genes in CRC samples

In our previous analysis (Supplementary Figure S5), multifactorial 
Cox regression identified TMEM86B, TNFAIP8L3, and HDC as 
independent prognostic factors for colorectal cancer (CRC) (p < 0.05) 
among the 15 mitochondrial metabolism-related genes. To further 
evaluate their expression, we analyzed data from the TCGA (Figure 2F) 
and GEO (Supplementary Figure S3) databases. TMEM86B was found 
to be upregulated in CRC tissues compared to normal tissues, while 
TNFAIP8L3 and HDC showed significantly lower expression in 
tumors. To validate these findings, qRT-PCR was performed on six 
paired CRC tumor and adjacent normal tissue samples. As shown in 
Supplementary Figure S14A, TMEM86B expression was significantly 
higher in tumor tissues (p < 0.05), whereas TNFAIP8L3 and HDC 
levels were significantly lower in tumors compared to normal tissues 
(p < 0.05, Supplementary Figures S14B,C). These results corroborate 
our hypothesis and provide strong support for including these three 
genes in our prognostic model (Supplementary Figure S5).

Knockdown of TMEM86B inhibited CRC 
cell proliferation and migration in vitro and 
in vivo

Of the 15 prognostic genes identified, TMEM86B was prioritized for 
experimental validation based on its strong prognostic relevance, as 
indicated by a high hazard ratio in Cox regression and consistent 
overexpression in tumor samples. Given that its functional role in CRC 

remains largely unexplored, particularly in the context of mitochondrial 
metabolism, we  aimed to characterize its potential contribution to 
colorectal tumorigenesis through subsequent in vitro and in vivo analyses. 
To evaluate the clinical significance of TMEM86B in colorectal cancer, 
we analyzed data from the GEPIA2 database, which showed that elevated 
TMEM86B expression was significantly associated with poorer prognosis 
in colon cancer patients (Figure  11B). This finding suggests that 
TMEM86B may play a role in promoting the aggressive behavior of CRC.

To further explore the biological function of TMEM86B in CRC, 
we  generated TMEM86B knockdown cell lines by lentiviral 
transduction in the RKO and HCT116 CRC cell lines (RKO/
shTMEM86B, HCT116/shTMEM86B) (Figure  11A). Functional 
assays demonstrated that silencing TMEM86B effectively inhibited 
CRC cell viability, as evidenced by reduced cell proliferation and 
clonogenicity in both the cell proliferation assays and colony 
formation assays (Figures  11C,E). These results indicate that 
TMEM86B is involved in promoting CRC cell growth.

Furthermore, we assessed the migratory and invasive capabilities 
of CRC cells after TMEM86B knockdown. A marked decrease in the 
migration and invasion potential of the RKO/shTMEM86B and 
HCT116/shTMEM86B cells was observed, indicating that TMEM86B 
plays a critical role in promoting CRC cell motility (Figure 11D).

In addition to the in vitro findings, we examined the impact of 
TMEM86B knockdown on tumor growth in  vivo. Subcutaneous 
xenograft models were established by transplanting RKO/
shTMEM86B and HCT116/shTMEM86B cells into nude mice 
(Figure  11F). Tumor growth was monitored by measuring tumor 
volume and weight. As shown in Figures 11G and 11H, both the 
average tumor volume and weight were significantly decreased in the 
TMEM86B knockdown groups compared to their respective controls 
(RKO/shNC vs. RKO/shTMEM86B; HCT116/shNC vs. HCT116/
shTMEM86B), indicating that TMEM86B down-regulation suppresses 
tumor growth in vivo.

In conclusion, our findings provide compelling evidence that 
TMEM86B contributes to the proliferation, migration, and invasion 
of CRC cells, both in  vitro and in  vivo. The high expression of 
TMEM86B correlates with poor prognosis in CRC patients, suggesting 
its potential as a novel therapeutic target in CRC treatment.

Discussion

Colorectal cancer (CRC) is a leading cause of cancer-related 
morbidity and mortality worldwide, ranking third in incidence and 
second in death rates globally (25). The prognosis for CRC patients is 
significantly influenced by the stage at which the tumor is detected, 
with a general 5-year overall survival rate of about 65% (26). Recent 
advances in cancer biology have revealed that mitochondrial energy 
metabolism is reprogrammed in malignant cells to support their rapid 
growth, invasion, and metastasis (27). Given the central role of 
mitochondria in tumorigenesis, they present promising therapeutic 

responsiveness in four groups stratified by risk score and stromal score. (H) Predicted proportion of responders across different microsatellite statuses 
(MSS, MSI-L, and MSI-H). (I) TIDE-predicted immunotherapy response across six subgroups categorized by both risk score and microsatellite status. 
MSS, microsatellite stability (n=403); MSI-L, microsatellite instability-low (n=93); MSI-H, microsatellite instability-high (n=82). p-values are indicated as 
follows: ns (not significant); ***p < 0.001, **p < 0.01, *p < 0.05.
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targets (28). However, there remains a paucity of studies focused on 
the prognostic significance of mitochondrial metabolism-related 
genes in CRC, particularly in constructing predictive models. This 
study aims to fill this gap by identifying mitochondrial metabolism-
related genes that could serve as prognostic biomarkers, facilitating 
early intervention and personalized therapy for high-risk patients.

Currently, many biomarkers were applied for prognostic 
prediction of CRC, such as GPSM2, TNFAIP8L3, HDC and 

NDUFA4L2, but most of them are studied for a single biomarker 
(29–32). Increasing evidences indicated that prognostic model 
constructed by multi-genes as a prognostic index was more 
comprehensive and effective than single gene in kinds of malignancies. 
For instance, Q. Li et al. constructed a CRC prognosis model based on 
Treg-related genes, associated with Treg infiltration (33). A Huang 
et al. constructed an immune-related prognostic model hypoxia- and 
lactate metabolism-related molecular subtyping and prognostic 

FIGURE 9

Mutation status in high- and low-risk groups in COADREAD. (A) Top 15 genes according to mutation frequency in high-risk groups. (B) Top 15 genes 
according to mutation frequency in low-risk groups. (C) Kaplan–Meier curves of OS of patients in high- and low-TMB groups combined with risk score 
in the TCGA-COADREAD cohort. (D) TMB score distribution in the low- and high-risk groups. Correlation between risk score and TMB in COADREAD. 
(E) Kaplan–Meier curves of OS of patients in MSS and MSI-H groups combined with risk score in the TCGA-COADREAD cohort. (F) MSI expression 
signature distribution in the low- and high-risk groups. Correlation between risk score and MSI expression signature in COADREAD. p-values are 
indicated as follows: ns (not significant); *p < 0.05; ***p < 0.001.
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signature for colorectal cancer (34). As the dysfunction of 
mitochondrial metabolism have been associated with cancer, 
we constructed a CRC prognostic model based on mitochondrial 
metabolism-related genes that could be used to predict the prognosis 
and efficacy of immunotherapy in patients with CRC.

In this study, a total of 582 mitochondrial metabolism-related 
genes were identified through the MSigDB and TCGA databases. 
Subsequent analyses, including univariate Cox regression and least 
absolute shrinkage and selection operator (LASSO) regression, 
narrowed the candidate list to 15 key genes. Among these, five genes 
(HSD3B7, NDUFA4L2, TMEM86B, FABP4, and TNFAIP8L3) were 
associated with increased risk, whereas ten genes (ORC1, GPSM2, 
CHDH, LARS2, HMGCL, GDE1, ACOX1, ARV1, HDC, and GSRL3) 
were linked to reduced risk. Notably, many of these genes have 

previously been implicated in colorectal cancer (CRC) progression, 
highlighting their potential utility as prognostic biomarkers.

To validate the predictive model, we  performed internal and 
external analyses. Internal validation through ROC curve analysis 
revealed excellent diagnostic capability, with an area under the curve 
(AUC) of 0.74, demonstrating strong sensitivity and specificity. 
Compared to existing prognostic models, our mitochondrial 
metabolism-related signature demonstrated superior predictive 
accuracy, achieving a 23.3% higher AUC than the RNA-binding 
protein model (0.74 vs. 0.60), and outperforming both the mitophagy 
(0.74 vs. 0.64) and autophagy models (0.74 vs. 0.66) (35–37). Notably, 
it also surpassed several other CRC models based on metabolic and 
immune-related genes, including those associated with nucleotide 
metabolism, immune profiles, immunogenic cell death, CD4⁺ T cells, 

FIGURE 10

Risk score predicts drug therapeutic benefits in colon cancer. Proportion of normalized IC50 values of the top 10 sensitivity drugs in high-risk low-risk 
groups (p < 0.01).
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FIGURE 11

Knockdown of TMEM86B inhibited CRC cells proliferation and migration in vitro and in vivo. (A) Western blot analysis of TMEM86B knock-down stably 
transfected cell lines. (B) Survival curve of TMEM86B in TCGA-COAD cohort in GEPIA2. (C,E) Clone formation and CCK8 assay of CRC cell lines with 

(Continued)
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and metastasis-immune interactions (38–44), consistently achieving 
the highest AUC (0.74). These results highlight the unique prognostic 
value of mitochondrial metabolism genes, which may more accurately 
reflect tumor bioenergetics and microenvironmental interactions, 
offering a more precise and clinically applicable tool for CRC risk 
stratification. Kaplan–Meier survival analysis showed significantly 
poorer outcomes for high-risk patients. External validation using 
GEO datasets confirmed these results, with low-risk patients having 
better overall survival. These findings highlight the reliability of 
mitochondrial metabolism-related genes in CRC prognosis.

TMEM86B, TNFAIP8L3, and HDC were identified as 
independent prognostic markers, offering new insights into the role 
of mitochondrial dysfunction in CRC. TMEM86B, involved in 
plasmalogen metabolism and mitochondrial function, was 
significantly overexpressed in CRC and associated with poor 
prognosis, suggesting a potential oncogenic role through disrupted 
lipid metabolism and mitochondrial imbalance (45, 46).

Similarly, TNFAIP8L3, known to mediate mitochondrial stress 
and tumor progression in other cancers (47, 48), also showed elevated 
expression in CRC patients with unfavorable outcomes, possibly 
contributing to immune evasion. In contrast, HDC was downregulated 
in CRC and linked to worse prognosis, differing from its oncogenic 
role in glioblastoma (49), suggesting a context-dependent function. 
Together, these findings highlight the potential involvement of these 
genes in CRC progression via mitochondrial pathways, though further 
mechanistic studies are needed.

TMEM86B was selected for further investigation due to its 
strong prognostic significance, as evidenced by high positive 
coefficients and hazard ratios in both univariate and multivariate 
Cox regression analyses, suggesting it may serve as an independent 
prognostic factor. Moreover, TMEM86B was consistently 
upregulated in tumor tissues compared to normal controls across 
multiple datasets. Considering the limited functional 
characterization of TMEM86B in colorectal cancer to date, it 
represents a promising candidate for uncovering novel oncogenic 
mechanisms. In this study, we  examined its potential role in 
colorectal cancer progression and provided robust evidence that 
TMEM86B facilitates malignant phenotypes, underscoring its 
contribution to tumor development.

In conclusion, our findings provide compelling evidence that 
TMEM86B contributes to CRC progression by enhancing cell 
proliferation, migration, and invasion. Its high expression correlates 
with poor prognosis, positioning it as a promising prognostic 
biomarker and potential therapeutic target in CRC. Future studies 
focusing on the molecular mechanisms of TMEM86B could provide 
valuable insights into the development of targeted therapies for 
CRC treatment.

Although TMEM86B has been identified as a potential contributor 
to CRC progression, its underlying molecular mechanisms remain 
poorly defined. This represents a limitation of the current study and 

highlights the need for further investigation into the specific signaling 
pathways and metabolic alterations regulated by TMEM86B. Given its 
predicted mitochondrial membrane localization and involvement in 
lipid metabolism, TMEM86B may play a role in mitochondrial lipid 
remodeling, membrane integrity, or metabolic reprogramming—
processes that are critical for tumor development and invasion. To 
elucidate these mechanisms, future studies employing transcriptomic 
profiling, functional rescue experiments, and metabolic flux analysis 
are warranted.

Further analysis of the differentially expressed genes (DEGs) 
between high- and low-risk groups revealed a significant enrichment 
of pathways related to extracellular matrix (ECM) processes, 
particularly ECM organization. This observation aligns with 
previous findings, which emphasize that ECM accumulation is a 
hallmark of aggressive tumor behavior and is commonly associated 
with poor prognosis in various cancer types (50). Within the TME, 
fibroblasts undergo transformation into cancer-associated fibroblasts 
(CAFs), which are highly prevalent in both primary and metastatic 
tumors. CAFs are known for their remarkable plasticity and 
resilience, and they exert significant influence on cancer progression 
through interactions with other components of the TME (51, 52, 69, 
70). The matrisome, a collective term referring to genes encoding 
core ECM proteins and structural components, is fundamental to 
understanding cancer biology (53). Yuzhalin et  al. identified a 
common nine-gene matrisome signature that is overexpressed in 
several cancers, including breast, gastric, lung, ovarian, and 
colorectal cancers (54). Consistent with these findings, our analysis 
identified a strong positive correlation between the risk score and 
the expression of CAF, ECM, and matrisome signatures. In addition, 
the risk score was positively correlated with the stromal score and 
negatively correlated with tumor purity, suggesting that a higher 
stromal content tends to be associated with the high-risk group in 
CRC. While these associations align with previous studies 
highlighting the prognostic relevance of stromal components in 
CRC, they do not imply a direct causal relationship. Further 
investigation is needed to determine whether stromal infiltration 
plays a mechanistic role in shaping prognosis or reflects other 
underlying tumor characteristics.

Immune cells are integral to the TME, contributing significantly 
to both tumor progression and responses to treatment. Recent studies 
have shown that distinct TME phenotypes correlate with different 
immunotherapeutic responses and clinical outcomes (55, 56). A key 
advantage of immunotherapy is its potential to induce memory CD8+ 
T cells, providing durable protection against tumor metastasis and 
recurrence (57). Emerging evidence suggests that these TME 
phenotypes are also linked to differential survival rates and variable 
responses to immunotherapy (58, 59). Considering the pivotal role of 
immune cells in the TME and their influence on therapeutic efficacy, 
we explored the variations in immune cell composition between high- 
and low-risk groups.

TMEM86B perturbation. 3 independent experiments were conducted, and data were shown with Mean ± SD (two-tailed t-test, **, p < 0.01, ***, p < 
0.001). (D) Representative images of migration and invasion after TMEM86B was silenced in RKO and HCT116. (F) Representative images of resected 
subcutaneous tumors. (G) Subcutaneous tumor dimensions were recorded using calipers at every 4 days. And tumor volume was calculated by 
formula: Length x Width2/2 (mean ± SD, n = 5 for each group, one-way ANOVA, ***, p < 0.001). (H) Tumor weight was recorded at time of harvest and 
plotted according to treatment group (Mean ± SD, two-tailed t-test, *, p < 0.05).

FIGURE 11 (Continued)
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Among the immune components within the TME, our results 
demonstrated that M0 and M2 macrophages were significantly more 
abundant in the high-risk group. This pattern indicates that the high-
risk group tends to be associated with a more immunosuppressive 
microenvironment, characterized by elevated levels of M0 and M2 
macrophages. These macrophage subtypes have been implicated in 
tumor immune evasion through the suppression of CD8⁺ T cell 
responses in previous studies, although their precise functional role in 
our model remains to be clarified.

In contrast, the low-risk group exhibited higher levels of immune 
cells generally associated with anti-tumor immunity, including B cells, 
CD8⁺ T cells, CD4⁺ T cells, M1 macrophages, neutrophils, and natural 
killer (NK) cells. This distinct immune profile may reflect a more 
active anti-tumor immune response in the low-risk group. However, 
as our study is observational in nature, these associations should not 
be interpreted as evidence of causality. Further experimental work is 
needed to elucidate whether these immune cell populations actively 
mediate prognostic differences or serve as correlates of broader tumor 
biological processes.

Monoclonal antibodies targeting immune checkpoint molecules 
have marked a significant advancement in cancer treatment (60). 
Our study showed that high-risk patients had a significantly lower 
response to immunotherapy than low-risk patients, consistent with 
their lower expression of PD-1, PD-L1, and CTLA-4. Integrating the 
risk score with immune or stromal scores improved the prediction 
of immunotherapy response in COADREAD, highlighting its value 
as a potential biomarker. Clinical evidence shows that anti-PD-1/
PD-L1 therapies are effective in dMMR/MSI-H colorectal cancers 
but less so in pMMR/MSS cases, likely due to their immunologically 
‘cold’ tumor microenvironment. This suggests that MSI status, 
through its association with neoantigen generation and immune 
activation, is a reliable predictor of response to PD-L1 therapy (61, 
62). In our study, while MSI status was negatively correlated with the 
risk score (Figure  9F), it alone failed to significantly distinguish 
patient survival (Supplementary Figure S13B). In contrast, 
combining MSI with the risk score improved prognostic power. In 
both MSS and MSI-H subgroups, low-risk patients had better 
survival than high-risk ones (Figure  9E), and showed higher 
immunotherapy response rates across all MSI types, especially in 
MSI-H (50.1% vs. 23.9%, Figure 8I). These findings highlight the 
added prognostic and predictive value of our model beyond MSI 
alone. Our findings also suggest potential clinical applications of the 
prognostic risk score in guiding immunotherapy decisions for CRC 
patients. Given the observed associations between low-risk scores 
and a more immune-activated tumor microenvironment—
characterized by higher infiltration of CD8⁺ T cells, NK cells, and M1 
macrophages—these patients may be more likely to benefit from 
ICIs. In contrast, high-risk patients demonstrated features of an 
immunosuppressive TME, including increased M2 macrophages and 
stromal activation, which may impair immunotherapy efficacy. Thus, 
the risk model may serve as a tool for stratifying patients and 
selecting personalized treatment strategies. For high-risk individuals, 
combination therapies (e.g., ICIs plus CAF-targeted agents or anti-
fibrotic treatments) could be  explored to overcome 
immune resistance.

Our analysis showed no significant difference in TMB levels 
between high- and low-risk groups, and no strong correlation between 
TMB and the risk score (Figure  9D). Survival also did not differ 

significantly between high- and low-TMB patients alone 
(Supplementary Figure S13A), suggesting TMB alone is insufficient 
for prognosis.

However, combining TMB with our risk score improved 
stratification. In both high- and low-TMB subgroups, low-risk 
patients had better survival than high-risk ones (Figure 9C). These 
findings suggest our model adds prognostic value beyond TMB and 
supports integrated approaches for more accurate risk assessment in 
colorectal cancer.

To further explore the translational potential of our drug 
sensitivity predictions, we  examined existing evidence for the 
top-ranked compounds identified in our analysis. AGI-5198, a 
selective inhibitor of mutant IDH1 (R132H), has been shown to 
suppress tumor growth and induce differentiation in IDH1-mutant 
cancer cells, including colorectal cancer models, suggesting its 
promise in targeted therapy for specific molecular subtypes (63, 64). 
PRIMA-1MET (APR-246), a reactivator of mutant p53, has been 
reported to promote autophagy and apoptosis in CRC cells via the 
mTOR/AMPK-ULK1-Vps34 signaling pathway, highlighting its 
relevance in p53-mutant tumors (65). On the other hand, Paclitaxel, 
a microtubule-stabilizing agent, is already in clinical use and has 
shown benefit in certain CRC treatment settings, particularly in 
combination with other agents (66). YK-4-279, which blocks the 
EWS-FLI1 transcription factor, effectively kills p53-deficient colorectal 
cancer cells with the BRAFV600E mutation (like RKO) by stopping 
ETS1 increase and causing a parthanatos-like cell death involving 
overactive PARP1, mitochondrial damage, and AIF moving to the 
nucleus (67). IGF1R inhibitors have demonstrated antiproliferative 
effects in CRC models by disrupting oncogenic signaling pathways 
(68). These findings support the potential utility of our risk model not 
only in prognostic stratification but also in guiding individualized 
therapeutic strategies. By integrating genomic risk profiles with 
predicted drug sensitivities, our model may help identify patient 
subgroups that are more likely to benefit from specific targeted or 
chemotherapeutic agents, offering a path toward more personalized 
treatment in colorectal cancer.

This study offers several key advantages. The risk model, based on 
multiple mitochondrial metabolism-related genes, shows stronger 
prognostic value than single-gene methods and enables clear 
classification of COADREAD patients into high- and low-risk groups. 
It also predicts chemotherapy and immunotherapy responses, 
supporting personalized treatment. In addition, TMEM86B was 
identified as a key gene promoting colorectal cancer progression, 
suggesting its potential as a therapeutic target.

Limitations

Despite the significant clinical implications of our findings, several 
limitations should be acknowledged. First, this study is retrospective 
in nature and relies primarily on publicly available databases, which 
may introduce inherent biases. Future validation in large-scale, 
prospective, multi-center clinical cohorts is necessary to confirm the 
stability and generalizability of the risk score model across diverse 
populations and clinical settings. Second, the oncogenic roles of the 
prognostic genes included in the model, as well as the underlying 
mechanisms by which these genes interact with mitochondrial 
metabolism in colorectal cancer, remain to be  fully elucidated. 

https://doi.org/10.3389/fmed.2025.1618471
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wang et al. 10.3389/fmed.2025.1618471

Frontiers in Medicine 23 frontiersin.org

Another limitation is the lack of histological analyses (e.g., H&E, 
Ki-67, cleaved caspase-3) in the in vivo experiments. Future studies 
will incorporate histological assessments to provide further 
mechanistic insights into tumor proliferation and apoptosis. 
Additionally, future studies should expand the analysis of 
mitochondrial-related genes using larger datasets to enhance the 
robustness and clinical applicability of our model.

Conclusion

We developed a novel mitochondrial metabolism-related risk 
model for colorectal adenocarcinoma, which is closely associated with 
the tumor microenvironment and immune infiltration. Combining 
the risk score with stromal score, immune score, or MSS/MSI status 
improved prediction of immunotherapy response. Drug sensitivity 
analysis indicated distinct treatment responses between high- and 
low-risk groups. TMEM86B was identified as a potential oncogene, 
and its knockdown inhibited tumor growth in  vitro and in  vivo. 
Overall, this model may serve as a reliable prognostic biomarker and 
guide personalized therapy in COADREAD.
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Glossary

COADREAD - Colon and Rectal Cancer

TME - Tumor microenvironment

CRC - Colon and Rectal Cancer

OS - Overall survival

ICB - Immune checkpoint blockade

TMB - Tumor mutation burden

GSEA - Gene set enrichment analyses

DEGs - Differentially expressed genes

K-M - Kaplan–Meier

C-index - Concordance index

HPA - The Human Protein Atlas

NCBI - National Center for Biotechnology Information

DCA - Decision curve analysis

GO - Gene Ontology

KEGG - Kyoto Encyclopedia of Genes and Genomes

TIICs - Tumor-infiltrating immune cells

IC50 - 50% Inhibiting concentration

GDSC - Genomics of Drug Sensitivity in Cancer

TIDE - Tumor immune dysfunction and exclusion

ECM - Extracellular matrix

CAF - Carcinoma associated fibroblast

Tregs - Regulatory T cell

MSS - Microsatellite stability

MSI-L - Microsatellite instability-low

MSI-H - Microsatellite instability-high

PD-L1 - Programmed death-ligand 1

TAMs - Tumor-associated macrophages

M2 - Macrophage type 2

BP - Biological process

CC - Cellular component

MF - Molecular function
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