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Introduction: The pressing need for accurate diagnostic tools in the medical

field, particularly for diseases such as brain tumors and Alzheimer’s, poses

significant challenges to timely and e�ective treatment.

Methods: This study presents a novel approach to MRI image classification by

integrating transfer learning with Explainable AI (XAI) techniques. The proposed

method utilizes a hybrid CNN-VGG16 model, which leverages pre-trained

features from the VGG16 architecture to enhance classification performance

across three distinct MRI datasets: brain tumor classification, Alzheimer’s

disease detection, and a third dataset of brain tumors. A comprehensive

preprocessing pipeline ensures optimal input quality and variability, including

image normalization, resizing, and data augmentation.

Results: The model achieves accuracy rates of 94% on the brain tumor

dataset, 81% on the augmented Alzheimer dataset, and 93% on the third

dataset, underscoring its capability to di�erentiate various neurological

conditions. Furthermore, the integration of SHapley Additive exPlanations (SHAP)

provides a transparent view of the model’s decision-making process, allowing

clinicians to understand which regions of the MRI scans contribute to the

classification outcomes.

Discussion: This research demonstrates the potential of combining advanced

deep learning techniques with explainability to improve diagnostic accuracy and

trust in AI applications within healthcare.

KEYWORDS

MRI image classification, transfer learning, explainable AI (XAI), hybrid CNN-VGG16

model, brain tumors, Alzheimer’s disease, SHAP, medical imaging
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1 Introduction

Brain tumors constitute a critical subset of central nervous

system (CNS) disorders, with pathologies ranging from slow-

growing benign masses to highly aggressive malignant neoplasms

(1). Malignant types such as glioblastomas and anaplastic

astrocytomas are particularly concerning due to their rapid

proliferation, high invasiveness, and poor prognosis (2). The five-

year relative survival rate for adults remains around 35.6%. These

metastatic tumors are especially challenging due to their rapid

infiltration into brain parenchyma and resistance to conventional

therapies (3). The World Health Organization (WHO) classifies

CNS tumors into grades I–IV based on histopathological,

immunohistochemical, and molecular features (4), underscoring

the need for early and accurate grading to guide clinical

interventions.

Magnetic Resonance Imaging (MRI) remains the gold standard

for brain tumor diagnosis and grading due to its superior

soft tissue contrast and non-invasive nature (5). Advanced

MRI modalities: such as T1-weighted (T1), contrast-enhanced

T1 (T1C), T2-weighted (T2) (6), Fluid Attenuated Inversion

Recovery (FLAIR) (7), Diffusion Tensor Imaging (DTI), Perfusion

MRI, and MR Spectroscopy (MRS) (8) offer rich, multi-

parametric information on tumor morphology, oedema, necrosis,

vascularity, and infiltration (9). However, themanual interpretation

of these high-dimensional images is time-consuming, prone

to inter-observer variability, and particularly burdensome in

resource-constrained settings with radiologist shortages (10).

Tumor heterogeneity and overlapping imaging phenotypes further

complicate diagnosis, prompting increased adoption of automated

analysis tools powered by AI (11).

In parallel, neurodegenerative disorders like Alzheimer’s

disease (AD) pose unique diagnostic challenges. AD is

characterized by progressive cognitive decline and structural

brain changes such as cortical thinning and hippocampal

atrophy, visible in MRI scans (12). Due to the limited availability

of labeled data for early AD diagnosis, data augmentation

techniques such as affine transformations, intensity scaling, noise

injection, and GAN-based synthesis have been employed to

improve model robustness (13). These enriched datasets also

facilitate sequential transfer learning, enabling the repurposing

of knowledge from AD-related imaging to other neurological

domains, including brain tumor classification (14). Convolutional

Neural Networks (CNNs) have tremendously succeeded in medical

image classification, segmentation, and anomaly detection. Pre-

trained architectures such as VGG16, ResNet, and DenseNet,

initially developed for natural image datasets like ImageNet,

can be fine-tuned via transfer learning to perform effectively in

medical contexts (15).

This work proposes a novel hybrid framework that integrates a

pre-trained VGG16 backbone with custom CNN layers and applies

a sequential transfer learning strategy across three structurally

distinct MRI datasets: a brain tumor, Alzheimer’s disease, and

an independent validation set. This approach leverages domain-

relatedness in neuroimaging to enhance feature generalization and

classification accuracy across multiple brain pathologies. Despite

their high predictive performance, deep learning models are often

criticized for their “black-box” nature, which limits interpretability

and clinical trust (16). To overcome this limitation, we incorporate

SHapley Additive exPlanations (SHAP), an explainable AI (XAI)

method that attributes the model’s output to specific pixels or

regions in the input image. SHAP values offer visual insight into

the regions most influential to model decisions, aligning them with

anatomical structures and facilitating clinician interpretation. By

striking a balance between high performance and interpretability,

our framework presents a promising solution for real-world

deployment in neuroimaging diagnostics.

This work proposes a novel hybrid framework that integrates a

pre-trained VGG16 backbone with custom CNN layers and applies

a sequential transfer learning strategy across three structurally

distinct MRI datasets: a brain tumor, Alzheimer’s disease, and

an independent validation set. This approach leverages domain-

relatedness in neuroimaging to enhance feature generalization and

classification accuracy across multiple brain pathologies. Despite

their high predictive performance, deep learning models are often

criticized for their “black-box” nature, which limits interpretability

and clinical trust (16). To overcome this limitation, we incorporate

SHapley Additive exPlanations (SHAP), an explainable AI (XAI)

method that attributes the model’s output to specific pixels or

regions in the input image. SHAP values offer visual insight into

the regions most influential to model decisions, aligning them with

anatomical structures and facilitating clinician interpretation. By

striking a balance between high performance and interpretability,

our framework presents a promising solution for real-world

deployment in neuroimaging diagnostics.

The proposed method begins with preprocessing all datasets,

including normalization, resizing, augmentation, and partitioning

into train/validation/test splits. A hybrid CNN architecture is

then constructed by combining frozen VGG16 features with

custom convolutional and dense layers. The model is trained on

a brain tumor dataset and then fine-tuned sequentially on an

Alzheimer’s dataset and a third validation dataset using transfer

learning. Each stage involves model reconfiguration and controlled

unfreezing of layers. Finally, SHAP-based explainability is applied

to visualize model decisions, and performance is evaluated using

standard metrics such as accuracy, precision, recall, F1-score, and

confusion matrices.

Figure 1 illustrates the concept of transfer learning, a technique

in machine learning where knowledge gained from a source

domain is utilized to enhance learning in a target domain. The

source domain comprises a large dataset, such as ImageNet, which

contains over a million images. A pre-trained model is developed

using this extensive dataset, comprising three key components:

early layers for feature extraction, middle layers, and task-specific

layers. In transfer learning, the early layers that capture general

features like edges and textures are transferred to the model

for the target domain, where data is limited, such as a medical

image dataset with only hundreds of samples. These layers become

“frozen” in the fine-tuned model, meaning they are not updated

during training on the small dataset. The middle layers are fine-

tuned, and the adjustments are based on the new data to capture

domain-specific features better. Finally, the task-specific layers

from the source model are replaced with new ones tailored to the

target domain’s specific task.
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FIGURE 1

How transfer learning works.

1.1 Research contributions

The major research contributions of this study are

the following:

• A novel approach that leverages a pre-trained VGG16 model

combined with custom CNN layers, using sequential transfer

learning across three distinct MRI datasets (brain tumor,

Alzheimer’s, and validation) to improve classification accuracy

while requiring minimal training data.

• This study demonstrates effective knowledge transfer

between different neurological conditions (from brain

tumor classification to Alzheimer’s detection), showing

that features learned from one medical imaging domain

can enhance performance in related but distinct diagnostic

tasks. A comprehensive preprocessing pipeline, including

image normalization, resizing, and data augmentation,

is implemented to improve model robustness and

generalizability across datasets with varying characteristics.

• This research incorporates SHapley Additive exPlanations

(SHAP) analysis to provide transparent, pixel-level attribution

of model decisions, addressing the “black box” problem

of deep learning in healthcare by enabling clinicians

to understand which regions of MRI scans influence

diagnostic classifications.

1.2 Research organization

This research is organized into the following main sections.

Section 2 presents related work, discussing recent advances in

deep learning for medical imaging, the effectiveness of transfer

learning, and the growing importance of XAI in healthcare.

Section 3 outlines the proposed framework, detailing integrating

pre-trained convolutional neural networks with XAI methods,

such as Grad-CAM, to enhance performance and interpretability.

Section 4 presents the experimental analysis, which includes

dataset description, evaluation metrics, and results comparing

the proposed model with existing techniques. Finally, Section 5

concludes the study by summarizing key findings and suggesting

directions for future research.

2 Related work

This section presents related work, discussing recent advances

in deep learning for medical imaging, the effectiveness of transfer

learning, and the growing importance of XAI in healthcare.

Tuncer et al. (17) proposed a lightweight convolutional neural

network named FiboNeXt for Alzheimer’s disease classification

using MRI images. The model was designed by integrating

ConvNeXt architecture elements, attention, and concatenation

layers. The dataset was divided into four classes and included

both original and augmented versions, where the augmented data

was used for training and the original for testing. The primary

aim was to achieve high accuracy with fewer trainable parameters.

Experimental results demonstrated that FiboNeXt achieved 95.40

and 95.93% validation accuracy on two datasets, while test accuracy

reached 99.66 and 99.63%, respectively, highlighting the model’s

efficiency and generalization capability. An optimized hybrid

transfer learning (TL) framework was introduced by Lasagni

et al. (18) to classify brain tumors using MRI images. The

approach combined advanced preprocessing techniques, such as

noise reduction and contrast enhancement, with an ensemble

of pretrained deep learning models, VGG16 and ResNet152V2.

The framework achieved an impressive classification accuracy of

99.47% on a complex four-class dataset. Explainable AI (XAI)

methods like SHAP and Grad-CAM were employed to ensure

transparency and clinical trust. These tools provided visual and
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quantitative insights into model predictions, facilitating better

interpretability and making the model more suitable for real-world

clinical applications.

Bhaskaran and Datta (19) investigated the use of 3D

convolutional neural networks (3D-CNNs) for detecting focal

cortical dysplasia (FCD) from a dataset containing MRI scans of

170 individuals (85 patients and 85 controls). They studied the

advantages of cross-modality transfer learning using pretrained

ResNet variants (ResNet-18, -34, and -50, trained initially on

segmentation tasks). Transfer learning significantly improved

classification performance to up to 80.3%. Moreover, they also

introduced a novel Heat-Score, a combination of Grad-CAM,

to evaluate the model interpretability. The model was able

to fill the gap between AI predictions and expert diagnostic

insights by using this metric, showing the model’s effectiveness

in identifying clinically relevant seizure zones. Tonni et al. (20)

used the InceptionV3 architecture to classify brain MRI images

into three tumor types (meningioma, glioma and pituitary) with

different embeddings initialization for imagenet and the studied

data. Several open-source XAI tools were integrated to address

the challenge of model interpretability, including LIME, SHAP,

and Grad-CAM. The model attained a classification accuracy

of 93% and an F1-score of 0.93. Among the XAI tools, SHAP

provided the highest level of explainability at ∼60%, aligning

better with expert-identified tumor regions. In contrast, LIME and

Grad-CAM explained <50% of the cases. The findings revealed

that non-tumor-related features had a notable impact on model

predictions, suggesting a need for further refinement in feature

attribution techniques.

Nahiduzzaman et al. (21) proposed a novel framework that

integrates a lightweight parallel depthwise separable convolutional

neural network (PDSCNN) with a hybrid ridge regression extreme

learning machine (RRELM) for classifying four brain tumor

types (glioma, meningioma, pituitary, and no tumor) using

MRI images. The approach utilizes contrast-limited adaptive

histogram equalization (CLAHE) to enhance tumor feature

visibility, followed by PDSCNN for efficient tumor-specific

feature extraction with reduced computational cost. To improve

classification performance, a ridge regression-enhanced ELM

(RRELM) is introduced, addressing the limitations of traditional

ELMs. Comparative analysis with state-of-the-art models revealed

that the proposed PDSCNN-RRELM achieved superior results,

with average precision, recall, and accuracy reaching 99.35%,

99.30%, and 99.22% through five-fold cross-validation. Vanaja et al.

(22) proposed a diagnostic framework for Alzheimer’s Disease

(AD) by leveraging machine learning and a customized deep

convolutional neural network (cDCNN) with three convolutional

layers applied to MRI data. The analysis incorporates two

datasets, Alzheimer’s Disease Neuroimaging Initiative (ADNI) and

a Kaggle dataset, to examine diverse subject groups and imaging

characteristics linked to AD pathology. Tomitigate class imbalance,

the Synthetic Minority Over-sampling Technique (SMOTE) is

employed. Traditional machine learning classifiers such as support

vector machine, k-nearest neighbor, random forest, decision trees,

and XGBoost are evaluated alongside the cDCNN model, which

focuses on key MRI biomarkers of AD. The cDCNN achieved 87%

accuracy on the ADNI dataset despite preprocessing challenges

due to converting DICOM images to JPEG, which affected

image quality.

Joshi et al. (23) introduced a transfer learning approach

for classifying Parkinson’s disease using the imbalanced PPMI

dataset, leveraging Big Transfer (BiT) models. These pre-trained

models utilize Group Normalization with Weight Standardization

and adopt BiT-HyperRule for effective fine-tuning across diverse

datasets. Various BiT architectures, including BiT-S and BiT-M

variants, were evaluated. The best-performing model, BiT-M152x4,

achieved 86.71% accuracy, surpassing the previous state-of-the-

art RA-GCN model (76%). Additionally, the same BiT models

were applied to the imbalanced BCCD dataset, where BiT-M152x4

again outperformed VGG16 (98.52% vs. 74%), demonstrating the

versatility and robustness of the proposed approach. Bin Shabbir

Mugdha andUddin (24) conducted a comparative analysis between

a newly developed Convolutional Neural Network (CNN) model

and several pre-trained models using transfer learning, including

VGG-16, ResNet-50, AlexNet, and Inception-v3. VGG-16 achieved

the best performance among all models with a test accuracy of

95.52%, training accuracy of 99.87%, and a validation loss of

0.2348. ResNet-50 followed with 93.31% test accuracy, 98.78%

training accuracy, and 0.6327 validation loss. The custom CNN

model achieved 92.59% test accuracy, 98.11% training accuracy,

and a validation loss of 0.2960. Inception-v3 showed the lowest

performance with 89.40% test accuracy and a validation loss

of 0.4418.

Khedgaonkar et al. (25) proposed a Graph Neural Network

(GNN)-based approach for brain MRI classification, addressing

the limitations of traditional methods in integrating spatial and

frequency domain features. By applying Fourier, Gabor, and

convolutional transformations, key features are extracted and fused

into a unified representation. MRI images are modeled as nodes

in a graph, capturing structural and semantic relationships. The

GNN leverages this graph structure to learn discriminative features

through neighborhood aggregation. The method demonstrated

superior performance across precision, accuracy, recall, specificity,

AUC, and delay, outperforming conventional techniques. Ilani et al.

(26) focused on classifying brain tumors glioma, meningioma, and

pituitary using MRI scans, leveraging the U-Net architecture for

segmentation alongside transfer learning-based CNN models such

as Inception-V3, EfficientNetB4, and VGG19. Model performance

was evaluated using F-score, recall, precision, and accuracy metrics.

U-Net outperformed other models, achieving 98.56% accuracy, a

99% F-score, 99.8% AUC, and 99% recall and precision. It also

maintained strong generalization with 96.01% accuracy in cross-

dataset validation using an external cohort. The results highlight U-

Net’s effectiveness in precise brain tumor segmentation, supporting

early diagnosis and treatment planning.

Rasool et al. (27) proposed ResMHA-Net, a deep learning

framework combining ResNet residual blocks with multi-head

attention to enhance glioma segmentation in 3D MRI. This

architecture captured long-range dependencies and emphasized

informative regions, improving the segmentation of complex

glioma sub-regions. It was trained and validated on BraTS 2018–

2021 datasets, with the best performance observed on BraTS 2021,

demonstrating strong adaptability. Predicted masks from three

datasets were used to extract radiomic features, which, along with

clinical data, trained an ensemble model for survival prediction.

This model employed a voting mechanism across multiple learners

and achieved a 73% overall survival prediction accuracy. Gasmi

et al. (28) developed an ensemble classification model integrating
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Vision Transformers (ViT) and EfficientNet-V2 to capture both

global and local features from brain MRI. Model outputs were

combined using a genetic algorithm-optimized weighted ensemble,

which selected the best combination tomaximize accuracy. Trained

on a labeled MRI dataset, the ensemble model outperformed

individual and traditional classifiers, achieving a 95% classification

accuracy with improved precision, recall, and F1-score.

While these studies have achieved high accuracy through

various architectures and optimization techniques, many face

limitations such as reliance on single-domain datasets, limited

transferability across neurological disorders, or insufficient

interpretability. Most existing works focus on enhancing

performance or providing visual explanations, but few offer a

unified framework that balances generalization, accuracy, and

explainability across diverse brain pathologies. Furthermore, many

methods lack rigorous evaluation of independent datasets, raising

concerns about overfitting and real-world applicability. Our work

addresses these gaps by proposing a multi-stage transfer learning

strategy that spans distinct MRI datasets and integrating SHAP for

transparent, clinically meaningful explanations.

3 Proposed framework

This section explains the proposed framework, detailing the

integration of pre-trained convolutional neural networks with

XAI methods like Grad-CAM to improve performance and

interpretability. The workflow of the proposed framework is

illustrated in Figure 2. The figure presents a comprehensive

pipeline for a Hybrid CNN-VGG16 model designed for MRI image

classification, which leverages transfer learning and explainable

artificial intelligence (XAI) techniques. The process is divided

FIGURE 2

Hybrid CNN-VGG16 model with transfer learning and XAI for MRI classification.
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into five primary stages: datasets, data preprocessing, model

architecture, training, and evaluation with XAI. The first stage

highlights the use of three distinct datasets: the Brain Tumor

Classification Dataset (with classes like glioma, meningioma,

no tumor, and pituitary), the Augmented Alzheimer MRI

Dataset (including mild, moderate, non-demented, and very mild

demented classes), and a third dataset which again covers brain

tumor categories. These datasets undergo different preprocessing

steps, such as image resizing, normalization, augmentation, and

dataset splitting into training, validation, and testing sets. Next,

the Hybrid CNN-VGG16 model architecture is detailed. It begins

with the VGG16 base model pretrained on ImageNet with frozen

layers used for feature extraction. On top of this base, custom

convolutional layers (including Conv2D, batch normalization, max

pooling, and dropout) are added to enhance learning. The final

part of the model is the classification head, which includes global

average pooling, dense layers, and a softmax layer for multi-class

output. The training process is conducted in three sequential

phases. It starts with initial training on the brain tumor dataset,

followed by two fine-tuning stages on the Alzheimer dataset and

then on the third dataset. The training uses the Adam optimizer,

categorical cross-entropy loss, and early stopping, with the best-

performing model weights preserved between each stage. Finally,

the Explainable AI (XAI) & Evaluation block involves model

interpretation and performance assessment. SHapley Additive

exPlanations (SHAP) provides feature attributions, allowing insight

into how the model makes decisions. Additionally, several

performance metrics such as accuracy, F1-score, precision, and

recall are used, and visual results are presented via confusion

matrices and SHAP plots.

Algorithm 1 defines a general process to adapt a pre-trained

source model MS to a new target task using the target dataset

DT . The source model is cloned to create the target model MT ,

after which selected layers are frozen based on the strategy φ. The

final output layer is replaced to align with the target labels, and

the dataset DT is split into training, validation, and test subsets.

Fine-tuning is performed over E epochs using gradient descent on

trainable parameters, with early stopping optionally applied. The

algorithm also supports the progressive unfreezing of layers for

staged fine-tuning. The final model is evaluated on the Dtest
T test

set. Specifically, the following terms are:MS denotes the pre-trained

source model, and MT is the target model initialized as a clone of

MS. The target dataset is represented as DT = {(xi, yi)}
NT
i=1, where

xi is an input sample, yi is the corresponding target label, and NT

is the total number of samples. The learning rate is denoted by

α, and E represents the number of training epochs. The strategy

φ defines which layers in MT will be frozen or trainable during

fine-tuning. Each mini-batch is represented by B = {(xj, yj)}
b
j=1,

where b is the batch size. For each sample xj in the batch, ŷj is

the predicted output by MT . The loss for a batch is computed

as L = 1
b

∑

j ℓ(ŷj, yj), where ℓ is a loss function such as cross-

entropy. The model parameters are denoted by θ , and gradient

descent updates them via θ ← θ − α∇θL. The dataset DT is

split into training, validation, and test sets, denoted by Dtrain
T , Dval

T ,

and Dtest
T , respectively. Additionally, if progressive unfreezing is

enabled, layers are incrementally unfrozen in S stages, with each

stage using its learning rate αs and epoch count Es.

Algorithm 2 details a pipeline for MRI image classification

using three datasets. The datasets are defined as follows: D1 =

Require: Source model MS, source dataset DS, target

dataset DT = {(xi,yi)}
NT
i=1, learning rate α, epochs

E, freezing strategy φ

Ensure: Fine-tuned model MT

1: function TRANSFERLEARN(MS, DT, α, E, φ)

2: MT ← MS

3: for each layer l in MT do

4: if l ∈ φ then

5: Freeze l

6: else

7: Make l trainable

8: end if

9: end for

10: Replace output layer of MT to match classes in

DT

11: Split DT into DtrainT , DvalT , DtestT

12: for e = 1 to E do

13: for each batch B = {(xj,yj)}
b
j=1 ⊂ DtrainT do

14: ŷj ← MT(xj) for all xj ∈ B

15: L← 1
b

∑

j ℓ(ŷj,yj)

16: Update θ ← θ − α∇θL for all trainable θ

17: end for

18: Evaluate MT on DvalT

19: if early stopping criteria met then

20: break

21: end if

22: end for

23: if progressive unfreezing enabled then

24: for s = 1 to S do

25: Unfreeze new layers per strategy φ

26: Fine-tune with reduced αs for Es epochs

27: end for

28: end if

29: Evaluate MT on DtestT

30: return MT

31: end function

Algorithm 1. Transfer learning for neural network models.

{(x1i , y
1
i )}

N1
i=1 corresponds to the Brain Tumor Dataset (BTD), D2 =

{(x2i , y
2
i )}

N2
i=1 is the Alzheimer Dataset (AD), and D3 = {(x

3
i , y

3
i )}

N3
i=1

is the third validation dataset (VD). Here, xki is an MRI image,

and yki is its corresponding label for dataset Dk with Nk samples.

The learning rate, batch size, and number of epochs for training

on dataset Dk are represented by αk, Bk, and Ek, respectively.

During preprocessing, each image xi is normalized by subtracting

the mean µ and dividing by the standard deviation σ , then

resized to a fixed height h and width w. Augmentation is applied

through transformation functions T(xi), and the dataset is split

into training, validation, and test subsets. The model is constructed

using a pretrained VGG16 backbone denoted as V , from which

features F are extracted. These features are frozen and connected to

additional convolutional, batch normalization (BN), max pooling,

dropout, global average pooling (GAP), and dense layers, ending

with a final dense output layer with C units representing the

number of classes. The function Train compiles the model with

the Adam optimizer (learning rate α) and categorical cross-entropy

(CCE) loss, then fits it on the training set and evaluates it on the
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Require: D1 = {(x
1
i,y

1
i)}

N1
i=1 (BTD), D2 = {(x

2
i,y

2
i)}

N2
i=1

(AD), D3 = {(x
3
i,y

3
i)}

N3
i=1 (VD)

Require: αk,Bk,Ek ∀k ∈ {1,2,3}

1: function PREPROCESS(D)

2: xi ←
xi−µ

σ
, xi ← resize(xi,h,w)

3: Daug ← D ∪ {(T(xi),yi)}

4: Dtrain,Dval,Dtest ← split(Daug)

5: return Dtrain,Dval,Dtest

6: end function

7: function BUILD(C)

8: V← VGG16(pretrained), F← extract(V)

9: freeze(F)

10: M← F→ Conv2D(256)→ BN→ MaxPool→ Drop(0.3)

11: M ← M → GAP → Dense(512) → Drop(0.5) →

Dense(C)

12: return M

13: end function

14: function TRAIN(M,Dtrain,Dtest,α,B,E)

15: compile(M,Adam(α),CCE)

16: fit(M,Dtrain,E,B)

17: eval(M,Dtest)

18: return M

19: end function

20: function FINETUNE(M,Dnew,C,α,B,E)

21: replace_head(M,C)

22: unfreeze(M.tail)

23: compile(M,Adam(α),CCE)

24: fit(M,Dnew,E,B)

25: return M

26: end function

27: function EXPLAIN(M,X)

28: E← DeepExplainer(M,Xbg)

29: for xi ∈ X do

30: ŷi ← argmaxM(xi)

31: Si ← E(xi)

32: plot(Si,xi)

33: end for

34: end function

35: function EVAL(M,D)

36: Compute: Acc, F1, Prec, Rec, conf_mat(M, D)

37: end function

38: D∗1 ← PREPROCESS(D1), D∗2 ← PREPROCESS(D2), D∗3 ←

PREPROCESS(D3)

39: M← BUILD(|C1|)

40: M← TRAIN(M,Dtrain1 ,Dtest1 ,α1,B1,E1)

41: M← FINETUNE(M,Dtrain2 , |C2|,α2,B2,E2)

42: M← FINETUNE(M,Dtrain3 , |C3|,α3,B3,E3)

43: EXPLAIN(M,Dtest3 )

44: EVAL(M,Dtest1 ), EVAL(M,Dtest2 ), EVAL(M,Dtest3 )

Algorithm 2. Hybrid CNN-VGG16 with TL and XAI for MRI classification.

test set. The function FineTune replaces the output head with

C classes, unfreezes the last layers for fine-tuning, recompiles the

model, and continues training. The Explain function employs

DeepExplainer from SHAP to generate saliency maps Si for

test samples xi, where Xbg is a background dataset used for

explanations. The predicted label for a sample is given by ŷi =

argmaxM(xi). The evaluation function computes standardmetrics:

accuracy (Acc), F1-score (F1), precision (Prec), recall (Rec), and

confusion matrices. These changes have been incorporated to

improve the transparency of the algorithm.

3.1 Experimental dataset

In this research, we utilized three datasets for classifying MRI

images by training deep learning models. The first dataset (https://

www.kaggle.com/datasets/sartajbhuvaji/brain-tumorclassification-

mri, accessed March 25, 2025) is based on Brain tumors, among the

most aggressive diseases affecting children and adults, comprising

85%–90% of all primary Central Nervous System (CNS) tumors.

Annually, ∼11,700 new brain tumor cases are reported, with

a 5-year survival rate of 34% for men and 36% for women.

Tumors are categorized into the following types: Glioma Tumor,

Meningioma Tumor, No Tumor, and Pituitary Tumor. The second

dataset (https://www.kaggle.com/datasets/uraninjo/augmented-

alzheimer-mri-dataset, accessed March 25, 2025) used in this

research is the Augmented Alzheimer’s MRI Dataset. It contains

brain MRI images classified into four categories: Non-Demented,

Very Mild Demented, Mild Demented, and Moderate Demented.

The dataset is organized into two main folders, one containing

the original images and the other containing augmented versions

to increase data variability. Both training and testing sets include

samples from all four classes. Augmented data helps improve

deep learning models’ performance and generalization capability

in classifying different stages of Alzheimer’s disease. The third

dataset (https://www.kaggle.com/datasets/sartajbhuvaji/brain-

tumor-classification-mri, accessed March 25, 2025) used in this

research is a combined brain tumorMRI dataset derived from three

sources: Figshare, the SARTAJ dataset, and the Br35H dataset.

It contains 7,023 MRI images classified into four categories:

Glioma, Meningioma, Pituitary, and No Tumor. Images for

the “No Tumor” class were taken from the Br35H dataset. Due

to misclassification issues observed in the Glioma class of the

SARTAJ dataset, which was identified through inconsistent model

performance and validation against other research, those images

were removed and replaced with correctly labeled images from the

Figshare dataset. This curated dataset supports the classification

of brain tumors, which can be either benign or malignant and

is critical for early diagnosis, given the life-threatening nature of

tumor-induced pressure within the skull.

3.2 Data preprocessing

The preprocessing process begins with loading each MRI

image and converting it from the default Blue-Green-Red (BGR)

color format to the standard Red-Green-Blue (RGB) format to

ensure compatibility with deep learning models. This conversion

maintains consistency in color representation across all images,

preventing misinterpretation of visual features during training and

improving the accuracy of tumor classification. After converting
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the image to RGB, the next preprocessing step involves resizing

each image to a fixed dimension of 128 × 128 pixels. Neural

networks require input data to have a consistent shape, and resizing

ensures that all images, regardless of their original resolution,

meet the input requirements of the model. Specifically, resizing

transforms an image IǫRH×W×3 into a standardized format

I
′
ǫR128×128×3, where H and W represent the original height and

width of the image, respectively. This step ensures that all input

images are of uniform size, allowing for efficient model training

and processing. After resizing, the pixel values of the images are

normalized by scaling them from the original range of [0, 255] to

[0, 1]. This is achieved by dividing each pixel value by 255 (see

Equation 1):

Inorm =
I

255
(1)

Normalization helps stabilize and accelerate the neural

network’s learning process by ensuring the input data has a

smaller, more uniform range of values. It also helps reduce the

internal covariate shift, thus enabling more effective weight updates

during training.

The class labels, initially string values such as “glioma_tumor,”

“meningioma_tumor,” etc., are converted into a numerical format

using a label map. Each label is then one-hot encoded using the

to_categorical() function. One-hot encoding transforms categorical

labels into a binary matrix where only the index of the class

is marked as 1, and all others are 0. For instance, the label

“glioma_tumor” becomes [1, 0, 0, 0]. This format is compatible with

multi-class classification models. In mathematical terms, for a class

C ∈ {0, 1, 2, 3}, the one-hot encoded vector y is defined as shown in

Equation 2:

yi =

{

1, if i = C

0, otherwise
for i ∈ {0, 1, 2, 3} (2)

It is essential to evaluate model performance and prevent

overfitting; therefore, this study utilized train_test_split() to divide

the dataset into training and validation sets. Specifically, 80% of

the data was allocated for training and 20% for validation. The use

of a fixed random_state ensured reproducibility. This separation

allowed the model to be assessed on unseen data, providing a more

precise measure of its generalization capability.

3.3 Data augmentation

The model generalization should be improved together with

mitigating overfitting if we have a small dataset. For this, this study

expanded the training data using data augmentation techniques,

which artificially increased the training dataset by generating

simple variations of the images. These variations make the model

more robust and well-performing for real-world transformations

that may occur in medical imaging.

The operations applied in this study for augmentation are

random rotations in a ±20-degree range, horizontal and vertical

translations of 20% of the Image dimensions, shear transformation

withmoderate intensity, zooming in± 20% and random horizontal

flips to simulate different orientations. These transformations were

chosen carefully to resemble variations in MRI scans that occur

naturally and do not modify the underlying anatomical structures.

The augmentation process can be formally described as applying

a transformation function T to an input image x, resulting in an

augmented image x′ (see Equation 3):

x
′

= T(x) (3)

Where the transformation function T is a composition of

individual operations, such as (see Equation 4):

x′ = Rθ (x) (Rotation)

x′ = Tdx,dy(x) (Translation)

x′ = Sα(x) (Shear)

x′ = Zs(x) (Zoom)

x′ = F(x) (Flip)

(4)

These operations ensure that the data is represented in diverse

ways during the training process, thus increasing the chances for it

to generalize better to unseen inputs. The augmentation parameters

were fit to the training dataset before training, and these fit

parameters were used in the training process. Hence, the behavior

of transformation is consistent during the time of learning.

3.4 Model architecture

The details of the model architecture of CNN, Custom

CNN, VGG16, ResNet and Hybrid CNN-VGG16 are discussed in

this section.

3.4.1 CNN model
The first model architecture specifically for the MRI image

classification is the Convolutional Neural Network (CNN) (29). It

takes input images of size 128× 128× 3 and starts with a Conv2D

layer of 32 filters (3× 3 kernel, ReLU) and, as usual, MaxPooling2D

(2 × 2) to reduce spatial dimensions. It is followed by a Conv2D

layer with 64 filters (3× 3, ReLU) and another MaxPooling2D (2×

2). Then, a third Conv2D layer with 128 filters (3 × 3, ReLU) and

another MaxPooling2D layer (2 × 2) is added. It is then flattened

and passed through a Dense layer with 128 neurons (ReLU) and

a Dropout layer of 0.5 dropout rate to prevent overfitting. The

Dense output layer with a softmax activation is used to classify

the input into one of four classes: glioma, meningioma, no tumor

and pituitary tumor. Lastly, we compile the model using the Adam

optimizer and the categorical cross-entropy loss, which fit the

multi-class classification correctly.

3.4.2 Custom CNN model
The custom CNN model shares the core structure of the

basic CNN three convolutional layers followed by max-pooling,

flattening, a dense layer, dropout, and a softmax output for

multi-class classification. However, it enhances the architecture by
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integrating Batch Normalization after each convolutional layer.

This addition helps stabilize learning, speeds up convergence,

and improves generalization. While the layer progression and

classification targets remain the same, the inclusion of batch

normalization distinguishes this model by offering better training

dynamics and potentially higher performance (30).

3.4.3 VGG16
The third model utilizes VGG16, a well-known deep CNN

architecture pre-trained on the ImageNet dataset, as a feature

extractor (31). Unlike the previous custom models, VGG16’s

convolutional layers are frozen to retain learned features, reducing

training time and preventing overfitting on small datasets. On top

of the frozen base, custom classification layers are added: a global

average pooling layer to reduce feature maps, a dense layer with

ReLU activation, a dropout layer for regularization, and a softmax

output layer to classifyMRI images into four tumor categories. This

transfer learning approach combines the power of a proven model

with task-specific tuning for improved accuracy and generalization.

3.4.4 ResNeT
The fourth is a ResNet model that integrates residual

connections for more efficient learning, especially in deeper

networks (32). It starts with a convolutional layer followed by max-

pooling, similar to previous models. The main distinction in this

model is the use of residual blocks, which include two convolutional

layers per block. The shortcut connections are added to the output

of these blocks, enabling the model to bypass specific layers and

help mitigate the vanishing gradient issue. In the second block, a

1 × 1 convolution is used to match the output dimensions of the

shortcut. The rest of the architecture follows the same structure,

with global average pooling, a dense layer, and a softmax output for

classification. The model is optimized using Adam with a learning

rate of 0.0001 and uses categorical cross-entropy for loss.

3.4.5 Hybrid VGG16-CNN
The Hybrid CNN + VGG16 model integrates a pre-trained

VGG16 model for feature extraction with a custom CNN designed

to learn additional task-specific features (33). The VGG16 model,

with its convolutional layers frozen, leverages the pre-learned

features from the ImageNet dataset without any further updates

during training. A Global Average Pooling layer processes its

output to create a more compact representation of the features. The

custom CNN learns additional features directly relevant to tumor

classification. This CNN includes several convolutional layers

followed by max-pooling layers to reduce the spatial dimensions

of the feature maps. The resulting output is flattened and passed

through a fully connected layer, with ReLU activation and a

dropout layer for regularization. The features from both models

are merged using the concatenate operation, followed by another

fully connected layer with ReLU activation and a dropout layer.

The final output layer uses softmax activation to produce a

probability distribution over the four tumor categories: glioma

tumor, meningioma tumor, no tumor, and pituitary tumor. The

model is compiled with the Adam optimizer and categorical cross-

entropy as the loss function, which is suitable for multi-class

classification. It is trained for 50 epochs with a batch size of 32,

using training and validation data.

3.5 Fine tuning models

The previously trained Hybrid CNN + VGG16 model was

fine-tuned for the second experimentation phase using the

Augmented Alzheimer’s MRI dataset. This dataset includes four

categories: Mild Demented, Moderate Demented, Non Demented,

and Very Mild Demented. The hybrid model combines the

VGG16 architecture, which was pre-trained on the ImageNet

dataset and used as a frozen feature extractor, with a custom

CNN trained to extract domain-specific features. To adapt the

model for this new classification task, the final dense layer

was replaced to match the four output classes. While the

VGG16 layers remained frozen to retain their generalized feature

representations, the custom CNN layers were set as trainable to

learn patterns specific to Alzheimer’s stages. Additionally, dropout

and L2 regularization were applied to mitigate overfitting. The

model was compiled using the Adam optimizer with a learning

rate of 0.0005 and trained using augmented image data. To

further validate our hybrid CNN+VGG16 model, we evaluated its

performance on a third publicly available MRI brain tumor dataset

consisting of four categories: glioma, meningioma, pituitary, and

no tumor. The model architecture and training methodology

remained consistent with previous experiments, incorporating

dual-input feature fusion and transfer learning. After minor data

augmentation and preprocessing adjustments, the model was

retrained using a two-input pipeline and evaluated on stratified

splits. The model demonstrated strong generalization to this new

dataset, maintaining high accuracy across all classes. These results

further reinforce the robustness and adaptability of our proposed

hybrid model to varying data distributions.

To evaluate the generalization performance of the proposed

Hybrid CNN + VGG16 model without relying on data

augmentation, we conducted additional experiments on the

unaltered original Alzheimer’s MRI dataset. While the model

architecture and configuration remained consistent, the training set

consisted solely of original images, with no synthetic augmentation

applied. The output layer was modified to match the four-class

structure of this dataset. Only the custom CNN layers were updated

during fine-tuning, while the VGG16 backbone remained frozen.

The training used the same optimizer (Adam) and loss function

(categorical cross-entropy) as in the augmented experiments. This

experiment provides insight into how well the model performs in a

more constrained, real-world scenario.

4 Experimental analysis and results

In this section, the accuracy, precision, recall, and F1 scores are

used to assess the performance of the models. More specifically,

it describes systematic experimental outcomes. This subsection

defines all performance measurements, such as accuracy, precision,
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recall, and F1-score and indicates how these measurements must

be used.

The number of correctly classified instances (TP + TN) is the

total number of instances of the data set. By applying Equation 5,

we can calculate this value:

Accuracy =
TP + TN

TP + FP + TN + FN
(5)

It is the ratio of the number of times the model accurately

predicted a product to the total number of times it has predicted it

positively. Applying Equation 6 in this way will provide this result:

Precision =
TP

TP + FP
(6)

The ratio of positive predictions to the data’s actual number

of positive instances. It reflects the model’s ability to capture all

positive instances. Use Equation 7 in the following manner to find

this value:

Recall =
TP

TP + FN
(7)

The harmonic mean of precision and recall provides a single

metric to balance both. It is beneficial when an imbalance between

classes is calculated using Equation 8.

F1− score = 2×
Precision+ Recall

Precision+ Recall
(8)

Figure 3a illustrates a model’s training and validation accuracy

over 45 epochs. The training accuracy commences at∼0.460 at the

0th epoch and shows a steady upward trajectory, reaching about

0.800 by the 40th epoch. Similarly, the validation accuracy begins at

around 0.500 and follows a comparable increasing trend, surpassing

the training accuracy at several points and culminating at ∼0.805

at the final epoch. Figure 3b presents the corresponding loss values

for training and validation over the same number of epochs. The

training loss starts at around 1.17 at the 0th epoch and declines

progressively, reaching about 0.47 by the 40th epoch. The validation

loss follows a similar pattern, beginning near 1.02 and steadily

decreasing to∼0.50 at the final epoch.

Figure 4a illustrates a model’s training and validation accuracy

over 17 epochs. The training accuracy begins at ∼0.790 at the

0th epoch and exhibits a consistent upward trend, reaching about

0.955 by the 17th epoch. The validation accuracy initiates at around

0.880 and fluctuates slightly throughout the training process,

peaking around the 14th epoch near 0.935 before ending at∼0.920.

Figure 4b presents the corresponding training and validation loss

across the same epoch range. The training loss starts relatively high

at ∼0.61 in the 0th epoch and shows a steady decline, reaching

around 0.13 by the 17th epoch. The validation loss follows a more

irregular pattern, beginning near 0.40, spiking intermittently, and

settling at around 0.33 in the final epoch.

Figure 5a shows amodel’s training and validation accuracy over

15 epochs. The training accuracy starts at ∼0.310 at the 0th epoch

and rises steadily throughout the training process, reaching about

0.905 by the 15th epoch. The validation accuracy initially starts

higher at around 0.390, increases with some fluctuations, and peaks

around 0.890 near the 11th epoch before settling slightly lower at

∼0.875 by the final epoch. Figure 5b presents the corresponding

loss values over the same epoch range. The training loss begins at a

relatively high value of around 1.38 at the 0th epoch and decreases

consistently, dropping to ∼0.28 by the 15th epoch. The validation

loss starts at about 1.22 and fluctuates more than the training loss,

reaching a peak around 1.48 at the 3rd epoch but then follows a

general downward trend to around 0.40 at the final epoch.

Table 1 presents the classification performance across three

datasets: Brain Tumor MRI, Augmented Alzheimer MRI, and a

third tumor classification dataset. The Brain Tumor MRI dataset

includes four tumor classes: glioma_tumor, meningioma_tumor,

no_tumor, and pituitary_tumor. The model achieves the highest

F1-score of 0.98 for the pituitary_tumor class, with corresponding

precision and recall values of 0.97 and 0.99, respectively. The

FIGURE 3

Graphical representation of hybrid CNN-VGG16 model with XAI on second dataset. (a) Accuracy graph. (b) Loss graph.
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FIGURE 4

Graphical representation of hybrid CNN-VGG16 model with transfer learning on third dataset. (a) Accuracy graph. (b) Loss graph.

FIGURE 5

Graphical representation of hybrid CNN-VGG16 model with XAI on third dataset. (a) Accuracy graph. (b) Loss graph.

glioma_tumor class also performs strongly with all three metrics:

precision, recall, and F1-score at 0.96. The no_tumor class has a

slightly lower recall of 0.87, contributing to an F1-score of 0.90.

Overall, the model demonstrates high classification effectiveness

with a total accuracy of 94%. In the Augmented Alzheimer

MRI dataset. This dataset includes four classes: MildDemented,

ModerateDemented, NonDemented, and VeryMildDemented.

Among these, the NonDemented class achieves the highest F1-

score of 0.87, driven by a strong recall of 0.89. Although the

ModerateDemented class attains a perfect precision of 1.00, its low

recall of 0.54 results in a moderate F1-score of 0.70, indicating

potential challenges in correctly identifying all instances of this

class. The overall model accuracy for this dataset is 81%, which

suggests reasonable but improvable classification performance. The

third dataset consists of the following classes: glioma, meningioma,

no tumor, and pituitary. The tumor class performs the best with

an F1-score of 0.97, bolstered by a precision of 0.96 and a recall of

0.98. The pituitary class also achieves high recall (0.99), although

its precision is relatively lower at 0.88, yielding an F1-score of

0.93. The overall model accuracy stands at 93%, indicating a strong

performance across multiple tumor categories.

For multi-class classification, SHAP values were calculated per

class and reshaped for visualization. Summary plots were generated

to identify globally important regions across all samples.

4.1 Model explainability using SHAP

To better understand how our Hybrid CNN + VGG16

model makes decisions, we used SHapley Additive explanations

(SHAP). This method explains model predictions by highlighting

which parts of the input image contribute most to the final

output. Since our model has a dual-input architecture with the

same MRI image passing through two branches for enhanced
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TABLE 1 Classification metrics across three datasets.

Dataset Class Precision Recall F1-Score

Brain tumor MRI Glioma_tumor 0.96 0.96 0.96

Meningioma_tumor 0.91 0.91 0.91

No_tumor 0.92 0.87 0.90

Pituitary_tumor 0.97 0.99 0.98

Accuracy 94%

Augmented Alzheimer MRI MildDemented 0.81 0.64 0.72

ModerateDemented 1.00 0.54 0.70

NonDemented 0.84 0.89 0.87

VeryMildDemented 0.76 0.77 0.76

Accuracy 81%

Third dataset Glioma 0.96 0.89 0.92

Meningioma 0.92 0.83 0.87

Notumor 0.96 0.98 0.97

Pituitary 0.88 0.99 0.93

Accuracy 93%

feature learning, we adapted SHAP’s DeepExplainer to handle

this structure accordingly. We selected a sample batch from

the validation set and computed SHAP values for both inputs.

Summary plots were generated to identify which features (or pixel

regions) are typically important over the dataset and image plots for

each pixel that mattered in discriminating a given prediction from

the others. This allowed these visualizations to show that no matter

the input, the model always attends to brain regions involved in

Alzheimer’s disease. This provides valuable guidance for building

trust in AI-based clinical tools, and the model is strengthened

in terms of interpretability and communicates that it is learning

meaningful patterns.

In order to increase the interpretability of the hybrid CNN+

VGG16 model trained for the brain tumor classification task, we

combined the SHapley Additive exPlanations (SHAP) technique

that allows explainable AI. The model has a multi-input structure

(perhaps there is a better term for this), so SHAP’s DeepExplainer

was used on batches of validation images to compute pixel-based

contributions for each prediction. The SHAP values revealed which

areas of the MRI scans were the most important in allowing the

model to decide. We would find through summary plots that the

model consistently locked in on key tumor areas irrespective of

the different categories, thus showing that it accurately emphasized

those features. However, this transparency not only supports the

credibility of the model but, additionally, is of the essence for the

reliability of AI-based diagnostics in other medical applications.

4.1.1 SHAP summary plots of second dataset
SHAP values were successfully computed for a multi-input

model using DeepExplainer, with each input consisting of 32 RGB

images (128 × 128). The resulting SHAP tensors had a shape of

(32, 128, 128, 3, 4), indicating class-specific attributions. Separate

summary plots were generated for the four classes across both

inputs, highlighting important spatial regions contributing to the

model’s predictions.

Figure 6a presents a SHAP summary plot that visualizes the

influence of Features labeled numerically from 20551 to 36331.

The x-axis represents SHAP values, where positive values indicate

features that push the prediction higher, and negative values

indicate the opposite. Color gradients reflect feature magnitudes.

Pink denotes high values, and blue denotes low values. In this case,

certain features like 20551 and 28222 exhibit a more pronounced

impact on the model’s predictions, evidenced by their wider spread

along the SHAP value axis compared to others. On the other

hand, features such as 20548 and 20549 show minimal impact,

clustering closer to zero. Figure 6b presents a SHAP summary

plot that illustrates the influence of features from “Feature 35950”

to “Feature 33595” on the model’s output. Notably, 35950 and

35184 are significantly influenced by their pronounced spread

along the SHAP value axis, suggesting they contribute meaningfully

to the model’s output. In contrast, features like 21767 and 35569

cluster closer to zero, indicating a minimal effect on the predictive

performance. Figure 6c presents a SHAP summary plot that

illustrates the features that influence the model’s output, ranging

from “Feature 20158” to “Feature 27859.” Notably, features such

as “Feature 20158” and “Feature 34381” significantly impact the

model’s predictions, as indicated by the broader distribution of

SHAP values. This suggests that variations in these features can

lead to more pronounced effects on the predictions. In contrast,

features like “Feature 34348” and “Feature 18958” cluster closer

to the zero line, indicating a lesser impact on model predictions.

This clustering reveals that changes in these features do not

significantly influence the overall model output. Figure 6d presents

a SHAP summary plot that visualizes the influence of features

ranging from “Feature 20158” to “Feature 24772” on the model’s

output. For instance, Features 20158 and 33604 exhibit strong

positive contributions when their values are high, whereas Features
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FIGURE 6

SHAP summary plots for Classes 0 through 3. (a) Class 0. (b) Class 1. (c) Class 2. (d) Class 3.

FIGURE 7

Visualizing SHAP explanation for sample 0, class 0.

33250 and 24772 predominantly display negative SHAP values,

indicating a suppressive effect on predictions. This plot highlights

key features that significantly shape model behavior based on their

value ranges.

Figure 7 displays a cross-sectional brain image alongside

a SHAP value color scale. The grayscale brain scan highlights

structural features, while the adjacent gradient from blue (–0.1,

negative contribution) to red (+0.1, positive contribution)

represents each region’s influence on model predictions.

This integration aids in interpreting how specific brain areas

affect analytical outcomes, linking neuroimaging data to

model behavior.

4.1.2 SHAP summary plots of third dataset
Figure 8a presents a SHAP summary plot that illustrates the

impact of various features, ranging from “Feature 21277” to

“Feature 12959,” on the model’s predictions. The visualization

indicates that certain features, such as “Feature 21280” and “Feature

29056,” significantly influence the model’s output, as evidenced

by their extensive spread along the SHAP value axis. In contrast,

features like “Feature 21337” and “Feature 24373” demonstrate

minimal impact, as their SHAP values cluster closer to zero.

Figure 8b presents a SHAP summary plot visualizing the influence

of various features, specifically labeled from “Feature 15520” to

“Feature 21276,” on the model’s output. In this plot, features such as
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FIGURE 8

SHAP summary plots for Classes 0 to 3. (a) Class 0. (b) Class 1. (c) Class 2. (d) Class 3.

FIGURE 9

Visualizing SHAP explanation for sample 0, class 0.

“Feature 15976” and “Feature 15908” exhibit a significant influence,

as indicated by their wider dispersion on the SHAP value axis.

This means that these features contribute more substantially to

the predicted outcomes when compared to others. Conversely,

features like “Feature 15520” and “Feature 15139” cluster closer to

zero, demonstrating minimal impact on the model’s predictions.

Figure 8c presents a SHAP summary plot that illustrates the

influence of various features, specifically from “Feature 15520”

to “Feature 21278,” on the model’s predictions. Certain features,

such as “Feature 15520” and “Feature 15976,” exhibit a more

pronounced effect on the model’s predictions, as evidenced by

their greater dispersion along the SHAP value axis. This suggests

that these features are critical in influencing the model’s output.

Conversely, features like “Feature 15518” and “Feature 15904”

reveal a minimal impact, clustering closely to zero. This suggests

that their contributions to the model’s predictions are negligible

compared to those of other features. Figure 8d presents a SHAP

summary plot that represents the impact of various features on

the model’s predictions, focusing on features ranging from “Feature

21277” to “Feature 21659.” For instance, features such as “Feature
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21280” and “Feature 29056” significantly impact the predictions,

as indicated by their wider distribution of SHAP values that

extend toward both positive and negative extremes. Conversely,

features like “Feature 17104” and “Feature 15130” exhibit minimal

influence, clustering closer to the zero mark, which suggests that

their effect on the model output is negligible.

Figure 9 combines a sagittal brain MRI image (left) with a

SHAP value bar plot (right) to illustrate model interpretability in

neuroimaging. The MRI highlights anatomical brain structures,

while the SHAP plot uses a blue-to-red gradient to show each

region’s contribution to model predictions, with blue indicating a

negative and red indicating a positive influence. SHAP values range

from –1 to 1, capturing features’ subtle and significant impacts.

This integrated visualization aids in understanding how specific

brain regions affect model outcomes, bridging neuroimaging with

explainable AI.

4.2 Discussion

The proposed hybrid CNN-VGG16 framework addresses three

key challenges in MRI-based neuroimaging diagnostics: limited

labeled data, variability across datasets, and lack of interpretability

in deep learning models. First, the use of transfer learning

significantly mitigates the issue of data scarcity. By leveraging

the pre-trained VGG16 architecture, the model benefits from rich

feature representations learned from large-scale natural image

datasets. This allows for effective feature extraction even with

relatively small medical imaging datasets. The high classification

accuracy achieved on the brain tumor dataset (94%) and the

third dataset (93%) demonstrates the model’s ability to generalize

across similar pathological domains. Second, the sequential fine-

tuning strategy across structurally distinct datasets of brain tumors

and Alzheimer’s and a third validation set demonstrates the

framework’s adaptability to different neuroimaging modalities.

The model maintains a competitive performance of 81% on the

augmented Alzheimer dataset despite its structural differences from

the training domain. This highlights the framework’s robustness

and transferability, addressing the domain shift problem that

often limits the practical deployment of deep learning models in

medical diagnostics. Third, integrating SHAP-based Explainable AI

resolves the critical issue of interpretability. By generating pixel-

level explanations, the framework provides insight into which

brain regions influence the model’s predictions. This capability

enhances clinical trust and offers potential support for diagnostic

reasoning by aligning model attention with known anatomical

and pathological patterns. The proposed approach combines

performance and transparency, offering a concrete step toward

clinically viable AI systems. It outperforms traditional single-

dataset training and black-box models by effectively resolving

challenges related to data diversity, cross-domain generalization,

and explainability.

5 Conclusion

This paper demonstrated the effectiveness of transfer learning

combined with XAI for classifying MRI images. SHAP values

provide much insight into the decision-making path of the

model, and the hybrid CNN-VGG16 model generalizes well

over different datasets with high accuracy. In conclusion, this

approach and its generalizations can be applied to other medical

imaging tasks, possessing high performance and interpretability.

This research has demonstrated the effectiveness of a hybrid CNN-

VGG16 model, utilizing transfer learning in conjunction with

XAI techniques, for MRI image classification. The high accuracy

of the model across multiple datasets demonstrates that it is

robust and easily adaptable in distinguishing between different

neurological diseases, including brain tumors and Alzheimer’s

disease. While the model shows strong performance, it has

certain limitations. The reliance on a limited number of public

datasets may restrict its generalizability to real-world clinical

scenarios. Additionally, the SHAP-based interpretability comes

with a high computational cost, which may challenge real-time

deployment. Future work will expand dataset diversity, incorporate

3D volumetric data, optimize model architecture for clinical

deployment, and explore alternative interpretability methods. This

research lays a solid foundation for developing high-performing,

interpretable AI tools to support medical decision-making and

improve patient outcomes. This work also lays the groundwork

for future research to refine the model further and apply it to

other medical imaging applications, ultimately leading to enhanced

patient outcomes.
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