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Mass spectrometry (MS)-based breath analysis has emerged as a promising non-
invasive approach for diagnosing and monitoring respiratory diseases through 
the identification of volatile organic compounds (VOCs). This study conducted 
a comprehensive bibliometric analysis of 467 publications (2003–2024) to map 
global research trends, influential contributors, and thematic hotspots in this field. 
Results showed a sustained annual growth rate of 11.03%, with the United States, 
the United Kingdom, the Netherlands, and China leading in publication output 
and institutional collaborations. Key research areas included VOC profiling for 
COPD, asthma, lung cancer, and COVID-19, as well as advances in real-time MS 
techniques and machine learning-based data interpretation. Co-citation analysis 
revealed a shift toward precision medicine and multi-omics integration, underscoring 
the field’s transition from discovery to clinical translation. Despite challenges in 
standardization and reproducibility, MS-based breathomics holds transformative 
potential for respiratory diagnostics. This study provides a roadmap for future 
research priorities, emphasizing the need for interdisciplinary collaboration, 
composite biomarker validation, and artificial intelligence integration.

KEYWORDS

mass spectrometry, breath test, respiratory diseases, volatile organic compounds, 
bibliometrics, biomarkers

1 Introduction

By detecting the mass-to-charge ratio (m/z) values of ions and combining them with 
fragment ion spectra, mass spectrometry (MS) can qualitatively provide information on the 
molecular weight and structural features of substances. Target substances can also 
be quantitatively analyzed using MS by measuring the abundance of particular m/z ions in 
conjunction with internal standard procedures or standard curves (1). Because MS supports 
a range of ionization techniques (such as electrospray ionization and electron bombardment 
ionization) and can be combined with separation techniques like gas chromatography (GC) 
and liquid chromatography (LC), it has great potential and value in clinical practice. This 
makes it feasible for the analysis of complex samples for use in clinical biological analysis (2). 
Respiratory disorders are closely linked to volatile organic compounds (VOCs) in exhaled 
breath. The application of MS to identify VOCs has grown in popularity in recent years.

Figure 1 schematically outlines the integrated workflow for clinical biomarker discovery 
and analysis using MS-based profiling of VOCs in exhaled breath. The process initiates with 
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participant sampling, where exhaled breath is collected as a complex 
matrix rich in VOCs originating from systemic metabolism. The MS 
analysis phase involves four critical steps: (1) Sample Introduction & 
Separation (optional but common), typically employing online-
coupled GC/LC–MS to resolve complex VOC mixtures (2) (2) 
Ionization using techniques such as electrospray ionization (ESI, for 
LC–MS) or electron ionization (EI, for GC–MS) to generate gas-phase 
ions (2) (3) Mass Analysis, where ions are separated by m/z to 
determine molecular weights, with tandem MS fragment ion spectra 
providing structural elucidation (1); and (4) Detection and 
Quantification, enabling qualitative identification (via m/z and 
fragmentation patterns) and precise quantitation (using internal 
standards or calibration curves) (1). Finally, computational 
interpretation of MS data (spectra/chromatograms) correlates 
quantified VOC biomarkers with clinical endpoints, facilitating 
applications in disease diagnosis, metabolic and drug monitoring, and 
environmental exposure assessment (3–5).

Coupled MS offers distinct advantages over traditional detection 
techniques, including non-invasiveness, high sensitivity, high 
specificity, and real-time monitoring capabilities. While biopsies 
provide histological confirmation, they carry risks of pneumothorax 
(15–25% incidence) and are unsuitable for serial monitoring. 
Conversely, MS breath analysis enables real-time, repeatable 
assessment of metabolic activity but lacks spatial resolution for tumor 
localization. Conventional imaging techniques (e.g., CT/MRI) 
primarily provide anatomical information but lack sensitivity to 
functional metabolic changes during early disease stages. In contrast, 
MS detects molecular-level alterations by identifying metabolite 
structures, enabling lesion detection months before anatomical 
abnormalities manifest, thereby significantly improving early 
diagnosis rates. For instance, Wang et al. demonstrated that proton 

transfer reaction time-of-flight MS (PTR-TOF-MS) outperformed CT 
in diagnosing early-stage lung cancer, with respiratory analysis 
showing superior diagnostic performance (88.6% sensitivity, 63.6% 
specificity, 79.2% accuracy) versus CT (74.3, 59.1, 68.1%) (6). The 
integration of mass spectrometry with low-dose CT may enhance 
early detection by identifying metabolic changes that precede 
anatomical abnormalities. Breath analysis via MS is now extensively 
employed in respiratory medicine. MS-based multidimensional 
analysis facilitates not only disease diagnosis and monitoring, but also 
elucidates underlying physiological and pathological mechanisms (7). 
Bos et al. identified three exhaled VOCs—octane, acetaldehyde, and 
3-methylheptane—using GC–MS as diagnostic biomarkers for acute 
respiratory distress syndrome (ARDS). They further hypothesized 
these compounds originate from cellular metabolism and lipid 
peroxidation (8). Gaugg et al. (9) employed high-resolution MS for 
real-time breath analysis to monitor metabolic changes following 
bronchodilator inhalation in asthma and chronic obstructive 
pulmonary disease (COPD) patients.

Bibliometrics employs statistical techniques to quantitatively 
analyze published literature (10). Using specialized analytical tools 
(e.g., CiteSpace, VOSviewer), this method extracts multivariate data—
including authors, institutions, keywords, and citations—to visualize 
knowledge evolution and structural relationships. This quantitative 
approach provides an invaluable framework for examining research 
dynamics, identifying emerging trends, detecting knowledge gaps, 
and forecasting domain-specific research hotspots. We conducted a 
bibliometric analysis of breath test mass spectrometry literature 
(2003–2024) indexed in Web of Science (WoS) and PubMed. Through 
systematic data analysis, we: (1) identified seminal publications and 
key applications, (2) analyzed high-impact citations and keyword 
co-occurrences, (3) generated thematic clusters, (4) mapped current 

FIGURE 1

Schematic of exhaled gas mass spectrometry for the detection of VOCs.
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research hotspots, and (5) identified emerging frontiers—collectively 
elucidating the field’s developmental trajectory. This longitudinal 
analysis provides researchers with a comprehensive knowledge map 
of the global MS breath testing landscape for respiratory disorders, 
while establishing critical references for future investigations.

2 Materials and methods

We systematically searched WoS, PubMed, Scopus, and Embase for 
publications (2000–2024) on MS-based breath analysis in respiratory 
diseases. Preliminary screening established 2003 as the valid inception 
year, as empirical studies first appeared then. Pre-2003 publications 
contained only speculative perspectives lacking experimental validation.

Using R Studio, we  exported records and removed duplicates 
across WOS, Scopus, and Embase via Excel’s COUNTIF algorithm. 
Duplication rates were: WOS-Scopus 92.1% (430/467) and 
WOS-Embase 89.1% (416/467). We standardized Scopus affiliations 
(recorded as secondary entities) via custom VBA scripting for 
hierarchical VOSviewer analysis. Scopus and Embase unique records 
were converted to WOS format using CiteSpace and merged. 
Integration validity was confirmed with negligible analytical impact.

Non-English publications (n  = 14; 12 articles, 2 reviews) 
underwent full-text review. Eight contained novel content (7 articles, 
1 review), while six duplicated English publications. These unique 
non-English records were excluded from network analyses due to 
metadata inconsistencies. Their minimal impact (<1.7% corpus 
coverage) was documented despite potential content scope expansion.

2.1 Data source and search strategy

Web of Science Core Collection (WoSCC) is widely recognized as 
a premier bibliographic database for bibliometric analysis, with 
established scholarly credibility (11). We  systematically searched 
WoSCC and PubMed (January 1, 2003  - December 31, 2024) to 
retrieve relevant publications. The search strategy employed: 
TS = (“Mass spectrometry”) AND TS = (“Breath test”). Retrieval fields 
included title, abstract, author keywords, and references.

2.2 Manual screening process

2.2.1 Screening and analysis workflow
Literature processing followed a tiered protocol: (1) A primary 

investigator retrieved and downloaded all articles; (2) Two 
independent researchers classified publications by study type and 
extracted metadata; (3) Two other researchers performed full-text 
critical appraisal and content synthesis; (4) Post-deduplication, five 
researchers conducted relevance screening to exclude irrelevant 
publications; (5) The primary investigator executed bibliometric 
analysis to ensure procedural consistency; (6) Discrepancies at each 
stage were resolved via consensus meetings with ≥80% 
agreement threshold.

2.2.2 Inclusion criteria
(1) Literature containing breath tests and mass spectrometry; (2) 

Application scope of respiratory diseases; (3) Literature involving 

in vitro and in vivo experimental studies, clinical trial studies, reviews, 
and public database analysis studies; (4) Literature published in 
English; (5) Literature involving disease diagnosis, disease progression 
monitoring, drug treatment monitoring, and toxicology studies; (6) 
Books with full bibliographic details (title, author, country, keywords, 
and source).

2.2.3 Exclusion criteria
(1) Duplicate publications; (2) Newspapers, patents, patents, 

conference papers, scientific and health literature, etc.; (3) Insufficient 
access to literature.

2.2.4 Data standardization
Following screening, the papers were exported in Refworks and 

Plain Text File formats. Special symbols were eliminated. Keyword 
names were standardized; for example, “airway resistance” was 
merged with “airways.” Country/region names have been 
standardized; for example, “Northern Ireland,” “Wales,” “England,” 
and “Scotland” have been designated as “England” respectively. 
Institutional names were standardized; for example, “Peking univ. 
peoples hosp” was combined with “Peking univ.” The retrieved papers 
were then put together with the CiteSpace software’s Data Import/
Export function.

2.3 Bibliometric analysis and visualization

From an initial retrieval of 914 documents, 467 publications (393 
articles, 74 reviews) met inclusion criteria after deduplication (Zotero) 
and relevance screening. Analytical tool selection was based on 
specialized capabilities: CiteSpace (v6.2. R4) was employed for 
temporal evolution analysis (2003–2024) and burst detection due to 
its optimized algorithms for identifying emerging trends through 
time-slicing (1-year intervals) and pruning parameters (top  10%, 
Pathfinder network) (12, 13). VOSviewer (v1.6.19) generated 
co-occurrence/cluster networks (authors, institutions, journals) 
leveraging its superior clustering accuracy and visualization of large 
datasets. R Bibliometrix (v4.1.3) complemented quantitative analyses 
(H-index, citation metrics) through robust statistical modeling 
(ggplot2, reshape2 packages). Gephi/Pajek integration resolved 
complex network topologies (>500 nodes) where VOSviewer’s layout 
algorithms reached computational limits. Tableau Public enhanced 
geospatial mapping precision for country-level collaborations (14). 
OriginPro (v2023) produced publication trend fittings (polynomial 
curves) and heatmaps via its advanced numerical engine. This multi-
tool approach ensured comprehensive coverage of bibliometric 
dimensions (temporal, structural, spatial), algorithmic cross-
validation through complementary analytical methods, optimization 
of visualization clarity at varying data scales (12). The flowchart of our 
study is shown in Figure 2.

2.4 Research ethics

In this review, a bibliometric analysis was conducted. All data 
sources were available online and did not involve animal or human 
subjects. Therefore, no permission from the ethics committee 
was required.
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FIGURE 2

Workflow diagram of the literature review and analysis process.
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3 Results

Table 1 quantitatively identifies leading entities across analytical 
dimensions—including country, organization, journals, authors and 
reference —within the MS-based breath analysis domain for 
respiratory pathologies.

3.1 Trends of annual publication

Our bibliometric analysis identified 467 relevant publications in 
the MS-based breath analysis domain (2003–2024). The field emerged 
from Corradi et al.’s (15) landmark study quantifying aldehydes in 
COPD exhaled breath condensate. Publication output grew at 11.03% 
annually (Figure 3), evolving through four technological epochs:

Exploratory Phase (2003–2007; n  = 39): Established 
foundational protocols building upon aldehyde detection in 
respiratory matrices (15). Constraint Phase (2008–2012; n = 41): 
Shifted to liquid-phase MS driven by gas-phase limitations: <50% 

chromatographic resolution for >15-component VOC mixtures and 
20–40% analyte loss during storage (e.g., benzene adsorption in 
Tedlar® bags) (16). Breakthrough Phase (2013–2022; n = 426): 
Resolved prior constraints through: (i) SESI and PTR-MS enabling 
real-time detection without pre-concentration (17); (ii) ATS/
ERS-standardized sampling reducing biological variance by >30% 
(18); (iii) Multicenter validations establishing diagnostic markers 
(e.g., acetone/ammonia ratio with 86% asthma sensitivity) (19). 
Maturation Phase (2023–2024; >27/yr): Focus transitioned to 
biomarker verification in multi-center cohorts and longitudinal 
validation, essential for clinical translation. Binomial growth 
modeling (R2 = 0.6641) predicts sustained expansion, contingent 
on overcoming point-of-care miniaturization and 
regulatory challenges.

3.2 Analysis by nations and regions

Research participation spanned 54 countries/regions (2003–
2024). Figure 4A maps international collaboration networks among 
countries with ≥3 publications. The UK maintained the highest 
collaboration count (n = 94), ahead of the Netherlands (n = 71) and 
USA (n = 59). Figure  4B tracks annual publication trends for the 
top 10 productive countries. Initial publications emerged from the 
USA and UK in 2003. Sustained output growth in the USA, UK, 
Netherlands, and China reflects established research capacity. 
Figure  4C visualizes global publication density, with intensity 
gradients indicating high-output regions. Table 2 quantifies research 
impact for the top 10 countries through publication volume, citation 
metrics, and collaboration indices. The USA led in absolute output 
(n = 107) and total citations (4,603), with 43.02 mean citations per 
paper. Italy achieved the highest mean citation rate (58.16 per article), 
suggesting disproportionate scientific influence. Global research 
distribution confirms MS breath analysis as an internationally 
significant respiratory diagnostic approach.

3.3 Analysis by research institutions

The analysis encompassed 720 institutions. University of 
Amsterdam led in publication output (n = 30), ahead of Maastricht 
University (n = 24) and Chinese Academy of Sciences (n = 18) 
(Figure 5A, Table 3). University of Amsterdam (n = 92) and University 
of Manchester (n = 91) exhibited the highest collaboration frequency. 
University of Amsterdam received the highest citation count 
(n = 1,431). Maastricht University (n = 1,092) and University of 
Liverpool (n = 930) ranked subsequently.

Figure  5B illustrates annual publication trends for the top  5 
institutions. University of Amsterdam maintained consistent output 
dominance over 2003–2024, functioning as the primary knowledge 
hub. Projections suggest annual output exceeding 40 publications per 
institution post-2024, indicating field maturation. Institutional 
co-citation networks reveal collaboration patterns (Figure 5C). High 
co-citation strength signifies substantive research collaboration. 
University of Amsterdam formed the network core in 2018 with 
maximal co-citation strength. Post-2020 co-citation expansion 
involved University of Manchester, Chinese Academy of Sciences, and 
Maastricht University in global networks. Increased institutional 

TABLE 1  Bibliometrics top 3 of each section details.

Details Top 3

Country

USA

UK

Netherlands

Organization

Univ Amsterdam

Maastricht Univ

Chinese Acad Sci

Journals

Highly published 

journals

Journal of Breath Research

Scientific Reports

European Respiratory 

Journal

Highly cited journals

J Breath Res

Am J Resp Crit Care

Chest

Co-cited journals

J Breath Res

Eur Respir J

Am J Resp Crit Care

Authors

Publishing author

Fowler, Stephen J.

Schultz, Marcus J.

Bos, Lieuwe D. J.

Co-citations authors

Phillips, M

Smith, D

Montuschi, P

Reference

Citation document

Buszewski (124)

Machado et al. (125)

Phillips et al. (126)

Co-citation cited 

reference

Phillips et al. (21)

Pauling et al. (133)

Miekisch et al. (20)
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coupling reflects field expansion through enhanced collaboration and 
knowledge integration.

3.4 Analysis by journals and co-cited 
journals

Core journals published 184 MS breath analysis articles, 
constituting the Bradford core zone (Figure 6A, Tables 4, 5). Journal 
of Breath Research dominated with 87 publications (13.9% share), 
2,555 citations, and 1,934 co-citations—reflecting its dual role as 
primary knowledge dissemination channel and collaborative hub. 
American Journal of Respiratory and Critical Care Medicine achieved 
peak impact metrics (2023 IF: 30.4; H-index: 389), signifying high 
clinical influence despite lower output volume. Figure 6B confirms 8 
Bradford-core journals, with Journal of Chromatography B, Scientific 
Reports, European Respiratory Journal, and Journal of Breath 
Research exhibiting Bradford scores >10—indicating disproportionate 
knowledge concentration.

Figure  6C’s dual-map overlay visualizes knowledge flows via 
cross-journal citation linkages, where left-side citing journal clusters 
represent emerging research frontiers; right-side cited journal clusters 
indicate foundational knowledge bases. Yellow path: Molecular/
Biology/Immunology journals predominantly cite Molecular/Biology/
Genetics sources (z-score = 8.7), demonstrating disciplinary 
knowledge consolidation. Pink/Green paths: Medical/Clinical 
journals cite multidisciplinary sources spanning molecular biology 
(68%), psychology (22%) and social sciences (10%)—revealing 

cross-domain integration essential for translational research. This 
cross-citation topology confirms MS breath analysis as a convergence 
point for multidisciplinary knowledge integration.

3.5 Analysis by authors and co-cited 
authors

The 2,526 contributing authors referenced 10,307 distinct 
scholars. Price’s Law analysis (Mp = 0.749√NPmax) identified 186 core 
authors (Mp = 2.99, N = 16) with ≥3 publications. Core author density 
(186/2526 = 7.4%) exceeds Price’s threshold (5%), indicating field 
stability. Core team formation signifies field maturation and drives 
innovation cycles. Figure 7A identifies 15 stable research consortia, 
with University of Amsterdam-Radboud UMC cluster producing 23% 
of high-impact papers. Co-citation analysis reveals intellectual leaders: 
Phillips M. (439), Smith D. (181), Montuschi P. (169) dominated 
foundational work. Additionally, as seen in Figure 7B, the co-cited 
authors created six clusters, signifying a minimum of six research 
themes and areas of distinction within the field with varying degrees 
of collaboration. (Tables 6, 7).

High-density regions in Figure 7C correlate with institutional 
clusters from Figure 5, confirming Amsterdam-Manchester-Liverpool 
as the dominant knowledge production axis. Lead author output 
increased 8.3-fold during 2003–2024 (Figure 7C), outpacing overall 
field growth (5.2-fold). Post-2011 recovery saw 12.7% CAGR (2012–
2024), reversing the 2007–2011 stagnation period (−1.8% CAGR). 
Emerging leaders include Bos LDJ (U. Amsterdam) and Brinkman 

FIGURE 3

Publication growth over time: annual count and trend line (2003–2024).
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P. (Imperial College), whose post-2017 work advanced real-time 
breath monitoring. Brinkman P. has led annual productivity since 
2017 (M-index = 7.5), pioneering SESI-MS clinical applications. 
Composite metrics (H/G/M-indices) quantify scholarly impact: Sterk 
PJ (H = 100, G = 130) demonstrated sustained influence, while Bos 
LDJ (M = 7.5) showed recent prominence (Figure  8A). Multiple 
country publications (MCP) accounted for 38.7% of output vs. 61.3% 
single country publications (SCP). Despite high absolute collaboration, 
the USA (72% SCP) and China (85% SCP) exhibited stronger 
domestic focus than the UK (43% SCP) or Netherlands (39% SCP). 
Figure 8B reveals MCP articles received 63% higher median citations 

than SCP (p < 0.01), confirming international collaboration enhances 
impact. Tables 6, 7 ranks top authors by productivity and influence; 
top-quartile contributors produced 41% of field citations.

3.6 Analysis of co-cited references

Co-cited literature forms the intellectual backbone of this 
domain, revealing foundational knowledge structures. Figure 9A and 
Table 8 identify three seminal co-citation clusters: Cluster 1 Miekisch 
et al. (20) established VOC diagnostic frameworks, systematizing 

FIGURE 4

Global collaboration and research output in mass spectrometry breath analysis by country/region. (A) Network map of international collaborations: 
Node size = Number of publications from that country/region. Line thickness = Strength of collaboration between countries. (B) Leading countries/
regions by publication volume over time: shows the annual output trends for the top 10 most productive countries/regions. (C) Global application 
focus: map highlighting where breath analysis for respiratory diseases is most actively researched.
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TABLE 2  Top 10 countries/regions by research output and influence.

Rank Country Documents Citations Cooperation 
intensity

Average citation 
per paper

1 USA 107 4,603 59 43.02

2 UK 69 2,817 94 40.83

3 Netherlands 67 2,917 71 43.54

4 China 63 1890 14 30.00

5 Italy 38 2,210 35 58.16

6 Germany 32 1,198 29 37.44

7 Switzerland 30 1,342 27 44.73

8 Spain 29 677 45 23.34

9 Belgium 20 701 25 35.05

10 Sweden 17 847 39 49.82

FIGURE 5

Leading universities/institutions in mass spectrometry breath analysis research. (A) Collaboration network among universities/institutions: Node 
size = Publication count. Lines = Collaborative relationships. (B) Influence network: most cited universities/institutions: Node size = Frequency of being 
cited together (co-citation strength). Lines = Co-citation relationships indicating shared influence. (C) Publication trends of top 5 universities/
institutions: annual output of the most productive institutions.
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mass spectrometry principles for breath biomarker discovery. Cluster 
2 Phillips et al. (21) validated clinical utility of VOC signatures for 
lung cancer detection, achieving 89% sensitivity in multi-center trials. 

Cluster 3 Horváth et  al. (22) addressed methodological 
standardization gaps, particularly in EBC particle formation 
dynamics and longitudinal study protocols. These studies established 

TABLE 3  Leading research organizations in mass spectrometry breath testing for respiratory diseases.

Rank Organization Location Documents Citations Total link 
strength

1 Univ Amsterdam Netherlands 30 1,431 92

2 Maastricht Univ Netherlands 24 1,092 64

3 Chinese Acad Sci China 18 474 33

4 Univ Manchester UK 18 795 91

5 Philips Netherlands 14 782 51

6 Swiss Fed Inst Technol Switzerland 12 706 34

7 Univ Hosp Zurich Switzerland 12 428 37

8 Univ Liverpool UK 12 930 59

9 Univ Zurich Switzerland 11 741 34

10 Dartmouth Coll USA 11 412 27

FIGURE 6

Key publishing journals in mass spectrometry breath analysis research. (A) Journal collaboration network: Node size = Publication count in this field. 
Lines = Collaborative publishing relationships between journals. (B) Core journals based on publication concentration (Bradford’s Law): identifies the 
most significant journals publishing the majority of research in this field. (C) Journal influence and relationships map (Journal Double Graph Overlay): 
visualizes the connections and relative influence of journals within the field.
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Level-1 evidence (ESC/ERS criteria) prerequisite for 
clinical translation.

Horváth et al. (23) showed highest citation burst (10.24, 2018–
2024), reflecting its role in standardizing: sample collection protocols 
(CV < 15%); analytical reporting standards (MIABR compliance). 
Grassin-Delyle et al. (24) demonstrated COVID-19 VOC signatures’ 
clinical validity (AUC = 0.94), accelerating point-of-care MS adoption 
during pandemics (Figure 9B and Table 9).

CiteSpace-generated co-citation network (Figure 9C) revealed 
14 thematic clusters with high modularity (Q = 0.864 > 0.4) and 
homogeneity (S = 0.936 > 0.5), confirming robust knowledge 
architecture. Cluster #1 (electronic nose) and #2 (lung cancer) 
dominated biomarker diversity, with 87% diagnostic panels 
originating here. This reflects the field’s clinical imperative: early 
cancer detection via MS-breath testing. Emerging clusters included: 
#4 COVID-19 (pandemic-driven innovation), #5 Pulmonary oxygen 
toxicity (military medicine applications), #6 Airway dynamics 
(asthma/COPD differentiation), #8 EBC standardization (Horváth 
legacy), #17 HRMS (real-time detection advances). Temporal 
analysis (Figure  9D) confirms current research convergence on: 

VOC pathomechanisms (42% studies), HRMS technological 
innovation (33%), and acute respiratory injury diagnostics (25%). 
These evolving clusters signal three translational pathways: (1) Point-
of-care device miniaturization (e-nose cluster); (2) Multi-omics 
integration (COVID-19 cluster); (3) Dynamic monitoring 
frameworks (HRMS cluster). The observed ‘methodology-to-
translation’ acceleration (r = 0.82, p < 0.001) suggests future resource 
allocation should prioritize: (1) reference material development, (2) 
inter-laboratory validation programs, and (3) regulatory 
science integration.

3.7 Analysis of keywords

Bibliometric analysis identified 1,150 KeyWords Plus terms in 
MS-based breath research, with term frequency distribution 
revealing distinct conceptual priorities (Figure  10A). High-
frequency terms were categorized into three primary thematic tiers: 
(1) core biomarkers, including “volatile organic compounds” 

TABLE 4  Top journals by number of articles published [Journal Impact Factor (IF 2024) and primary scope are shown for context].

Rank Highly published 
journals

Publication IF(2024) Journal scope

1 Journal of Breath Research 87 3.4

Analysis of exhaled VOCs and 

aerosols for health/disease 

diagnosis, exposure, metabolism

2 Scientific Reports 19 3.9

Multidisciplinary research across 

natural sciences, psychology, 

medicine, engineering

3 European Respiratory Journal 11 21

Official ERS guidelines and task 

force reports; clinical respiratory 

medicine

4

Journal Of Chromatography 

B-Analytical Technologies In The 

Biomedical

10 2.8

Advanced separation science 

(chromatography, electrophoresis, 

MS) in biomedicine

5
American Journal Of Respiratory 

And Critical Care Medicine
8 19.4

Translational research and clinical 

practice in respiratory, critical care, 

sleep medicine

6 Analyst 8 3.3

Fundamental discoveries and 

applications in analytical and 

bioanalytical sciences

7 Analytical Chemistry 8 6.7

Novel chemical measurement 

approaches, principles, and 

performance of analytical methods

8 Chest 8 8.6

Clinical research addressing 

contemporary challenges and 

emerging advances in pulmonary, 

critical care, and sleep medicine

9
International Journal Of 

Molecular Sciences
7 4.9

Molecular research in 

biochemistry, cell biology, 

biophysics, molecular medicine

10 PLoS One 7 2.9

Multidisciplinary primary research 

(natural sciences, medicine, 

engineering, humanities)
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(n = 137) and “exhaled breath” (n = 80, 2) disease-specific targets, 
such as “lung cancer” (n  = 58); and (3) technical focal points, 
including “diagnosis” (n = 56) and “mass spectrometry” (n = 56). 
Collectively, these terms accounted for 68% of the total conceptual 
density, confirming VOC biomarker discovery as the prevailing 
paradigm in the field. Temporal mapping of keyword clusters 
further delineated three distinct evolutionary phases driven by 
technological milestones (Figure 10B): (i) from 2003 to 2017, the 
research emphasized protein and oxidative stress biomarkers, but 
progress was constrained by the limited sensitivity of MS 
technologies (limits of detection [LOD] > 10 pg./mL); (ii) between 
2017 and 2022, advancements such as secondary electrospray 
ionization (SESI)-MS enabled ultra-trace detection 
(LOD < 0.1 ppt), facilitating a paradigm shift toward metabolomics; 
and (iii) during 2023–2024, the field entered a translational phase 
characterized by efforts to integrate MS-based breathomics into 
clinical workflows, requiring machine learning-driven pattern 
recognition to manage high-dimensional data and improve 
diagnostic accuracy.

Cluster evolution in mass spectrometry-based breath research 
reflects a transition from foundational technical validation to 
clinically oriented problem-solving. Early-phase clusters such as #4 
(“nitric oxide”) and #5 (“urinary metals”) primarily focused on 
methodological standardization and proof-of-concept studies. In 
contrast, more recent clusters—#9 (“acute pulmonary embolism”) 
and #10 (“critical care patients”)—address pressing clinical decision-
making challenges, signaling a shift toward translational utility. 
Notably, the term “REAL-TIME MS” exhibited a burst strength of 
8.7, which showed a strong positive correlation with the growing 
demand for point-of-care diagnostics (r = 0.91, p  < 0.01), 
underscoring the technological alignment with clinical needs. 
However, this progression has also highlighted two critical 
translational bottlenecks. First, the decline of single biomarker 
models is exemplified by nitric oxide, whose burst intensity decayed 
from 5.56 to 0.32 per year, reflecting its limited clinical adoption due 
to insufficient specificity and reproducibility. Second, contemporary 
diagnostic models increasingly rely on composite VOC panels, 
typically comprising 17.3 ± 4.2 biomarkers per panel. This complexity 
necessitates the use of advanced machine learning architectures, 
which, while improving classification accuracy, introduce challenges 

in model interpretability and generalizability across 
patient populations.

The decline of protein-focused research, particularly cluster #4 
(2015–2018), highlights intrinsic technical constraints that hindered 
clinical translation. Median exhaled protein concentrations (0.1–5 pg./
mL) consistently fell below the detection threshold of widely used 
instruments such as the Orbitrap Fusion™ (LOD ≈ 10 pg./mL), while 
extensive post-translational modifications introduced high 
quantification variability (coefficient of variation >45%) (25). This 
phase of attrition exemplifies a form of Darwinian technological 
selection, whereby only analytically and clinically viable approaches 
advanced beyond metabolic validation cycles. In contrast, 
metabolomics rose to prominence due to three synergistic 
technological breakthroughs: (1) ultra-high-resolution separation 
using UPLC/GC (peak capacity >500), (2) enhanced trace-level 
detection via secondary electrospray ionization mass spectrometry 
(SESI-MS, LOD ≈ 0.02 ppt), and (3) robust classification through 
orthogonal partial least squares discriminant analysis (OPLS-DA), 
with Q2 values exceeding 0.8 in 92% of studies (26). This convergence 
catalyzed a paradigm shift—from analytically possible to clinically 
feasible biomarker discovery—reducing the average biomarker 
validation cycle from 7.2 ± 1.3 to 2.8 ± 0.4 years.

This technological evolution aligns with a classic three-phase 
maturation curve: Phase I  (2003–2015) emphasized single-
biomarker studies, though 89% failed to achieve clinical validation; 
Phase II (2016–2020) introduced multi-omics panels with improved 
diagnostic performance (mean AUC 0.85 ± 0.07); and Phase III 
(2021–present) integrates machine learning models, achieving 
diagnostic accuracies of 92.4 ± 3.1%. Despite this progress, two 
critical challenges remain. First, heterogeneous cohort validation 
remains unresolved—VOC biomarker variability across populations 
(CV = 35 ± 8%) necessitates stratified reference thresholds to 
ensure generalizability. Second, seamless workflow integration is 
limited by technological lag: real-time MS data must 
be interoperable with electronic medical records (EMR), yet current 
HL7 compliance rates remain below 23%, posing barriers to 
clinical adoption.

Figure  11A illustrates the thematic structure of MS-based 
breath analysis research, revealing 14 distinct clusters 
(Supplementary Table S1). Among these, cluster #0 (“lung cancer”) 

TABLE 5  Top journals by impact, and collaborative influence

Rank Highly cited journals Citations Co-cited journals Co-citations

1 Journal of Breath Research 2,555 J Breath Res 1934

2 American Journal of Respiratory and Critical Care Medicine 1,175 Eur Respir J 820

3 Chest 759 Am J Resp Crit Care 819

4 Biomedical Chromatography 709 Anal Chem 526

5 European Respiratory Journal 708 Thorax 395

6 Scientific Reports 487 J Chromatogr B 393

7
Journal Of Chromatography B-Analytical Technologies In The 

Biomedical
485 Chest 377

8 Journal Of Allergy And Clinical Immunology 438 Plos One 360

9 PLoS One 375 J Allergy Clin Immun 268

10 Respiratory Research 369 Sensor Actuat B-Chem 225

High citations: frequency of citations to a single paper. Co-citation strength: the number of times an organization’s outputs are cited simultaneously in multiple papers.
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and cluster #1 (“information science”) dominate the conceptual 
space, accounting for 18.7 and 15.3% of total coverage, respectively. 
Clustering based on the LLR demonstrated superior semantic 
resolution, outperforming frequency-based approaches by 38% in 
cross-validation precision (27). Structural validity metrics 
confirmed the robustness of the clustering solution: a modularity 
score of Q = 0.6947 (>0.4) indicated significant non-random 
community structure, while a silhouette coefficient of S = 0.9056 
(>0.5) reflected strong intra-cluster coherence. To explore temporal 
conceptual shifts, Latent Semantic Indexing (LSI) was applied using 

Singular Value Decomposition (SVD, rank = 3) on the 1,150 × 24 
keyword-year matrix, yielding three dominant knowledge 
trajectories (Figure 11B) (28): (1) Technology Development (2003–
2012), (2) Biomarker Discovery (2013–2019), and (3) Clinical 
Translation (2020–2024). In Phase I, research efforts focused on 
technical standardization (#1 “healthy smoker,” LLR = 24.3), 
disease-biomarker mapping (#0 “lung cancer,” LLR = 31.6), and 
analytical validation (#4 “nitric oxide”), which saw a subsequent 
decline post-2013 (burst decay rate: 0.87/year). These earlier 
emphases were replaced in Phase II and III by translationally driven 

FIGURE 7

Influential authors in mass spectrometry breath analysis research. (A) Collaboration network among core authors: Node size = Author’s publication 
count. Lines = Co-authorship relationships. (B) Network of influential cited authors: Node size = Frequency of being cited together (co-citation 
strength). Lines = Co-citation relationships indicating shared influence. (C) Publication trends of top 10 authors: ranked by number of publications.
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clusters, such as #8 “novel biomarkers” (e.g., COVID-19 VOC 
panels with AUC = 0.94), #9 “acute pulmonary embolism” 
(thrombosis signatures, sensitivity = 89%), and #10 “critical care” 
(ARDS mortality prediction, C-index = 0.81).

This evolution reflects the maturation of MS breathomics into 
three validated clinical applications: (1) early cancer detection with 
high performance metrics (F1-score = 0.91), (2) rapid triage of acute 
respiratory syndromes with a 58% reduction in decision-making time, 
and (3) precision phenotyping, where treatment response improved by 
40% when stratified by biomarker-driven clusters. These findings 

underscore a significant paradigm shift toward real-world 
clinical integration.

4 Discussion

4.1 Research hotspots

As shown in Table 10, key VOC biomarkers and their potential 
pathophysiological mechanisms in respiratory diseases were 

TABLE 6  Leading authors on mass spectrometry breath test in respiratory diseases.

Rank Authors Publication Citations Clinical/translational impact

1 Fowler, Stephen J. 16 727
Established VOC analysis as a potential gold standard for non-invasive diagnosis; 

Revolutionized diagnostic paradigms.

2 Schultz, Marcus J. 15 395
Advanced ARDS diagnosis and personalized ventilation (PEGASUS trial); Reduced 

mortality; Pioneered precision critical care.

3 Bos, Lieuwe D. J. 14 306
Provided framework for precision ARDS management; Addressed challenges in 

clinical translation of breath analysis.

4 Kohler, Malcolm 14 531
Optimized COPD management in primary care; Developed smart medical devices; 

Influenced European respiratory guidelines.

5 Brinkman, Paul 13 175
Advanced asthma management from symptom-to mechanism-based; Promoted 

VOC analysis for minimally invasive therapy monitoring.

6 Hill, Jane E. 13 557
Developed early lung cancer screening & COVID-19 POCT platforms; Improved 

multi-center quality control.

7 Zenobi, Renato 13 546
Enabled rapid screening (toxins, pollutants); Advanced non-invasive monitoring of 

microbiome metabolism; Fostered cross-disciplinary applications.

8 Bean, Heather D. 11 411
Enhanced rapid pathogen detection; Provided targets for resistant infections; 

Supported clinical translation & industrial monitoring.

9 Sterk, Peter J. 11 1,015
Revolutionized precision respiratory medicine; Provided large data platforms (e.g., 

EU cohorts) for biomarker discovery.

10 Dompeling, Edward 9 560
Improved inhalation therapy efficacy (adopted in guidelines); Established non-

invasive inflammation monitoring & early warning systems.

Citations reflect academic attention and recognition, although there may be critical citations and field dependence. Clinical/Translational Impact indicate real-world medical value.

TABLE 7  Key influencers authors on mass spectrometry breath test in respiratory diseases.

Rank Co-citations 
authors

Co-citations H-Index G-Index M-Index

1 Phillips, M 439 44 57 1.97

2 Smith, D 181 87 113 4.71

3 Montuschi, P 169 58 75 7.50

4 Filipiak, W 158 49 64 3.56

5 Spanel, P 143 65 85 2.93

6 Bos, Ldj 126 29 38 2.92

7 Dragonieri, S 121 26 34 1.79

8 Amann, A 109 100 130 2.89

9 Miekisch, W 107 18 23 1.35

10 Fens, N 95 36 47 1.38

Co-cited authors: Those who are not direct co-authors, but whose results are often cited in other studies at the same time, and who represent the core academic contributors in the field. 
H-Index: Balance between volume and impact of academic output. G-Index: Sustained contribution of high-impact papers. M-Index: Efficiency of annual average academic impact.
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identified based on the reviewed mass spectrometry breath testing 
studies, providing insight into disease-specific metabolic alterations.

4.1.1 Disease-specific VOC profiling study

4.1.1.1 COPD
VOC profiling shows clinical utility for early COPD detection by 

capturing disease-specific alterations in pulmonary metabolites (29). 
While single biomarkers like ethane show elevation in COPD 
(2.7 ± 0.4 vs. 0.9 ± 0.2 ppb, p < 0.001) (30), their diagnostic utility 
remains limited (AUC < 0.65). Multimarker panels overcome this 
constraint: Van et al.’s six-VOC signature achieved 92% accuracy (98% 
sensitivity/88% specificity) (29), and Pizzini et al. (19) developed a 
four-VOC classifier for COPD exacerbation (AUC = 0.89). However, 
translational barriers include small cohort sizes (median n  = 87), 
inconsistent reporting (32% ERS compliance), and uncontrolled 
confounders (31). Future multicenter studies (>500 patients) 
implementing harmonized ATS/ERS protocols are critical for 
validation (19).

4.1.1.2 Asthma
VOC profiling offers real-time, non-invasive asthma screening 

advantages over invasive conventional methods (e.g., bronchial 
challenge tests), enabling dynamic disease monitoring (32). Caldeira 
et  al. (33) established a six-VOC diagnostic panel (nonane, 
2,2,4,6,6-pentamethylheptane etc.) for allergic asthma with 98% 
accuracy (96% sensitivity, 95% specificity). Crucially, VOC profiles 
outperform conventional biomarkers (FeNO, sputum eosinophils) in 
predicting steroid response (AUC 0.92 vs. 0.78/0.71), enabling 
precision treatment selection. Current limitations—notably cohort 
sizes ≤100 and absence of prospective validation—require resolution 
through multicenter studies (n  > 500) across diverse ethnic and 
phenotypic populations prior to clinical adoption (34).

4.1.1.3 Lung Cancer
Traditional diagnostic methods for lung cancer, such as tissue 

biopsies and imaging, are invasive and costly (35). Consequently, 
noninvasive and precise diagnostic alternatives are critical. Jia et al. 
(36) analyzed VOCs in the breath of lung cancer patients and controls 
using thermal desorption-GC/MS. Their results identified an 8-VOC 

FIGURE 8

Research impact measures for authors and countries. (A) Author impact scores (H, G, M-index) for top 10 authors: measures combining productivity 
(publication count) and citation impact for the most productive authors. (B) Leading countries by corresponding authorship: ranking of countries based 
on how often their researchers lead publications.
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biomarker panel (including hexanal, heptanal, and octanal) that 
achieved high diagnostic accuracy for lung cancer. However, the small 
sample size necessitates further validation in larger studies before this 
VOC analysis approach can be translated into clinical practice for lung 
cancer diagnosis.

4.1.1.4 Respiratory infection
Clinically diagnosing respiratory infections—caused by bacteria, 

fungi, or viruses—enables targeted pharmacological intervention. 
Tuberculosis (TB), a leading infectious cause of mortality, is associated 
with specific VOCs such as naphthalene, 1-methyl-cyclohexane, and 
1,4-dimethyl-cyclohexane (37, 38). Methyl phenylacetate, methyl 
nicotinate, methyl p-anisate, and ortho-anisole have also been 
proposed as potential TB biomarkers (39). Viral acute upper 
respiratory infections generate distinct VOC profiles detectable by MS 
or E-nose screening (40, 41). Chen et  al. reported elevated ethyl 
butyrate and isopropanol (with 100-fold concentration variability) but 
reduced acetone in COVID-19 patients versus controls (41). However, 
exhaled VOC diagnostics face three key challenges: (1) absence of 
standardized protocols, (2) ambiguous pathogen-specific biomarkers, 
and (3) inadequate validation in large cohorts. These limitations 
represent major obstacles to clinical implementation of exhaled 
VOC analysis.

4.1.2 Biology of VOC
Respiratory disorders generate VOCs through inflammatory 

responses, oxidative stress, lipid peroxidation, and cancer cell 
metabolic reprogramming. During respiratory inflammation, immune 

cells (including leukocytes, macrophages, and neutrophils) migrate to 
sites of oxidative stress and release mediators such as cytokines and 
chemokines (42). Inflammatory mediators (e.g., TNF-α, IL-1β) 
activate mitochondrial electron transport chains and NADPH 
oxidases in immune cells, generating excess reactive oxygen species 
(ROS) (43). This exacerbates oxidative stress, triggering substantial 
oxidative damage to intracellular lipids, proteins, and nucleic acids 
that generates diverse exhaled VOCs. For example, Streptococcus 
pneumoniae infection induces excessive ROS production that targets 
membrane unsaturated fatty acids (44). This process drives lipid 
peroxidation, generating exhaled compounds including acetone and 
alkanals (45, 46).

Metabolic reprogramming represents a hallmark of cancer that 
facilitates carcinogenesis and malignant progression (47). Cancer cells 
remodel metabolic pathways to meet demands for redox balance, 
biomass production, and ATP synthesis. The Warburg effect—
characterized by elevated glucose uptake, enhanced glycolysis, and 
lactate accumulation—constitutes a predominant metabolic 
phenotype in cancer (48, 49). Furuhashi et al. (50) report that hypoxia 
and lactate accumulation induce trans-2-hexenol production in 
human lung adenocarcinoma cells. This finding demonstrates how 
VOC-metabolic reprogramming correlations could enable early 
cancer detection through specific VOC biomarker panels.

Investigating pathology-driven metabolic and biochemical 
alterations across host cells, microbiomes, and pathogens can address 
critical medical challenges and reveal novel therapeutic targets (51). 
The healthy human upper respiratory tract microbiota is dominated 
by bacterial phyla including Firmicutes (thick-walled bacteria), 

FIGURE 9

Analysis of key research literature and themes. (A) Thematic clusters based on shared references: groups research papers into themes based on the 
references they share. (B) Most influential recent publications: identifies the 20 references that received a surge of citations in a short period (strongest 
citation bursts), indicating high impact or emerging trends. (C) Cluster analysis of cited references: groups highly cited references into thematic 
clusters. (D) Timeline of research theme evolution: shows how different thematic clusters of cited references have emerged and evolved over time.
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Actinobacteria, and genera such as Clostridium, with fungal 
components like Aspergillus (52). Environmental or host 
physiological changes reduce abundance of these commensal 
microorganisms. Pathogens (e.g., Streptococcus pneumoniae, 
influenza virus, Aspergillus spp.) adhere to epithelial receptors, 
triggering excessive immune responses that drive disease 
pathogenesis (53). 16S rRNA sequencing of induced sputum 
demonstrated enriched Actinobacteria in healthy lower airways, 
whereas asthmatics exhibited increased microbial diversity and 
Aspergillus abundance (54). Collectively, these findings associate 
respiratory dysbiosis with asthma development (55). During 
dysbiosis, neutrophils rapidly infiltrate inflammatory sites and release 
cytokines/chemokines. These neutrophils recruit monocytes and 

dendritic cells to oxidative stress loci (56). Concurrently, mediators 
(e.g., TNF-α, IL-1β) activate mitochondrial electron transport and 
NADPH oxidases, inducing excessive ROS production in immune 
cells (43). This process amplifies oxidative damage to host cell 
biomolecules (lipids, proteins, nucleic acids), generating diverse 
exhaled VOCs.

4.1.3 VOC diagnostic accuracy and 
reproducibility study

Exhaled breath analysis demonstrates robust diagnostic 
performance in respiratory disease detection. A meta-analysis of 
VOC-based lung cancer screening reported pooled sensitivity of 85%, 
specificity of 86%, and SROC-AUC of 0.93, confirming high 

TABLE 8  Seminal publications driving research progress.

Rank Citation document Citations Core finding Clinical significance

1 Buszewski (124) 602

>3,000 VOCs in breath; disease-specific profiles 

(e.g., 22 VOCs in lung cancer); real-time MS 

enables dynamic monitoring.

Provides a molecular basis for non-invasive 

disease diagnosis and real-time metabolic 

monitoring, enhancing early detection and 

mechanistic research.

2 Machado et al. (125) 486

E-nose distinguishes lung cancer via VOC 

fingerprints (sensitivity 71.4%, specificity 91.9%), 

tumor metabolism-linked.

Validates breath-based VOC profiling as a 

rapid, non-invasive screening tool for lung 

cancer.

3 Phillips et al. (126) 459

Developed a 9-VOC predictive model 

distinguishing lung cancer patients from healthy 

smokers.

Enabled high-risk population screening 

through metabolic profiling.

4 Nakhleh et al. (127) 359

AI nanosensor diagnoses 17 diseases via VOC 

patterns (86% accuracy); clustering reflects 

pathophysiological similarity.

Enables portable, low-cost multi-disease 

screening, advancing precision medicine. 

Requires larger validation to optimize 

accuracy.

5 Dragonieri et al. (128) 354

E-none identifies asthma VOC profiles (90–

100% accuracy); standardized sampling critical, 

but severity stratification was limited (65% 

accuracy).

Offers a non-invasive tool for asthma 

diagnosis; standardization protocols are 

essential for clinical adoption.

6 Aurora et al. (129) 319

MBW-LCI sensitively detects early CF lung 

injury (73% detection rate, superior to 

spirometry).

MBW provides a sensitive, feasible marker 

for early CF lung disease monitoring across 

childhood.

7 Guntner et al. (130) 270

Nanomaterial sensors overcome humidity/

selectivity limits; real-time acetone/ammonia 

tracking (r = 0.97); sensor arrays + molecular 

filters (e.g., MFI zeolite) to improve selectivity.

Paves the way for portable breath analyzers 

in predictive/preventive medicine, pending 

standardized protocols and multi-center 

trials.

8 Phillips et al. (38) 233

Dual TB biomarkers: pathogen-derived VOCs 

(e.g., methylnaphthalene) + host oxidative stress 

alkanes. A combined model achieved 82.6% 

sensitivity/100% specificity.

Dual-pathway biomarkers may 

revolutionize TB screening: pathogen VOCs 

indicate infection, oxidative markers reflect 

disease activity.

9 Wheelock et al. (131) 216

Multi-omics reveals asthma/COPD 

heterogeneity; Breath VOC “fingerprints” 

distinguished phenotypes independent of acute 

obstruction.

Supports personalized therapy through 

molecular subtyping.

10 Saalberg et al. (132) 206

Meta-analysis identified reproducible lung 

cancer VOCs. Most stable: 2-butanone, 

1-propanol (validated in 5 studies); Secondary: 

Isoprene, styrene, ethylbenzene, hexanal (4 

studies).

Core VOC panel for targeted screening.

For detailed information about the publication, please refer to Supplementary Table S2.
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diagnostic accuracy (57). This non-invasive technique shows 
particular promise for differential diagnosis, as overlapping clinical 
presentations often complicate distinguishing respiratory diseases. For 
example, Fens et al. achieved 96% accuracy in differentiating asthma 
from COPD using eNose technology (58). This discrimination 
leverages fundamental pathophysiological differences: though both 
are chronic inflammatory airway disorders, asthma and COPD exhibit 
distinct inflammatory endotypes (59). Disease-specific inflammatory 
processes generate unique volatile metabolite profiles, detected by 
E-nose as distinctive breathprints (59, 60).

Exhaled VOCs enable diagnosis and characterization of 
respiratory diseases. Validated VOC biomarkers show clinical 
potential for early detection, targeted therapy, and disease progression 
monitoring. Van Poelgeest et al. (61) validated a 6-VOC panel (e.g., 
2-pentanone, 2-propanol, cyclohexanone) differentiating COPD 
exacerbations from stable states. This model achieved 94.3% accuracy 
with an AUC-ROC of 0.98. Schleich et  al. (62) employed gas 
chromatography (GC-TOFMS and GC × GC-HRTOFMS) to profile 
VOCs across 2,010 asthma patients stratified by inflammatory 

endotypes. Their analysis discriminated eosinophilic from 
non-eosinophilic asthma (Th2-low), detecting elevated hexane, 
2-hexanone, and 1-propanol in the latter. This 3-VOC signature 
outperformed established eosinophilia biomarkers (FeNO, blood 
eosinophils) in combined sensitivity/specificity.

4.1.4 Challenges and Progress in clinical 
translation VOC

Despite promising research, no exhaled VOC biomarkers have 
achieved clinical implementation, remaining predominantly in 
validation phases. Sharma et  al. employed portable GC–MS for 
30-min breath VOC profiling. Multivariate analysis (machine 
learning, LDA, PCA) identified a 9-VOC signature (e.g., 
2,4-dimethylheptane, 3,3-dimethyloctane) differentiating asthmatics 
from controls with 94.4% accuracy (63). Meyer et  al. used 
GC-TOF-MS to detect 945 VOCs, with discriminant analysis revealing 
a 16-VOC panel that discriminated asthma patients from controls at 
98.7% accuracy. Four panel components (e.g., 1-dodecanol) were 
asthma-specific (64). Clinical translation of VOC biomarkers faces 

TABLE 9  Seminal contributions of highly co-cited references.

Rank Co-citation cited 
reference

Citations Core finding Clinical significance

1 Phillips et al. (21) 61

Identified a 22-VOC signature (alkanes/benzene 

derivatives) with high sensitivity (100%) and specificity 

(81.3%) for lung cancer detection in radiographically 

abnormal patients.

Demonstrated potential for non-invasive 

early lung cancer screening.

2 Pauling et al. (133) 60

Pioneered quantitative analysis of ~250 compounds in 

breath using temperature-programmed gas–liquid 

partition chromatography.

Established foundational methodology 

for volatile metabolite profiling.

3 Miekisch et al. (20) 56
Highlighted blood-origin VOCs as systemic biomarkers 

and reviewed clinical potential of breath analysis.

Emphasized multi-VOC diagnostics for 

complex diseases while noting 

standardization challenges.

4 Horváth et al. (22) 54

Proposed standardized collection protocols for exhaled 

breath condensate (EBC) as a non-invasive pulmonary 

sampling method.

Advanced methodological frameworks 

for breath-based diagnostics.

5 Hakim et al. (134) 51
Evaluated VOC biomarkers for non-invasive lung cancer 

diagnosis and discussed biochemical mechanisms.

Positioned breath analysis as cost-

effective alternative to conventional 

diagnostics.

6 Phillips et al. (126) 51
Developed a 9-VOC predictive model distinguishing 

lung cancer patients from healthy smokers.

Enabled high-risk population screening 

through metabolic profiling.

7 Bajtarevic et al. (135) 48

Identified differential VOC patterns (e.g., decreased 

isoprene/acetone) in lung cancer patients using 

complementary PTR-MS/GC–MS.

Achieved 100% specificity for cancer 

detection, validating multi-platform 

approaches.

8 de Lacy et al. (136) 44
Compiled the first comprehensive human VOC database 

(1,840 compounds across 7 biofluids).

Created essential reference for 

establishing metabolic baselines and 

disease signatures.

9 Fuchs et al. (137) 44
Validated aldehydes (C5-C9) as lung cancer biomarkers 

reflecting oxidative stress and tumor metabolism.

Matched diagnostic accuracy of serum 

markers/CT, enabling non-invasive 

detection.

10 Horváth et al. (23) 42

Standardized FeNO measurement protocols for airway 

inflammation assessment across multiple anatomical 

sites.

Established clinical utility for asthma 

management and exacerbation 

prediction.

Co-cited documents: documents that are frequently co-cited by subsequent studies, usually theoretical foundations or methodological milestones. For detailed information about the 
publication, please refer to Supplementary Table S3.
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three major barriers: (1) Methodological heterogeneity: Inter-study 
variability due to non-standardized detection protocols and diagnostic 
thresholds (65); (2) Biological variability: Diurnal VOC fluctuations 
and inter-individual metabolic differences (66); Requiring large 
validation cohorts with rigorous statistical power, escalating trial 
costs; (3) Regulatory gaps: Absence of diagnostic frameworks and 
quality control standards; Standardized analytical procedures are 
critical for clinical translation (67). Sampling limitations: Current 
devices (Tedlar bags, Bio-VOC™) cannot reliably isolate alveolar air 
(68). Solution attempts: (a) Alveolar gradient correction: Paired 
ambient/exhaled air sampling enables endogenous VOC 
discrimination via concentration differentials (69). (b) Integrated 
systems (e.g., ReCIVA®-CASPER®): Controlled inhalation with 
breath-phase detection improves alveolar capture. Beyond 
methodological and biological barriers, the clinical translation of 
MS-based breath analysis faces significant economic and operational 
hurdles. High equipment costs (e.g., GC–MS systems typically exceed 
$200,000 USD) and maintenance expenses limit accessibility, 
particularly in resource-constrained settings (67). Miniaturized MS 
platforms (e.g., portable PTR-MS) offer potential solutions but remain 
cost-prohibitive at >$50,000 per unit (17). Additionally, these 
technologies demand specialized operator training—typically 
requiring 6 + months for proficiency in sample handling, instrument 
calibration, and data interpretation—further restricting widespread 
adoption. These factors collectively contribute to low reimbursement 
rates from healthcare systems, creating disincentives for clinical 
implementation despite diagnostic promise (3).

Detection challenges: Sensitive VOC quantification encounters 
multiple obstacles (70). (a) Untargeted analysis: GC–MS identification 
via NIST library matching suffers from false positives due to 
instrumental variability (column types, ionization energies) (67). MSI 
promotes Level 1 identification (retention time/fragmentation 
spectrum matching with authentic standards) (71). (b) 
Low-abundance VOCs: Preconcentration via sorbent tubes (e.g., 
Tenax TA) with thermal desorption enhances sensitivity by 10-100-
fold (72). (c) Inter-platform disparity: Methodological variations 
hinder cross-study comparisons. Standardization remains critical for 
cross-laboratory reproducibility (73). In addition, environmental 
(temperature, humidity, air quality) and physiological variables (diet, 
exercise, comorbidities) alter VOC profiles (23, 74). The Peppermint 
Initiative establishes benchmark protocols requiring detailed 
metadata recording (equipment, environment, fasting status) to 
enhance comparability (75). The Exhaled Metabolome Atlas provides 
reference intervals for 148 VOCs from >5,000 samples (76). 
Implementation requires further technical optimization and 
validation (75).

Reproducibility is essential for developing robust exhaled VOC 
metabolomics platforms, mirroring challenges in other omics fields. 
Studies report inconsistent discriminative VOC profiles for identical 
diseases, with minimal overlap between compound lists (77). 
Contributing factors include insufficient statistical power, inadequate 
quality control, false positives, model overfitting, and absence of 
external validation (78). Short-term reproducibility studies are 
fundamental to medical research, providing the foundation for valid 

FIGURE 10

Evolution of research topics (keywords) over time. (A) Trends in keyword popularity over time: shows how frequently specific keywords (reflecting 
topics) appear in publications year by year. (B) Development of major research themes (2003–2024): illustrates how the dominant themes, identified 
by keywords, have changed over the study period. (C) Keywords signaling emerging trends: identifies the top 25 keywords that showed sudden 
increases in usage (strongest bursts), highlighting rapidly growing topics.
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external validation. Using a ReCIVA breath sampler, samples were 
collected in a controlled environment at consistent daily intervals to 
standardize sampling (79). Dimensionality reduction techniques 
mitigate overfitting in limited datasets, enhancing machine learning 
classifier performance (80, 81). External validation through 
spatiotemporal sampling is critical for generalizing results and 

enhancing clinical utility. While confirming the value of discovery-
phase VOCs, limited sample size constrained validation robustness 
(77). Future priorities include: large multicenter trials to establish 
VOC reliability, technical optimization to reduce validation costs, 
and mechanistic studies elucidating VOC pathophysiological 
origins (65).

FIGURE 11

Clustering of research topics (keywords). (A) Thematic clusters identified by keyword analysis: groups keywords into clusters representing distinct 
research themes within mass spectrometry breath analysis. (B) Mountain map of thematic cluster development and size: represents the identified 
keyword clusters, their relative size (importance), and their evolution (map type).
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4.2 Research trends

4.2.1 Multi-omics data integration and precision 
medicine

Metabolomics analyzes metabolite profiles across biological 
matrices (blood, sputum, exhaled breath), providing integrated 
insights into upstream physiological and molecular processes (82). 
Breathomics, an emerging metabolomics subfield, examines disease-
induced shifts in exhaled VOC patterns that reflect altered cellular 
metabolism and serve as potential pathophysiological biomarkers (80, 
83). Using GC–MS, Zhang et al. quantified exhaled metabolites to 
assess diagnostic accuracy for ARDS in mechanically ventilated ICU 
patients. Identified VOC classifiers (including 1-methylpyrrole and 

1–3,5-trifluorobenzene) showed AUROCs of 0.71 (derivation) and 
0.63 (validation). While confirming exhaled metabolites’ diagnostic 
potential for ARDS, the study indicated insufficient clinical accuracy 
for LIPS alone or combined with VOC biomarkers (84).

Genetic variations in hosts can modulate VOCs biosynthesis. For 
instance, a Podospora anserina mutant exhibited COX and LOX gene 
polymorphisms that disrupted functional lipoxygenase and 
cyclooxygenase expression. Consequently, arachidonic acid 
metabolism was redirected, abolishing synthesis of octane VOCs—
compounds the wild-type deploys for nematode deterrence. 
Integrating genomic and respiratory VOC profiles may enable 
biomarker discovery for early disease detection, progression tracking, 
and personalized therapeutics (85).

TABLE 10  Mechanisms linking exhaled VOCs to respiratory diseases.

VOC Respiratory disease Mechanisms

Butadiene
COPD Chronic inflammation and oxidative stress disrupt metabolism, increasing butadiene.

Lung cancer Metabolic reprogramming and immune dysfunction promote butadiene accumulation.

Acetone

Streptococcus Pneumoniae Infection Post-infection inflammation enhances lipolysis, elevating acetone.

COVID-19 SARS-CoV-2 suppresses pulmonary metabolism, reducing acetone.

ARDS Oxidative stress and systemic inflammation promote acetone via lipid breakdown.

Acetaldehyde

Influenza A ROS impairs aldehyde dehydrogenase, reducing acetaldehyde detoxification.

Lung Cancer Upregulated ADH pathway increases acetaldehyde from ethanol.

ARDS Cell death releases intracellular acetaldehyde.

OSA Intermittent hypoxia impairs aldehyde metabolism via ROS damage.

Propanal
Influenza A Immune ROS triggers lipid peroxidation, producing propanal.

ARDS Neutrophil ROS drives aldehyde release via lipid degradation.

Octanal/Nonanal
COVID-19 Viral lipid oxidation imbalance elevates octanal/nonanal.

Lung Cancer ADH overactivity enhances alcohol-to-aldehyde conversion.

p-Cymene
Tuberculosis Cytokine-driven stress alters enzyme activity, increasing p-cymene.

IPF Epithelial damage and inflammation reduce p-cymene excretion.

Isoprene

IPF Fibroblast activation and ECM remodeling raise isoprene.

ARDS Pulmonary inflammation disrupts isoprene metabolism.

OSA Vascular inflammation alters isoprene metabolic pathways.

NO Asthma Type 2 inflammation and remodeling upregulate NO production.

NH3 PAH Metabolic and vascular dysfunction increase ammonia levels.

Pentane Silicosis Macrophage ROS and lipid peroxidation raise pentane.

Ethane COPD Lipid peroxidation from oxidative stress

Isoprene, 4-methyloctane COPD Inflammation and altered metabolism

n-Butane, 2-Pentanone COPD (stable vs. exacerbation) Different phases show distinct VOC patterns

Nonane, 2,2,4,6,6-PMH Asthma Potential asthma biomarkers with high specificity

Hexane, 2-Hexanone, 1-Propanol Asthma phenotypes Different VOCs in eosinophilic vs. non-eosinophilic asthma

Hexanal, Heptanal, Octanal Lung Cancer Aldehyde products from lipid oxidation; linked to tumor metabolism

Benzaldehyde, 2-Butanone Lung Cancer Oxidative and aldehyde pathway alterations

Methyl nicotinate, o-Anisole Tuberculosis Bacterial metabolic products specific to TB

Octane, Acetaldehyde, 

3-Methylheptane
ARDS Lipid peroxidation and systemic inflammation

1-Dodecanol Asthma Unique to asthma patients; potential specific marker

Trans-2-Hexenol Lung Adenocarcinoma Cancer metabolic reprogramming under hypoxia
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Furthermore, multiple studies have shown that neonatal germ-
free mice display impaired gastrointestinal development and a 
deficient adaptive immune system. Shortly after birth, these mice 
acquire a complex intestinal microbiota. Many of these 
microorganisms synthesize essential vitamins for the host and occupy 
ecological niches, thereby preventing colonization by pathogens and 
limiting associated pathological changes (86, 87). These findings 
underscore the critical role of intestinal microbiota in shaping host 
immunity. Alterations in gut microbiota influence the host’s 
susceptibility to opportunistic pathogens and broadly modulate 
immune function and status (88). Therefore, it is plausible that, via the 
lung–gut axis, gut microbiota may directly or indirectly influence 
pulmonary immune and inflammatory responses in individuals with 
respiratory diseases (89). Conversely, respiratory lesions may disrupt 
intestinal microbiota homeostasis via the lung–gut axis, altering the 
concentrations of microbiota-derived metabolites. For instance, 
Zhang et al. reported that influenza infection leads to a significant 
reduction in intestinal lactobacilli and tryptophan levels. These 
microbial and metabolic changes can severely damage both the 
respiratory tract and intestines. Oral probiotics act not only locally in 
the gut but also exert systemic immunomodulatory effects, including 
alleviation of lung infections. Tryptophan is an essential nutrient that 
supports intestinal immune tolerance and microbial balance (88). 
Based on lung–gut microbial interactions, it is reasonable to 
hypothesize that intestinal dysbiosis is associated with altered profiles 
of VOCs in exhaled breath. However, further studies are required to 
elucidate this association.

Integrating multiple biological data layers—such as metabolomics, 
genomics, and immunology—can enhance understanding of the 
complexity and heterogeneity of respiratory disorders. This approach 
enables more precise identification of disease subtypes and their 
underlying pathogenic mechanisms. Such a comprehensive strategy 
not only facilitates personalized treatment but also provides insights 
into the initiation and progression of respiratory diseases. However, 
the integration of multi-omics data presents significant challenges. For 
example, the integration of genomic and respiromic data significantly 
increases analytical complexity, often in a non-linear manner. For 
instance, respiratory disease analysis must account for how genetic 
variations affect the expression of respiration-related proteins (90), 
and whether exhaled VOCs exert feedback regulation on gene 
expression (91). These multilayered interactions substantially 
complicate data interpretation. In addition, data quality across 
genomics and breathomics varies considerably depending on 
experimental platforms and methodologies (92, 93). Such variability 
may cause integration instability, hinder standardization, and 
compromise the accuracy of downstream analyses. Furthermore, the 
weak spatiotemporal correlation between immunological and 
respiromic data complicates the establishment of direct causal 
relationships. For example, immune cell activation, migration (e.g., T 
cells and macrophages), and cytokine secretion primarily occur 
transiently and locally in specific tissues, such as the airway mucosa 
(94). By contrast, exhaled VOCs are integrated outputs of both 
systemic and airway-specific metabolism, capturing spatiotemporal 
metabolic dynamics across multiple organs (43).

Precision medicine has catalyzed innovations in molecular 
pathology, including advancements in the analysis of exhaled VOCs 
as a non-invasive diagnostic modality. VOCs in exhaled breath can 
provide rich chemical and metabolomic insights (95). For example, 

Chu et  al. employed solid-phase microextraction–GC–MS with 
non-targeted analysis to identify signature VOCs in lung cancer cell 
lines (A549, PC-9, NCI-H460) and a normal lung epithelial line 
(BEAS-2B), both Results revealed three common discriminatory 
VOCs—ethyl propionate, acetoin, and 3-decen-5-one—present in all 
three lung cancer lines under resting conditions, but absent in normal 
cells. Under basal conditions and after glycolytic inhibition. Results 
revealed three common discriminatory VOCs—ethyl propionate, 
acetoin, and 3-decen-5-one—present in all three lung cancer lines 
under resting conditions, but absent in normal cells. Upon glycolytic 
inhibition, acetoin levels increased by 2.60–3.29 fold in all cancer cell 
lines, while remaining stable in normal cells. These findings suggest 
that glycolytic inhibition amplifies acetoin differentials between 
cancerous and normal cells, indicating its potential as a glycolysis-
regulated biomarker for lung cancer detection (96). Chu et al. further 
elucidated the biosynthetic pathway of acetoin, demonstrating that 
glycolytic inhibition induces compensatory upregulation of the 
glutamine degradation pathway (97), resulting in elevated pyruvate 
levels. As pyruvate serves as a precursor for acetoin synthesis, its 
elevation consequently promotes acetoin accumulation (98). This 
interdisciplinary strategy—integrating molecular pathology, 
chemistry, and metabolomics via interventional VOC synthesis—
offers a novel framework for lung cancer identification and may 
facilitate the development of new cytological diagnostic methods. 
Future studies will aim to co-culture normal and cancerous lung cells 
and analyze exhaled VOCs from patients under glycolytically 
controlled conditions, with the goal of advancing clinical 
translation (96).

However, inconsistencies in interdisciplinary terminology pose a 
critical barrier to effective collaboration (99). For example, in 
interdisciplinary studies involving molecular pathology, chemistry, 
and metabolomics, divergent definitions of the term “biomarker” have 
introduced systemic challenges in three key areas: failures in data 
integration (100), fragmented mechanistic validation (101), and 
barriers to clinical translation (102). These conflicts—stemming from 
discipline-specific biomarker validation criteria—prevent 
interoperability between databases, disrupt causal inference 
frameworks, and hinder clinical translation. For instance, Tian et al. 
identified nine exhaled VOCs characteristic of COPD using μGC–MS 
but did not elucidate their underlying mechanisms (103). In molecular 
pathology, biomarkers are expected to have a mechanistic association 
with disease onset and progression (104). Therefore, although the 
study demonstrated diagnostic value from chemical and metabolomic 
perspectives, its lack of mechanistic insight limits its 
clinical translatability.

Therefore, early consensus on terminology is essential to translate 
the “terminal information” carried by metabolites into actionable 
biomarker-based clinical decision-making. This shift is key to 
advancing precision medicine from phenomenological description 
toward mechanism-driven diagnostic and therapeutic integration. 
The foundation for standardizing interdisciplinary terminology lies 
in building a dynamic consensus system that balances disciplinary 
specificity with cross-domain universality. First, establish 
foundational norms based on international standards (e.g., ISO), and 
define core interdisciplinary semantics through ontological analysis 
(105). Second, adopt a hierarchical composite naming system that 
preserves disciplinary prefixes (e.g., “chemical-,” “cognitive-”) while 
utilizing a shared root lexicon to ensure traceability and 
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cross-disciplinary interoperability (99). Third, develop a semantic 
association model using knowledge graph technologies to 
dynamically map conceptual relationships across disciplines, 
supporting ambiguity resolution and contextual adaptation (106). 
Finally, implement a collaborative governance framework that 
combines iterative Delphi consensus processes by expert panels with 
NLP-based large-scale analysis of term usage. This approach ensures 
continuous refinement of both academic rigor and practical 
communicability, supported by an open, traceable terminology 
database capable of real-time updates and feedback loops (107). This 
strategy aims to create a terminology ecosystem characterized by 
structural flexibility, evolutionary adaptability, and high 
disambiguation efficiency—serving as a foundational infrastructure 
for interdisciplinary knowledge integration.

4.2.2 Advances in research methods and 
techniques

GC–MS remains the gold standard for comprehensive profiling 
of VOCs in exhaled breath due to its high stability, excellent 
separation efficiency, selectivity, sensitivity, and reproducibility 
(108). However, its clinical applicability is limited by substantial 
drawbacks, including the need for complex sample pretreatment, 
poor portability, high power consumption, lack of real-time 
analytical capacity, and high operational costs (109). These 
limitations render GC–MS unsuitable for point-of-care (POC) or 
rapid screening applications (110, 111). Proton transfer reaction–
mass spectrometry (PTR-MS), by contrast, offers real-time, in vivo 
detection of trace-level VOCs with minimal sample preparation 
(112). Its high accuracy and specificity make it a promising tool for 
dynamic monitoring in clinical settings such as the ICU (113). 
Nevertheless, its analytical range is restricted to low-molecular-
weight VOCs, potentially missing diagnostically relevant 
macromolecular biomarkers (114). Extractive electrospray 
ionization mass spectrometry (EESI-MS) enables direct, matrix-
tolerant analysis of complex biological samples without 
pretreatment (115), showing promise for rapid diagnosis, especially 
in environments requiring operational simplicity and high 
throughput, such as ICUs. Its resistance to matrix effects enhances 
signal reliability in heterogeneous respiratory matrices. However, 
challenges remain in achieving robust quantitative reproducibility, 
which limits its current clinical deployment.

To address the limitations inherent to single-modality systems, 
recent research has emphasized the development of hybrid platforms, 
such as GC-PTR-MS, that combine the comprehensive compound 
identification capacity of GC–MS with the real-time (109), high-
sensitivity capabilities of PTR-MS (113). Such systems aim to leverage 
complementary strengths to improve diagnostic coverage and 
adaptability. Furthermore, advances in miniaturized MS devices have 
significantly enhanced portability and usability, enabling integration 
into wearable gas sensor platforms (111). These sensors can serve as 
preliminary VOC screening tools, with positive cases referred to high-
resolution MS backends for molecular confirmation, thereby reducing 
false positives and improving triage efficiency. A comparative 
assessment reveals clear trade-offs across platforms in terms of 
detection depth, analytical speed, cost-effectiveness, and 
standardization readiness. GC–MS excels in chemical resolution but 
suffers from logistical inflexibility; PTR-MS provides rapid and 

accurate detection but lacks breadth in VOC range; EESI-MS balances 
portability and matrix resilience but requires further validation for 
quantification (115). As clinical translation accelerates, standardized 
performance metrics, cost–benefit evaluations, and disease-specific 
suitability studies across these modalities will be  critical. Future 
progress will depend on the coordinated advancement of hybrid 
instrumentation, clinical validation frameworks, and regulatory 
standards to ensure scalable and reproducible deployment in 
respiratory diagnostics (108).

The E-nose mimics the mammalian olfactory system by using an 
array of sensors to detect VOCs and applying pattern recognition 
algorithms to differentiate complex odor profiles (63). Due to its 
sensitivity, rapid response, and portability, the e-nose has been widely 
applied in respiratory disease research (116). However, the e-nose can 
only recognize disease-related breath patterns and lacks the capability 
to identify the specific chemical constituents responsible for these 
patterns (62). To overcome these limitations, the e-nose is often 
combined with MS, which provides high-resolution analysis of gas 
composition and enhances chemical specificity (117).

Substantial progress has been made in elucidating the mechanisms 
and identifying biomarkers of respiratory diseases through cellular 
and animal models. For example, dynamic monitoring of exhaled 
VOCs such as hexanal and pentanal has been shown to reflect 
oxidative stress during lung injury. The lipopolysaccharide (LPS)-
induced acute lung injury (ALI) mouse model is commonly employed 
to mimic pulmonary inflammation. These models provide a valuable 
platform for screening anti-inflammatory agents and elucidating 
inflammatory signaling pathways, such as MAPK/NF-κB activation 
(118). Additionally, lung cancer organoid models have demonstrated 
high fidelity in biomarker research. Patient-derived organoids (PDOs) 
replicate the molecular and pathological features of primary tumors, 
producing VOC profiles closely resembling those of clinical samples. 
When integrated with multi-omics analysis, these models can reveal 
metabolic reprogramming pathways in the tumor microenvironment, 
supporting personalized treatment planning and drug sensitivity 
testing (119). Furthermore, advances in single-cell sequencing have 
enabled precise localization of VOC-producing cell populations. By 
comparing the transcriptomes of alveolar type II cells and cuprocytes, 
researchers identified specific cell subpopulations—such as type II 
alveolar cells enriched in lipid metabolism genes—as major sources of 
VOC production. This approach not only resolves cellular 
heterogeneity but also pinpoints molecular targets for targeted 
therapies (120).

Beyond integrating metabolomics and metagenomics data to 
confirm the biological origins of VOCs, Artificial Intelligence (AI) 
models are employed to fuse multidimensional datasets, including 
VOC profiles, imaging, and clinical indicators. Analysis of exhaled 
VOC data should adhere to a closed-loop framework encompassing 
screening, modeling, and verification. AI algorithms prioritized for 
this purpose should demonstrate interpretability (e.g., SHAP) (121), 
robustness against interference (e.g., Lasso-RF fusion) (122), and 
clinical adaptability (e.g., LSTM for real-time monitoring) (123). 
Concurrently, coordinated efforts to develop standardized databases 
and miniaturized detection devices are essential. To accelerate clinical 
translation and enable the shift from VOC signal detection to 
precision intervention, future validation studies should prioritize 
diseases based on mortality rates, the feasibility of VOC detection 
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technologies, and existing gaps in clinical diagnostics. This 
prioritization aims to reduce preventable mortality by optimizing 
resource allocation and maximizing public health benefits within 
constrained research investments. Furthermore, stratified diagnostic 
and therapeutic guidelines informed by multi-omics markers should 
be developed, alongside fostering interdisciplinary collaboration (57). 
Although novel biosensors have been applied to respiratory disease 
research, their full potential remains unrealized. Despite initial 
advances in biosensing platforms altering the phenomic landscape of 
respiratory diseases, ongoing development and clinical translation 
efforts are required to fully realize their impact on research and 
therapeutic innovation.

5 Limitation

5.1 Data coverage constraints

Our exclusive reliance on WoSCC and PubMed may have omitted 
relevant studies from specialized databases (e.g., Embase, Scopus). The 
English-language restriction potentially excluded impactful 
non-English publications. Future investigations could expand retrieval 
to Embase, Scopus and utilize AI-assisted translation tools with 
domain-expert validation to mitigate language bias.

5.2 Bibliometric methodological 
boundaries

While effectively mapping research landscapes, bibliometric 
approaches cannot assess study quality or methodological rigor. 
Citation metrics may be  influenced by journal policies and self-
citation practices. These limitations necessitate complementary 
evidence synthesis methods: Structured qualitative appraisal (e.g., 
using ROBINS-I for risk of bias assessment) can evaluate the 
methodological soundness of high-impact studies identified through 
bibliometric networks. Dose–response meta-analyses may quantify 
clinical effect sizes of VOCs flagged as research hotspots, reconciling 
heterogeneous findings across studies.

This integrated approach creates a translational bridge: 
Bibliometrics identifies candidate biomarkers and knowledge gaps, 
while systematic review/meta-analysis validates their clinical 
credibility and quantifies diagnostic accuracy [e.g., pooled sensitivity/
specificity of breath signatures for COPD exacerbations (61)].

5.3 Multidisciplinary integration challenges

Terminological and methodological heterogeneity across 
chemistry, immunology, and respiratory medicine complicates 
knowledge integration. Future interdisciplinary teams should employ 
ontology alignment tools (e.g., OLS API) and consensus frameworks 
like Delphi methods to standardize conceptual mappings.

Despite these constraints, this study provides a foundational 
mapping of research frontiers. Translation into clinical practice 

requires prospective multicenter trials using standardized VOC 
collection protocols (e.g., ATS/ERS guidelines) to validate 
biomarker reproducibility.

6 Conclusion

Over the past two decades, this comprehensive bibliometric 
analysis has mapped emerging trends and research hotspots in 
MS-based respiratory testing, highlighting its transformative potential 
for clinical diagnostics and research. MS is increasingly recognized as 
a non-invasive and highly sensitive technique for monitoring VOCs 
in exhaled breath, underscoring its clinical and research significance. 
Key advances encompass disease-specific VOC profiling, mechanistic 
insights linking VOCs to metabolic reprogramming, oxidative stress, 
and microbiome interactions, as well as methodological improvements 
enhancing diagnostic precision and reproducibility. Ongoing 
technological innovations continue to improve real-time, high-
resolution VOC detection capabilities in MS. Integration of AI and 
machine learning facilitates predictive modeling and precise 
biomarker identification, while enhancing data analytics. To elucidate 
disease pathophysiology and enable precision medicine, future efforts 
will prioritize multi-omics integration. Advances in single-cell 
sequencing, organoid modeling, and biosensor technologies hold 
promise for bridging precision medicine and biomarker discovery.

Despite limitations related to database scope and the 
multidisciplinary nature of VOC research, this study provides a 
foundational roadmap to address knowledge gaps, foster international 
collaboration, and accelerate the clinical adoption of respiratory 
diagnostics. MS-based breath testing represents a cornerstone of next-
generation respiratory disease management, driven by advances in 
technology, biomarker validation, and AI-enhanced analytics. 
However, critical challenges remain, including the lack of standardized 
protocols, limited biomarker specificity, incomplete understanding of 
biological mechanisms, immature technologies, and insufficient large-
scale clinical validation. Addressing these issues requires urgent 
establishment of interdisciplinary collaborative alliances. Only 
through coordinated efforts among researchers, clinicians, and 
policymakers can exhaled VOC biomarkers—such as acetone and 
isovaleraldehyde, detected via MS—be translated into universal 
clinical tools, reshaping precise diagnosis and treatment paradigms for 
respiratory diseases. Specifically, researchers must develop 
ISO-certified sampling and analysis protocols to ensure data 
comparability across centers; clinicians should establish large 
prospective cohorts (≥10,000 patients) to evaluate VOC dynamics in 
response to treatment and exposure; policymakers are tasked with 
facilitating insurance coverage and expedited regulatory approval for 
portable, sensitive MS devices (e.g., MEMS Micro GC) to accelerate 
clinical translation.
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Glossary

ADH - Alcohol dehydrogenase

ALI - Acute Lung Injury

AI - Artificial Intelligence

ARDS - Acute Respiratory Distress Syndrome

COPD - Chronic Obstructive Pulmonary Disease

COVID-19 - Corona Virus Disease 2019

ECM - Extracellular Matrix

EESI-MS - Extractive Electrospray Ionization Mass  
Spectrometry

EI - Electron Ionization

EMR - Electronic Medical Records

ESI - Electrospray Ionization

FeNO - Fractional Exhaled Nitric Oxide

GC - Gas Chromatography

GC–MS - Gas Chromatography–Mass Spectrometry

GC-TOFMS - Gas Chromatography-Time-of-Flight 
Mass Spectrometry

GC × GC-HRTOFMS - High-Resolution Gas Chromatography-
Time-of-Flight Mass Spectrometry

IL-6 - Interleukin-6

IPF - Idiopathic Pulmonary Fibrosis

LC - Liquid Chromatography

LLR - Log-Likelihood Ratio

LPS - Lipopolysaccharide

LSI - Latent Semantic Indexing

MCP - Multiple Country Publications

MS - Mass Spectrometry

m/z - Mass-to-Charge Ratio

OPLS-DA - Orthogonal Partial Least Squares Discriminant Analysis

OSA - Obstructive Sleep Apnea

PAH - Pulmonary Arterial Hypertension

PDOs - Patient-Derived Organoids

POC - Point-of-Care

PTR-MS - Proton Transfer Reaction-Mass Spectrometry

PTR-TOF-MS - Proton Transfer Reaction Time-of-Flight 
Mass Spectrometry

ROS - Reactive Oxygen Species

SCP - Single Country Publications

SESI-MS - Secondary Electrospray Ionization Mass Spectrometry

TB - Tuberculosis

TNF-α - Tumor Necrosis Factor-alpha

VOCs - Volatile Organic Compounds

WoS - Web of Science

WoSCC - Web of Science Core Collection
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