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A review on clinical implications
of S100 proteins in lung diseases

Vineesh V. Raveendran*, Somaya AlQattan and Eid AlMutairy*

Lung Health Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia

The S100 family of proteins plays a pivotal role in the pathogenesis of lung
diseases, including asthma, chronic obstructive pulmonary disease (COPD),
cystic fibrosis, pulmonary arterial hypertension (PAH), pulmonary fibrosis, lung
cancers, acute lung injury, acute respiratory distress syndrome, COVID-19, and
lung transplantation. This review comprehensively examines the contributions of
S100 proteins to the progression of these disorders, focusing on their potential
as diagnostic and prognostic biomarkers, as well as therapeutic targets. ST00A
protein-mediated key molecular mechanisms that influence inflammation,
airway remodeling, fibrosis, and tumorigenesis in the lungs are discussed.
The importance of their normal function is evident from the observation
that simultaneous mutations in S100A3 and S100A13 predispose individuals to
early-onset pulmonary fibrosis, underscoring their critical role in lung health.
Furthermore, sustained S100 protein elevation is explored in the context of long
COVID, shedding light on its role in chronic inflammation. These proteins act as
damage-associated molecular patterns (DAMPs), activating immune pathways
via receptors like TLR4 and RAGE, thereby driving inflammation and immune cell
recruitment. Notably, in lung transplantation, elevated levels of ST00A8, S100A9,
and S100A12 serve as early biomarkers of graft rejection and complications
such as graft-vs.-host disease, which indicates their role in mediating immune
responses and transplant outcomes. While promising, the clinical application
of S100 proteins faces challenges, including disease-specific variability and the
need for robust validation across diverse populations. This narrative review
underscores the dual potential of S100 proteins as biomarkers and therapeutic
targets in respiratory medicine while emphasizing the importance of overcoming
current limitations through targeted research and clinical trials.
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Introduction

Human diseases have long been associated with the dysregulation of protein expression
and functions, which play pivotal roles in maintaining cellular homeostasis (1, 2).
Proteins are the driving force of signal transduction, structural maintenance, enzymatic
catalysis, and immunological responses, and the perturbations in their expression levels
or functional integrity because of genetic alterations, environmental influences, or other
factors can result in diseases (1, 3, 4). Many protein families, like S100 family, are
evolutionarily conserved to carry out the fundamental processes that maintain the
physiological homeostasis of an organism (5, 6). S100 protein family, (Table 1) (7-9)
comprises SI00A1 to S100A16, S100B, S100G, S100P, and S100Z (10), along with S100-
fused-type proteins such as trichohyalin (11), filaggrin (12), filaggrin2 (13), cornulin (14),
and repetin (15) (see Table 1 for general details. We are not including S100-fused-type
proteins in the table, as the relation of these proteins in lung diseases is almost null).
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S100 proteins bind calcium (via EF-hand motifs), as well as zinc
and copper ions (6, 16, 17) (Figure 1). Structural analyses show
that S100 proteins have at least three active sites on two surfaces,
enabling diverse protein interactions for their biological effects,
which are often modulated by calcium-induced conformational
changes (18). S100 proteins can be categorized into three groups
based on their functions: (a) intracellular regulators, (b) dual-
function proteins acting intracellularly and extracellularly (19)
and (c) primarily extracellular entities (5). Intracellular S100
proteins regulate cell functions like growth, movement, cell cycle,
transcription, and differentiation. Extracellularly, they influence
inflammation, migration, tissue development, and repair and
enhance leukocyte and tumor cell invasiveness (5).

Clinically, dysregulated S100 proteins are valuable diagnostic
and prognostic markers in various diseases, including
neurodegenerative disorders (20), cardiomyopathy (21), and
lung diseases (10) (Figure 2). S100 proteins help in distinguishing
between conditions like idiopathic pulmonary fibrosis (IPF)
and rheumatoid arthritis-associated interstitial pneumonia (IP)
where S100 protein-positive dendritic cells are present only in
the latter (22). CD8'® lymphocytes are more prominent in
fibrosing regions surrounding S100-positive dendritic cells than
CD4™¢ lymphocytes (23). S100A4 and S100B overexpression
is associated with poor prognosis and tumor metastasis in lung
cancer (10, 20-25) (see Table 2 for roles in lung diseases).

Despite these findings, the collective literature on S100
proteins in lung diseases remains limited, including their roles
in COVID-19 and lung transplantation. This review aims

to provide a comprehensive exploration of the diagnostic,

Abbreviations: ADC, adenocarcinoma; ALl, acute lung injury; ARDS, acute
respiratory distress syndrome; ATRA, all-trans retinoic acid; BALF, broncho
alveolar lavage fluid; COPD, chronic obstructive pulmonary disease;
CXCR4, C-X-C chemokine receptor type 4; DAMP, damage-associated
molecular pattern; DLC1, deleted in liver cancer 1; DNp63, DeltaNp63;
EMT, epithelial-mesenchymal transition; FAK, focal adhesion kinase; FDG,
F-fluorodeoxyglucose; GSK-3b, glycogen synthase kinase-3beta; HMGB1,
high mobility group box 1; IFN-gR, interferon gamma; IL6R, interleukin
6 receptor; ILD, interstitial lung disease; IP, interstitial pneumonia; IPF,
idiopathic pulmonary fibrosis; JAB1, c-Jun activation domain binding
protein-1; Keapl, Kelch-like ECH-associated protein 1; IncRNA, long non-
coding RNA; LPS, lipopolysaccharide; MAPK, mitogen-activated protein
kinase; mTOR, the mammalian target of rapamycin; NDUFS2, NADH
dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial; NO, nitric
oxide; Nrf2, nuclear factor erythroid 2—related factor 2; NSCLC, non-small
cell lung cancer; NuRD, nucleosome remodeling and deacetylase; PAH,
pulmonary arterial hypertension; PBMC, peripheral blood mononuclear cells;
PF, pulmonary fibrosis; PH, pulmonary hypertension; PML, promyelocytic
leukemia; RAGE, receptor for advanced glycation endproducts; RAR-a,
retinoic acid receptor alpha; SCC, squamous cell carcinoma; SCLC, small
cell lung cancer; sRAGE, solubleRAGE; STAT3, signal transducer and activator
of transcription 3; TAZ, transcriptional coactivator with PDZ-binding motif;
TCGA, the cancer genome atlas; TEAD, TEA domain family member 1;
TERT, telomerase reverse transcriptase; TFAP2A, transcription factor AP-2
alpha; TGF-b1l, transforming growth factor-betal; TLR, toll-like receptor;
TTF1, thyroid transcription factor 1; VTE, venous thromboembolism; YAP,

yes-associated protein 1.
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prognostic, and therapeutic potential of S100 proteins in
these contexts, offering a detailed analysis to bridge existing
knowledge gaps.

Metal ion binding and conformational
changes of S100 proteins for intra-
and extracellular functions

The EF-hand motif of many S100 proteins have Zn?*/Cu?*
binding sites in addition to Ca?t metal ions(26-30). This
unique feature provides them the versatility of performing both
intracellular and extracellular functions (26, 31, 32).

The Ca*T* switch for intracellular
functions

The EF-hand motif of S100 proteins binds Ca>* ions, triggering
a conformational change often described as the “S100 Ca*-
switch.” This structural rearrangement exposes previously buried
hydrophobic surfaces, creating docking sites for a wide array of
intracellular targets such as enzymes, cytoskeletal proteins, and
transcriptional regulators (33, 34). Through these interactions,
S100 proteins regulate fundamental cellular processes, including
proliferation, differentiation, apoptosis, and motility. Thus, Ca*t-
dependent conformational dynamics are central to the intracellular
signaling roles of S100 proteins (8, 19).

Transition metal-dependent structural
rearrangements for extracellular
functions

In addition to Ca*" binding, S100 proteins possess unique
transition metal-binding sites at their dimer interface, particularly
for Zn*t and Cu’™ (27-29, 33). Binding of these metals
induces structural changes distinct from those caused by Ca®*
(35, 36). These rearrangements enable S100 proteins to interact
with cell surface receptors, most notably the receptor for
advanced glycation end products (RAGE) and toll-like receptor
4 (TLR4). These interactions mediate extracellular signaling
through both autocrine and paracrine pathways, which connects
them to regulation of the immune system, inflammation, and
many diseases.

Distinction of S100 proteins from
other EF-hand proteins

While classical EF-hand proteins like calmodulin also undergo
Ca’*-induced conformational changes, S100 proteins stand
out due to their dual/triple metal-binding capability and the
resulting distinct conformational responses (37, 38). Ca*>* binding
exposes hydrophobic pockets for intracellular interactions, whereas
Zn**/Cu®t binding at the dimer interface enables extracellular
receptor engagement (5, 26, 39). This adaptability allows S100
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TABLE 1 General characteristics of S100 proteins.
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S100 protein Salient features Tissues of Receptors Interacting
expression proteins
S100A1 Zinc- and calcium-binding protein primarily Brain, heart, muscle, skin, RAGE, RyR1, RyR2 IFN-a, Annexins (186)
expressed in astrocytes. It binds zinc tightly kidney
and weakly binds calcium. Involved in cell
proliferation, differentiation, and migration
S100A2 Associated with inflammation and cell Skin, muscle, nervous RAGE, TLR4, FKBP52 (187)
migration system, lung, kidney AnxA2
S100A3 Involved in mitochondrial dynamics Skin, hair cuticle, lung RAGE, RARq, PPFIBP1, PGLYRP1, (80)
PML-RARa MYH9, AnxA2, TP53,
CCR5
S100A4 Inflammation, cell migration, tumor Lung, breast, colon, skin, RAGE IFN-8, PPFIBP1, (188)
progression, angiogenesis, apoptosis, and muscle PGLYRP1, MYH9,
autophagy. It interacts with NMMHC IIA, AnxA2, TP53, CCR5
modulates TP53, and stimulates cytokine
production and lymphocyte chemotaxis
S100A5 Binds calcium, zinc and copper Brain RAGE (189)
S100A6 (Calcyclin) Inflammation, cell proliferation, Brain, heart, lung, skin, RAGE INF-B, CacyBP, Sgtl, (190)
differentiation, reorganization of the actin muscle AnxA2, TP53
cytoskeleton and cell motility
S100A7 (Psoriasin) Chemotactic for haematopoietic cells Fetal ear, skin, tongue RAGE RanBP9 (191)
S100A8, SI00A9 and Regulates leukocyte trafficking, neutrophil Myeloid cells, epithelial TLR4, RAGE, CEACAM3, tubulin, (192, 193)
S100A8/A9 complex number and survival, metabolism, cells, monocytes, CD147, CD69 CD69, CYBA, CYBB
(Calprotectin) pro-inflammatory alarmin, antimicrobial, endothelial cells,
oxidant scavenger, apoptosis inducer keratinocytes,
macrophages
S100A10 Plasminogen receptor, involved in trafficking lungs, spleen, bone AnxA2 (194, 195)
membrane protein, act as oncoprotein marrow,
testis, skeletal muscle etc.
S100A11 (Calgizzarin) Cell proliferation, differentiation, and Skin, spleen, lung RAGE AnxA1,2,6, HDAC6, (196)
migration TP53, PEX14,
RADS51, S100B
S100A12 (Calgranulin Pro-inflammatory, antimicrobial Neutrophils, monocytes, RAGE, TLR4 CacyBP (197)
C) epithelial cells
S100A13 Involved in non-classical release of IL-1a, Heart, skeletal muscle, RAGE IL-1a, ProTa, FGF-1, (198)
FGF-1 lung Vimentin
S100A14 Role in the regulation of cell migration by High in colon, low in lung, RAGE P53/TP53 (199)
modulating MMP2 kidney, liver
S100A7A (koebnerisin Antimicrobial in skin and digestive organ Skin RAGE (200)
or S100A15)
S100A16 Single Ca®* binding site, inflammation and High in esophagus, adipose | RAGE S100A14 (201)
cell migration tissues and colon, low in
lung, brain
S100B More affinity to Zn** than Ca®*, Brain, nervous system RAGE ATAD3A, S100A6, (19)
neuroinflammation and neuroprotection PPP5C, TPPP
S100P Microvilli formation in epithelial cells Brain, heart, lung, skin, RAGE S100A1, S100Z, (202)

muscle

CacyBP, Ezrin, PPP5C

The information on salient features, tissues of expression, receptors, and interacting proteins were sourced from protein database of NLM, String, Uniprot, and Protein atlas. AnxA2,
ANNEXXINA2; ATAD3A, ATPase family AAA domain containing 3A; CacyBP, calcyclin-binding protein; CCR5, C-C chemokine receptor 5; CEACAMS3, carcinoembryonic antigen related cell
adhesion molecule 3; CYBA, cytochrome B(558) alpha; FGF-1, Fibroblast growth factor-1; FKBP52, FK506-binding protein 52; HDACS, histone Deacetylase 6; IFN-B, interferon-beta; IL-1a,
interleukin-1 alpha; MYH9, Myosin heavy polypeptide 9; PEX14, peroxisomal biogenesis factor 14; PGLYRP1, peptidoglycan recognition protein 1; PML, promyelocytic leukemia; PPP5C,
protein phosphatase 5 catalytic subunit; PPFIBP1, PPFIA binding protein 1; PPP5C, protein phosphatase 5 catalytic subunit; RAD51, RAD51 recombinase; RAGE, receptor for advanced
glycation end products; RanBP9, Ran-binding protein 9; RARa, retinoic acid receptor-alpha; RyR1, ryanodine receptor 1; TLR4, toll-like receptor; TP53, tumor protein p53; Sgt1, suppressor of

G2 allele of Skp1; TPPP, tubulin polymerization promoting protein.

proteins to serve as both intracellular regulators and extracellular
signaling molecules—an evolutionary specialization not shared by

simpler Ca®T sensors (26, 39).
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The structural plasticity of S100 proteins, governed by
their ability to bind multiple metal ions, underpins their dual

roles. By coupling Ca’'-induced conformational changes to
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FIGURE 1

Sequence features of S100 proteins highlighting metal-binding sites and lung cancer-associated mutations. Yellow highlights indicate EF-hand
motifs; turquoise highlights, the canonical EF-hand. Brown residues denote Ca?* -binding sites: purple residues, Zn’*-binding sites; and boxed
purple residues, Cu?* -binding sites. Brackets represent a-helices. Single-nucleotide mutations associated with lung cancers are indicated.

intracellular signaling and Zn**/Cu**-induced rearrangements to ~ This property sets them apart from other EF-hand proteins and
extracellular receptor interactions, S100 proteins uniquely bridge  explains their prominent involvement in processes ranging from
intracellular regulation with extracellular communication (39, 40).  cytoskeletal dynamics to cancer metastasis and inflammation (39).
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FIGURE 2

The distinct and shared roles of S100 proteins in lung pathologies. Schematic representation of S100 protein involvement in major lung diseases,
including asthma, cystic fibrosis, pulmonary fibrosis, and COPD/pulmonary arterial hypertension (PAH). In asthma, SI00A8/A9, S100A4, and S100A11
regulate cytokine production, neutrophil apoptosis, and eosinophil recruitment. In cystic fibrosis, STO0A9 and S100A12 contribute to immune cell
recruitment, protease release, and emphysematous tissue destruction. In pulmonary fibrosis, SI00A2, S100A4, S100A6, S100A8/9, and S100A11
promote fibroblast activation, epithelial-mesenchymal transition, and extracellular matrix remodeling. In COPD/PAH, S100A1, S100A4, S100A8/9,
and S100A12 are involved in airway smooth muscle proliferation, vascular remodeling, and vasoregulatory imbalance. Reported interactions with
signaling pathways, transcriptional regulators, and environmental stressors are indicated. ECM, extracellular matrix; EMT, epithelial mesenchymal
transition; GM-CSF, granulocyte-macrophage colony-stimulating factor; NO, nitric oxide; S1P, sphingosine 1 phosphate; SMC, smooth muscle cell;
TGF-B, transforming growth factor- g.
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S100 proteins induce inflammation
and airway remodeling in asthma

Asthma is a chronic inflammatory disease of the airways
characterized by bronchoconstriction, elevated levels of allergen-
specific IgE, airway hyperresponsiveness and remodeling (41).
Until now, S100A4, S100A8/S100A9 (calprotectin), SI00A11, and
S100A12 have been implicated in the pathophysiology of asthma,
exhibiting both similarities and differences in their mechanisms
of action.

S100A4, also known as fibroblast-specific protein 1 (FSP1),
contributes to asthma by promoting inflammation and epithelial-
mesenchymal transition (EMT) in the airway (42). Similarly,
in pleural fibrosis, S100A4 has been demonstrated to stimulate
the production of transforming growth factor-p (TGF-B) and
facilitate epithelial-mesenchymal transition (EMT) in pleural
mesothelial cells (43). While this specific mechanism has not been
investigated in asthma, it is plausible that S100A4 plays a similar
role in the airway remodeling observed in asthmatic patients.
Notably, during episodes of exacerbated inflammation, cytokines
such as IL-13 and TNF-a trigger the release of S100A4 from
airway smooth muscle cells. The secreted S100A4 subsequently
engages the RAGE, thereby activating the Akt/NF-«kB signaling
pathway (44). This activation results in the synthesis of eotaxin
and further production of S100A4, consequently establishing a
positive feedback loop that could perpetuate inflammation in
individuals with asthma. Diagnostically, elevated levels of SI00A4,
like calprotectin, in the sputum of asthmatic patients correlate
with airway hyperresponsiveness, providing evidence of its role in
disease exacerbation. Thus, S100A4 neutralizing antibodies have
shown promising results of reducing airway hyperresponsiveness
and inflammation and preventing fibrosis in animal models (42).

The S100A8/A9 heterodimer plays a dual role in asthma
pathogenesis, depending on the inflammatory milieu and asthma
subtype. During infection and inflammation, extracellular
S100A8/9 levels rise and engage TLR4 on bronchial epithelial
cells, activating MAPK and NF-kB pathways to induce neutrophil
survival cytokines such as MCP-1, IL-6, and IL-8 (45, 46), thereby
intensifying airway inflammation. Aligned to that, elevated
S100A8/A9 levels are observed in the serum and sputum of
asthmatic patients, particularly during episodes of exercise-
induced bronchoconstriction (47), without any difference between
the subgroups of asthma or compared to COPD (48, 49). In
addition, elevated expression of SI00A8/9 was observed in lungs
of mouse model of asthma, a finding that aligns with observations
in human asthma patients. In these patients, calprotectin levels
were associated with several clinical parameters, including the
ratio of forced expiratory volume in one second to forced vital
capacity, smoking history, body mass index, and the percentage of
neutrophils in the blood (49). In contrast, in allergic, Th2-driven
asthma, SI00A8/A9 exerts a regulatory function. In wild-type mice,
Alternaria alternata challenge augmented S100A8/A9 release into
the alveolar space and elevated its expression in the epithelium.
Compared to wild-type, SI00A9-deficient mouse model displayed
severe airway inflammation, marked by elevated IL-13, CCL11,
CCL24, serum IgE, eosinophil recruitment, and increased airway
resistance and elastance. The study suggests SI00A9-mediated
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protection occurs via regulation of CD4+ T CD25'°" regulatory
T (Treg) cells (50). However, S100A9 levels in sputum are seen
higher in neutrophilic uncontrolled asthma patients compared to
controlled asthma cases (51). A therapeutic potential for SI00A9
was demonstrated in rats by significantly reducing isometric
tension of isolated tracheal spirals (52). This dual functionality
underscores its context-specific nature, acting as an inflammatory
amplifier in innate immune settings and a modulator in adaptive,
allergic responses, with its net impact depending on the prevailing
immunological profile of the disease.

S100A11 has an immunomodulatory effect in asthma.
S100A11-gene derived circular RNA (circS100A11) is significantly
higher in monocytes of pediatric asthma patients. circS100A11
enhances S100A11 expression that promotes STAT6-mediated
M?2a macrophage activation and exacerbates lung inflammation in
mouse model (53). However, an airway smooth muscle cell (ASMC)
relaxing effect by S100A11 is also reported in an allergen-induced
asthma model (54). Recombinant S100A11 treatment in OVA-
challenged rat results in a reduced airway hyperresponsiveness
(AHR), and it reduces acetylcholine-induced myosin light chain
phosphorylation in ASMC, in a calcium-independent manner. It
denotes there may be cell-type specificity existing in response to
S100A11 (54). Whether S100A11 has any impact on mast cells,
histamine release or any other broncho-constrictive pathways
still need to be addressed. The role of S100A11 in promoting
inflammation to ward off infections/allergens while also providing
a compensatory relaxation effect in ASM cells underscores the
complexity of S100 proteins in asthma and their potential as targets
for nuanced therapeutic strategies (53, 54).

S100A12, as well as SI00A8 and S100A9, was shown to activate
TLR4 and RAGE in normal bronchial epithelial cells and lung
carcinoma cells in vitro to produce MUC5AC, a predominant
protein in mucin (51). Since mucin production is a common feature
in severe asthma, this observation underscores the importance of
these S100 proteins in airway congestion, and their regulation could
be of therapeutic value.

It is evident that S100 proteins contribute to inflammation
and remodeling in asthma, often via RAGE and TLR4, yet vary
in cellular targets and mechanisms. Diagnostically, they may serve
as markers of severity and phenotype; prognostically, they could
predict progression in severe asthma.

S100 proteins increase chronic
inflammation in COPD

COPD is a progressive disease marked by persistent airflow
limitation due to neutrophilic airway inflammation, emphysema,
and vascular remodeling. S100 proteins play critical roles in
both the inflammatory and structural components of COPD.
Serum levels of S100A1 distinguish cachectic COPD patients from
non-cachectic ones, establishing it as a biomarker for COPD
progression, particularly in the context of cachexia (55).

Increased S100A4 levels in the remodeled intrapulmonary
arteries may be an indication of this protein’s involvement in
vascular remodeling of COPD patients (56). Likewise, elevated
S100A4 levels in the serum in conjunction with sphingosine 1
phosphate (S1P) correlate with reduction in lung function (57).
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TABLE 2 S100 proteins in different lung diseases.

S100 Intra/extracellular  Lung disease/ Potential diagnostic Clinical implications
protein (secreted) or both  condition location of S100 protein
S100A1 Intracellular COPD, Pulmonary Tissue Primarily intracellular in cardiomyocytes and smooth
hypertension muscle cells, linked to pulmonary hypertension
(55,203).
S100A2 Both Pulmonary fibrosis Tissue Elevated in fibrotic lung tissue (78).
Lung cancer (SCC) Serum Increased in tissue, (98) serum (97).
S100A3 Intracellular Pulmonary fibrosis Elevated in fibrotic lung tissue (78).
S100A4 Both Asthma Sputum Increased in sputum (204), contributes to airway
remodeling and inflammation.
COPD Serum Increased in lung and serum (57)
Pulmonary fibrosis BALF Increased in tissue and BALE, activates fibroblast to
myofibroblasts (87).
Lung cancer Tissue Increased in tissue, promotes metastasis in lung cancer
by inducing EMT (105).
S100A5 Intracellular NSCLC Tissue Increased mRNA. Correlate with worst prognosis in

non-smoking NSCLC (109).

S100A6 Both Pulmonary Fibrosis Tissue Increased in BALF and biomarker for lung fibrosis and
vascular damage (85).

Lung Cancer Serum May help to predict lymph node metastasis in ADC
(112). Diagnostic marker for early NSCLC (113).

Acute lung injury Serum S100A6 plays a role in airway repair and lung injury
after EGFR-TK inhibitor treatment (160).

S100A7 Extracellular Lung Cancer Lung tissue Elevated in cancer tissue, transdifferentiation process
from ADC to SCC, poor prognosis
(121, 123, 124, 205-207).

S100A8/9 Both Asthma BALE, sputum Elevated levels linked to inflammation during
exercise-induced bronchoconstriction (47).

COPD Lung tissue, BALE, sputum Elevated, chronic inflammation, biomarker
identification, and disease progression in COPD (60).

Cystic fibrosis Sputum, BALE, nasal tissues, mucosa, | Elevated levels in children suggest their potential as
serum biomarkers and therapeutic targets (63, 64).
Pulmonary fibrosis BALF Elevated levels are associated with lung fibrosis severity

in systemic sclerosis, linked with poor prognosis (91).

Lung cancer Sputum, Serum, May be used as biomarker in smokers with asbestos
exposure for early detection of lung cancer (130, 131).
Elevated in advanced stages, play role in metastasis,
poor prognosis (208).

COVID-19 Serum Elevated in lung tissue, mucus hypersecretion, regulates
mast cells (172, 209, 210).

Post lung transplant Plasma Elevated levels associated with prolonged ischemic
injury times, poorer outcomes, and may be potential
therapeutic targets (211, 212).

Acute lung injury Lung tissue Neutrophil recruitment (161).
S100A10 Asthma PBMC circS100A11 M2a macrophage activation (53).
COVID-19 Peripheral blood cells Associated with inflammation, disease severity, and
reduced lymphocyte counts in COVID-19 patients
(177).
S100A11 Intracellular COPD BALF, sputum and serum Increased activity promotes inflammation (164).
PAH Plasma S100A11 promotes vascular remodeling (76).
Lung cancer Tissue Increased in ADC and SCC tissues, reduced in SCLC

(142). Plays role in chemoresistance, metastasis, poor
prognosis (144).

(Continued)
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S100A12 Both Asthma BALEF, sputum Associated with increase in IgE (213).
Cystic fibrosis Airway fluids Increased expression contributes to inflammation (68).
ILD Blood and BALF Elevated and associated with disease severity (94).
ARDS Increased along with sSRAGE and HMBG1 (164).
S100A13 Both Pulmonary fibrosis Low levels in lungs Truncated form associated with familial pulmonary
fibrosis (79).
Lung cancer (ADC) Serum Associated with poor survival rate, angiogenesis (146).
Strong association with metastasis (148), poor survival
rate, and angiogenesis (146).
S100A14 Both Lung cancer Tissues, serum Linked with distant metastasis, prognostic marker
(152).
S100A15 Both Lung cancer (ADC) Tissues, serum Poor prognosis marker in ADC (214).
S100A16 Both COPD BALEF sputum, serum Elevated; induces cognitive impairment (215).
S100B Extracellular Lung cancer (ADC) Tissue, serum Early tumor initiation and reduced at late stages (155),
promotes brain metastasis (153).
Covid-19 Serum Elevated (175).

ADC, adenocarcinoma; ARDS, acute respiratory distress syndrome; BALF, bronchoalveolar lavage fluid; COPD, chronic obstructive pulmonary disease; EMT, epithelial-mesenchymal transition;
HMBG1, high mobility group box 1; ILD, Interstitial lung disease; NSCLC, non-small cell lung cancer; PAH, pulmonary arterial hypertension; PBMC, peripheral blood mononuclear cells; SCC,

squamous cell carcinoma; sSRAGE, soluble RAGE.

The predominant role of S100A8/9-mediated RAGE activation
in COPD is evident from the observation that lower levels of
S100A8/9 in RAGE-deficient mice result in decreased cigarette
smoke-induced inflammation (58). Chronic inflammation, reduced
lung function (59), and IL-17-related signaling in COPD are
linked to upregulated S1I00A8 and S100A9 or their heterodimer
in dendritic cells (60). Additionally, increased SI00A8/A9 levels
in smokers with COPD indicate their potential as biomarkers for
diagnosis and tracking disease progression (61).

Elevated S100A12 levels in the airways and blood are associated
with poor prognosis in COPD, making it a potential biomarker
for disease progression (62). SI00A12 effect is mediated through
RAGE, while its soluble form, SRAGE, functions as a decoy receptor
that limits the inflammation. Low sSRAGE levels are linked to severe
emphysema and chronic cor pulmonale, promoting the activation
of neutrophils and macrophages and contributing to tissue damage.

S100 proteins regulate
neutrophil-mediated inflammation in
cystic fibrosis

Cystic fibrosis (CF) is characterized by chronic neutrophilic
inflammation and progressive lung damage due to mutations in the
CFTR gene. S100 proteins, particularly calprotectin and S100A12,
play critical roles in sustaining this inflammation. A marked
increase in exocytosis of SI00A8/A9 in the airways of CF patients
contributes to the perpetuation of neutrophilic inflammation (63,
64). The G551D CFTR mutation leads to dysregulated calcium
signaling, which in turn activates S100A8/A9 and promotes
the release of pro-inflammatory cytokines. These proteins drive
neutrophil degranulation, resulting in the release of proteases and
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reactive oxygen species (ROS), which cause damage to the airway
epithelium and exacerbate lung injury. Elevated levels of SI00A8
associated with hyperactive immune response have been observed
in experimental models of CF (65, 66).

Coupled with a deficiency of sRAGE (67), increased levels
of S100A12 in the airways interact with RAGE, followed by
activation of the p38 MAPK pathway in neutrophils leading to the
continuous release of pro-inflammatory mediators, contributing to
chronic inflammation, worsening CF progression, and impaired
lung function (11, 67, 68).

S100 proteins regulate vascular
remodeling in pulmonary arterial
hypertension

Pulmonary arterial hypertension (PAH) is characterized by
increased pulmonary artery pressure due to vascular remodeling,
which results in right heart failure (69). S100 proteins have
been implicated in the regulation of vascular homeostasis and
remodeling in PAH.

Vascular endothelium-derived S100A1 regulates vascular
effects by influencing nitric oxide (NO) production (70, 71).
Reduced lung endothelial S100A1 levels may diminish NO
expression, which leads to pulmonary vasoconstriction and
potentially to PAH (72). The therapeutic potential of S100A1
in PAH was demonstrated by the administration of exogenous
S100A1 to S100A1 knockout (KO) mice, leading to improvements
in pulmonary artery pressure, vascular resistance, and endothelial
cell survival (73).

S100A8/A9 also contributes to vascular remodeling in PAH
by promoting smooth muscle cell proliferation and migration.
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Through RAGE signaling, S100A8/A9 enhances the expression
of pro-inflammatory cytokines and growth factors, including
PDGE, which accelerates the pathogenesis of pulmonary vascular
remodeling (74).

Elevated levels of SI00A1l are observed in the plasma of
PAH patients (75). Under hypoxic conditions, hypoxia-inducible
factor 1-a (HIF-1-a) induces upregulation of SI00A11 mRNA
in rat lungs, along with increased taurine levels. Administration
of taurine attenuates HIF-1-a-induced transcriptional activation
of S100A11, suppressing vascular remodeling. This suggests that
S100A11 is a potential therapeutic target for vascular remodeling in
pulmonary diseases and that taurine could be a treatment to inhibit
hypoxia-induced vascular remodeling (76).

S100 proteins mediate EMT in
pulmonary fibrosis

Pulmonary fibrosis (PF) is characterized by the excessive
deposition of extracellular matrix (ECM) components and
progressive scarring of lung tissue (77). Several S100 proteins,
notably S100A2, S100A3, S100A4, S100A6, S100A8/A9 and
S100A13 are deeply implicated in the mechanisms underlying
fibrotic progression.

Elevated levels of S100A2 are found in lung tissues of PF
patients. Its downregulation inhibits TGF-pl-induced EMT by
blocking p-catenin expression and GSK-3f phosphorylation in
A549 cells. Lithium chloride, a Wnt/B-catenin pathway activator,
reverses EMT inhibition caused by S100A2 silencing, suggesting a
potential treatment for PF by the inhibition of S100A2 (78).

S100A3 and S100A13 mutations are particularly relevant in
the context of familial early-onset pulmonary fibrosis (PF), with
our research showing that these mutations disrupt key cellular
processes that contribute to fibrosis (Figure 3). S100A3 mutations
impair calcium signaling, disrupting cellular homeostasis, while
S100A13 mutations affect mitochondrial function and cytoskeletal
dynamics via vimentin, driving early fibrotic changes. These
dual disruptions in S100A3 and S100A13 affect both intracellular
and extracellular processes essential for fibrosis. Our findings
suggest that targeting these proteins, or their downstream effects,
could help reverse the defective signaling pathways and provide
therapeutic benefit in familial PF cases, potentially preventing
excessive fibrotic remodeling (79-82).

M2 macrophage-released S100A4 activates lung fibroblasts
through sphingosine 1 phosphate (S1P) signaling pathway to drive
fibrosis (83-85). Nuclear translocation of S100A4 by making a
complex with CD44 and transportinl enhances the fibrogenic
potential of mesenchymal progenitor cells. The nuclear S100A4
interacts with the proteasome to degrade p53 is crucial in
fibrogenesis (86). In vivo studies have demonstrated that S100A4
deficiency protects against pulmonary fibrosis, consistent with its
abnormal increase in human IPF (87).

S100A6 plays a major role in maintaining lung integrity by
involving itself in tissue repair and fibroblast proliferation in
response to mechanical stress (88, 89). S100A6 is elevated in
BALF samples from PF-systemic sclerosis patients compared to
smoker and non-smoker controls (85). The interaction between
S100A6 and RAGE plays a vital role in mediating inflammatory
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and oxidative damage from prolonged cigarette smoke or radon
exposure. This underscores SI00A6 as a potential biomarker and
therapeutic target against environmental-induced lung damage.

Elevated S100A8/A9 expression in lung, BALF and blood is
correlated with the severity of PF-systemic sclerosis patients as
well as sarcoidosis (90, 91). The main sources of SI00A8/9 in the
lung are macrophages and neutrophils. Upon an inflammatory
signal, they release SI00A8/9, which is released into the lung
ECM and blood. The fibroblasts in the ECM get activated via
RAGE and transdifferentiate into myofibroblasts. The expression
of pro-inflammatory cytokines, collagen, and «a-SMA are all
found elevated and associated with myofibroblast formation
(92). Moreover, during acute exacerbations of IPE increased
serum S100A8/A9 concentrations are linked to poor prognostic
outcomes and reduced survival, proposing their use as prognostic
markers. Exposure to zinc oxide nanoparticles can elevate
respiratory S100A8 and S100A9 levels, potentially increasing
lung inflammation and exacerbating fibrotic and cancerous
conditions (93).

Elevated S100A12 levels in blood and BALF of patients with
idiopathic interstitial pneumonias (IIP) and IPF are associated with
disease severity and can be used as prognostic markers, particularly
in IPE, where higher levels indicate a poorer prognosis (94).
S100A12 inhibits physiological fibroblast migration for tissue repair
through RAGE-p38 MAPK signaling. Targeting the S100A12-
RAGE-p38 MAPK pathway could be beneficial for pulmonary
disorders with abnormal tissue remodeling (95).

In pulmonary fibrosis, S100 proteins collectively drive
inflammation, fibroblast activation, and ECM deposition, often via
RAGE-mediated pathways. However, there are notably divergent
roles among them; for example, S100A4 and S100A6 directly
promote fibroblast activity and remodeling, while S100A8/9 and
S100A12 amplify inflammation and serve as prognostic markers.
S100A2 uniquely regulates EMT. However, normal function
of SI00A3 and S10013 appears to be important for normal
physiology of lungs, and certain mutations in SI00A3 and S100A13
contribute to familial PF. On the other hand, S100A6 responds
to environmental triggers and leads to its abnormal expression
leads to fibrogenesis. These contrasting functions underscore the
complexity of S100 proteins in PF and their promise as tailored
diagnostic and treatment targets.

S100 proteins in lung cancer

Lung cancer, particularly non-small cell lung carcinoma
(NSCLC), is a heterogeneous disease encompassing various
subtypes, each characterized by distinct molecular and clinical
features (96). The S100 proteins, present primarily in NSCLC and
its early-stage expression significantly influence tumor progression
and therapy resistance, emerging as potential biomarkers and
therapeutic targets in disease management. Their specific role in
small cell lung carcinoma (SCLC) is limited and, in some cases,
yields negative results. A comprehensive figure capturing the roles
of S100 proteins in lung cancer is provided in Figure 4.

Elevated levels of S100A2 in the serum of NSCLC patients
serve as a potential diagnostic and prognostic biomarker, especially
in early-stage disease and development of metastasis (97-99).
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The impact of SI00A3 and S100A13 mutations and the reduction of wild-
(c.229C > T; Arg 77 to Cys) and S100A13 (c.238-241delATTG) proteins lead to functional alterations, affecting calcium signaling and telomerase
reverse transcriptase (TERT) expression. The mutant variants of SI00A3 and S100A13 affect Ca®* signaling, mitochondrial dysfunction, and ECM
remodeling by the increased expression of MMPs and decrease in TIMP1. S100A13 interacts with vimentin intermediate filaments (IF), but mutations
cause dissociation, leading to defects in vimentin IF assembly. These genetic changes contribute to mitochondrial dysfunction and tissue damage. In
sporadic cases of pulmonary fibrosis, age-related declines in SI00A3 and S100A13 protein expression can contribute to susceptibility to developing
pulmonary fibrosis. TERT, telomerase reverse transcriptase; Vim IF, vimentin intermediate filament.

type S100A3 and S100A13 while aging on lung fibrosis. Mutations in ST00A3

Lung adenocarcinoma (ADC), squamous cell carcinoma (SCC),
large cell carcinoma, and atypical carcinoids show high S100A2
expression, while small cell lung carcinoma (SCLC) lacks S100A2
expression (100). Studies reveal that TFAP2A, a transcriptional
regulator, increases SI00A2 expression, a distinct molecular marker
for pre-invasive stages of ADC (101) and this elevation contributes
to ADC metastasis by regulating glutamine metabolism (102).
Although S100A2 mutations that can be attributed to NSCLC are
rare, alterations in the gene have been identified in lung SCC
samples (103). Even though SI00A3 does not have a direct effect
on pathogenesis of lung cancer, it alters the response of lung cancer
cells to all-trans retinoic acid (ATRA) treatment by interacting with
retinoic acid receptor-alpha (RARa) transcription factor, which
results in the degradation of RARa and promyelocytic leukemia
(PML)-RARa receptor (104).

High expression of S100A4 facilitates NSCLC metastasis and
immunosuppression via exosomes and the STAT3 pathway, which
results in poor tumor differentiation, inhibition of autophagy,
and worse prognosis (105, 106). S1I00A4 enhances breast-to-lung
metastasis through stanniocalcin 1 (STC1). Inhibiting S100A4
reduces STCl-induced metastatic colonization, indicating its
promise as a therapeutic target (107). S100A4 influences lung
cancer cell metabolism by regulating mitochondrial function and
oxygen consumption, with reduced levels promoting a shift to
glycolysis and less aggressive behavior (108).
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Increased expression of S100A5 mRNA has been noted in
NSCLC, and it is correlated with worse prognosis in non-
smoking NSCLC patients (109). Bioinformatic analysis of TCGA-
derived lung SCC data identified S100A5 as a key immune-
related differentially expressed gene (DEG) for constructing a
prognostic model. Integration of SI00A5 with ten other genes
enables effective prognosis assessment, and this model offers
insights for personalized immunotherapy and improved diagnostic
strategies for SCC (110).

S100A6 signaling through RAGE may be involved in lung
cancer pathogenesis (111), and it is a promising diganostic marker,
like S100A2, for early stage NSCLC detection. Its differential
expression distinguishes NSCLC from SCLC, correlating with
advanced stages and metastasis in lung ADC (112) and worse
outcomes in older SCC patients and poorly differentiated
tumors (113-115). Hypermethylation of S100A6 promotor
confers radiation resistance in NSCLC cell line H1299 (116).
Overexpression of S100A6, driven by miR-193a (117) or by
HIF-1-a-induced hypermethylation (118) of the SI00A6 promoter
region, has been linked to the promotion of lung cancer cell
proliferation, invasion, migration, and angiogenesis. However, a
study suggests that SI00A6 expression and its post-translational
modifications correlate with improved outcomes in stage 1 NSCLC
patients, especially in tumors without p53 expression, suggesting a
pro-apoptotic role and potential interactions with p53 (119).
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S100 proteins contribute to various aspects of lung cancer progression, metastasis,
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S100A7 act as metabolic regulator in lung ADC (120), driving
glycolytic and glutaminolytic pathways, and Hippo pathway-
mediated overexpression of it accelerates trans-differentiation from
lung ADC to SCC and is associated with poor prognosis (121-
123). Silencing S100A7 reduces proliferation, NF-kB activity, and
proliferation in lung cancer cells (122, 124). TGFp-induced IncRNA
(TBILA) activates the SI00A7-JAB1 signaling pathway, which plays
a critical role in regulating the cell cycle and contributes to the
progression of NSCLC (125).

S100A8/A9 plays a role in metastasis, as shown in SBC5
(small cell lung carcinoma cell line) invasion via the SI00A8/A9-
IL6R-TLR4 pathway, a key mechanism facilitating osteolytic
activity in bone metastases (126). RAGE-expressing melanoma
cells are chemotactically attracted by SI00A8/A9 to lung (127). In
NSCLC, S100A8, S100A9, and S1I00A12 proteins serve as potential
biomarkers and assist in monitoring therapeutic responses (128,
129). Elevated S100A8 and/or S100A9 levels in male NSCLC
and subtype patients, smokers, and those with advanced disease
correlate with survival outcomes, suggesting their potential as
prognostic markers (130-132). Increased plasma S100A8 levels in
NSCLC patients with venous thromboembolism (VTE) suggest its
use as a biomarker for VTE diagnosis (133).

Elevated levels of S100A10 are associated with advanced
cancer progression, lymph node metastasis, and poor prognosis
in lung cancer types, particularly in ADC and SCC (134, 135)
attributed to its role in enhanced cell proliferation, invasion
via the Akt-mTOR pathway, and increased glycolysis (136). In
breast cancer, elevated SI00A10 corresponds to lung metastasis,
especially the aggressive triple-negative subtype, as supported by
both human data and S100A10-deficient mouse models (137, 138).
Mechanistically, the interaction of SI00A10 with tumor suppressor
DLC1 facilitates metastasis, while its binding with AnxA2
contributes to chemotherapy resistance (139, 140). Additionally,
co-elevated levels of S100A10, fibronectin, and tenascin-C in lung
tumor ECM highlight their potential as a combined biomarker for
predicting patient survival (141).

In ADC and SCC, elevated SI00A11 expression in patient lung
tissues and serum is associated with poor differentiation, KRAS
mutations, shorter disease-free survival (142), advanced tumor
stages and metastasis (143), and chemoresistance, as reducing its
expression sensitizes cancer cells to chemotherapy like cisplatin
(144). In contrast to NSCLC, the expression of S100A11 is low in
SCLC (145).

Elevated expression of S100A13 in early-stage NSCLC is
associated with poorer overall survival and disease-free survival
rates. It contributes to enhanced angiogenesis within tumors,
promotes invasive behavior of lung cancer cells, and serves as a
potential prognostic marker, with higher levels observed in more
aggressive cancers (146, 147).

Analyses of lung ADC cases have shown frequent upregulation
of S100A14 in tumor tissues and serum correlating strongly with
poor differentiation, metastasis, advanced disease stage, smoking
history, EGFR mutations, and unfavorable patient outcomes (148,
149). Murine studies have also confirmed that S100A14 is involved
in lung metastasis, and in vivo knockdown reaffirms its metastasis-
promoting effects (150).

S100A15 has gained attention as an important biomarker
in lung cancer progression and prognosis, particularly in lung
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ADC. Analysis of 178 lung cancer specimens revealed that
increased nuclear S100A15 expression is associated with distant
metastasis and reduced survival in patients on first-line therapy
and predicting three-year mortality (151). Hypomethylation of the
S100A15 promoter at sites —423 and —248 correlates with disease
progression and decreased one-year survival (151). SI00A15 also
modulates immune response in NSCLC. Upregulation of SI00A15
alongside DOK?2 in patients pre- and post-chemotherapy identifies
it as a potential biomarker for tumor staging and prognosis (152).

High serum S100B levels are proposed as a sensitive biomarker
for early detection of brain metastasis in lung ADC (153,
154), promoting proliferation, migration and invasion inhibiting
apoptosis as seen in the PC14/B cell line.

S100P plays a stage-dependent and context-dependent role in
lung cancer as observed from two different studies. Rehbein et al.
(155) report lung ADC expresses S100P in early/T1 stage, but not
in advanced/T2 stage, suggesting early tumor initiation rather than
aggressive growth in advanced stages. Overexpression of S100P
in H358 cell lines promoted colony formation but paradoxically
reduced proliferation and migration. Moreover, SI00P expression
was found to regulate itself by transcriptional feedback (155).
In contrast, Hsu et al. (156) report S100P as a pro-metastatic
oncogenic driver in lung cancer. S100P promotes migration,
invasion, EMT, and metastasis via integrin «7 and downstream
FAK/AKT/Src/ZEB1 signaling. Chein et al. (157) also suggest
metastatic potential of SI00P as Keapl mediated reduction in
S100P levels and decreases metastasis of NSCLC cells. It was
also noted that knocking down S100P expression by shRNA
in NSCLC animal models reduced angiogenesis and metastasis
(158). S100P along with GATA3 and napsin A expression help to
distinguish lung-derived bladder adenocarcinoma from primary
bladder adenocarcinoma (159).

S100 proteins in acute lung injury (ALI)
and acute respiratory distress
syndrome (ARDS)

ALI and ARDS are conditions characterized by the rapid onset
of inflammation and damage to lung tissue, leading to impaired gas
exchange and respiratory failure. S100 proteins play critical roles
in modulating release of proinflammatory cytokines, inflammatory
pathways and neutrophils and macrophages responses during these
lung injuries.

In ALI, S100A6 is involved in airway epithelial recovery
and may affect inflammation and lung damage following EGFR-
tyrosine kinase inhibitor treatment (160). Upregulation of SI00A6,
S100A8, and StefinA3 during airway epithelial repair with gefitinib
treatment can increase neutrophil retention, worsening ALI (160).

ALT highlights the role of ST00A8/A9 in neutrophil recruitment
via TLR4 pathways in alveolar epithelial cells (161). While both
proteins can influence neutrophil influx and inflammation, the
heterodimer S100A8/A9 exhibits distinct effects. SI00A9 promotes
mild inflammation through mast cell degranulation and chemokine
upregulation, but unlike SI00A8, does not induce proinflammatory
mediators. Both S100A8 and S100A9 can reduce neutrophil
influx in LPS-induced lung injury, potentially through shared
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mechanisms like sirtuin-1 activation and STAT3 signaling. These
findings highlight the distinct roles of S100A8, S100A9, and their
heterodimer in lung homeostasis (162).

Elevated levels of S100A12 in BALF and pulmonary
tissue suggest its association with neutrophil activation and
inflammation. Proinflammatory effects of S100A12 are likely
mediated through its interaction with the RAGE receptor,
contributing to endothelial activation and further exacerbating
lung injury (163). In ARDS, patients exhibit elevated sRAGE,
HMGBI, and S100A12 levels, with decreased esRAGE and AGEs.
These changes in RAGE isoforms and ligands, including S100A12,
differentiate ARDS patients, suggesting a potential role of the
RAGE/S100A12 axis in the disease process (164). SI00A12 levels in
BALF offer promise in distinguishing ARDS from conditions like
CF and COPD (165).

Role of S100 proteins as biomarkers in
COVID-19 and long COVID

Elevated mRNA expression of SI00A6, S100A8, SI00A9, and
S100P, have been identified in the nasal swabs of COVID-19
patients. They also identified thioredoxin significantly upregulated
in those patients. Thioredoxin inhibitor Auranofin has been found
effective to mitigate SARS-CoV-2 replication in hamster model.
However, a relationship between S100 proteins and thioredoxin was
not elucidated in this study (166). SI00A8/A9 is most predictive
of severe disease and long COVID, driving cytokine storms and
chronic inflammation via TLR4/RAGE (167). In severe COVID-
19, elevated S100A8/9 levels drive emergency myelopoiesis, leading
to the generation of immature neutrophil subsets and resulting
in dysfunctional innate immune responses (168, 169). S100A8/9
can activate these immature neutrophils, and macrophages via
TLR4 to induce the production of IL-6, TNF-1a, and SI00A8
itself in a positive feedback loop to sustain this cycle of events
(169). It has been shown that SI00A8/A9 induces IL-8 release
from bronchial cells and triggers pro-inflammatory responses
in endothelial cells (170). High serum levels of S100A8/A9 in
patients at hospital admission correlate with poor outcomes and
predict severe disease (171). Transcriptomic analyses have shown
overexpression of S100A8, S100A9, S100P and S100A12 in lung
tissue from fatal COVID-19 patients (172, 173). S100B levels are
also found significantly higher in 38% of ICU admitted COVID-
19 patients without any clinical evidence of brain injury. It was
also higher in patients succumbed to death compared to those who
survived. S100B levels in those patients were correlated with IL-6
levels, illness severity and lymphocyte count. However, the exact
cellular source of S100B in these patients remains elusive (174, 175).
Tissue hypoxia, critical illness and systemic inflammation may be
activating/injuring glial cells to secrete S100B (176). Additionally,
the levels of S100A4, S100A9, and S100A10 have been shown to
influence inflammation and disease severity, associating them with
ALI and reduced lymphocyte counts in COVID-19 patients (177).

In the context of long COVID, sustained elevation of
S100A8/A9 and inflammatory cytokines like IL-1f, IL-6, and
TNFa indicate a chronic pro-inflammatory state, driven by a
TLR4/RAGE feedback loop (178). This ongoing inflammation
contributes to multi-organ symptoms such as fatigue, brain fog,
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and persistent inflammation, even after the virus is cleared
(179). The continuous expression of proinflammatory cytokines
is key to maintain long COVID symptoms (180). Targeting S100
proteins and their pathways offers a potential therapeutic strategy
in this condition. Early treatments using inhibitors like ezrin
peptides (181) and tocilizumab show promise in disrupting this
inflammatory cycle (182). Additionally, inhibition of the binding
of SI00A8/A9 to TLR4 by paquinimod has shown it can reverse
abnormal neutrophil activity and reduce mortality in coronavirus-
infected mice (183). Additionally, long-term longitudinal studies
have revealed specific perturbations in the immune system,
including upregulated expression of SI00A8/A9 and associated
markers, even 6 months after acute SARS-CoV-2 infection (40).
This persistent immune activation underscores the potential for
S100 proteins to serve as both biomarkers and therapeutic
targets in the management of COVID-19 and its long-term
sequelae (Figure 5).

S100 proteins as early biomarkers and
therapeutic targets of graft rejection in
lung transplantation

In the context of lung transplantation, elevated levels of S100
proteins such as S100A8, S100A9, and S100A12 can serve as
early biomarkers of graft rejection or complications like graft-
vs.-host disease. Higher plasma S100A8/A9 levels are associated
with prolonged ischemic times and poorer outcomes post-lung
transplantation. Treatment with an anti-S100A8/A9 antibody
in bronchiolitis obliterans syndrome post-lung transplantation
reduces myofibroblast infiltration and inflammation. Because of
the damage-associated molecular patterns (DAMPs), they interact
with receptors like TLR4 and RAGE, leading to the recruitment
and activation of immune cells and the secretion of pro-
inflammatory cytokines (184, 185). This inflammatory response
can be indicative of transplant rejection or other immune-
mediated events, making S100 proteins valuable for monitoring and
managing post-transplant inflammation and immune responses in
lung transplant patients.

Clinical relevance and biomarker
potential

S100 proteins mediates its effect through signaling pathways
like RAGE and TLR4, influencing inflammatory mechanisms
common to many lung diseases. Their functions vary by context,
for example, S100A4 is involved in both tissue remodeling and
metastasis, while S100A11 affects inflammation and chemotherapy
resistance depending on the microenvironment. These insights
suggest S100 proteins could serve as biomarkers for disease severity,
prognosis, and therapeutic response; for instance, high levels of
S100A8/A9 may indicate severe COVID-19 or pulmonary fibrosis,
and S100A12 and S100A8/A9 can help monitor graft rejection
in lung transplant patients. The main challenge lies in validating
these proteins as reliable biomarkers and integrating them into
clinical practice.
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Role of S100 proteins in the pathogenesis of COVID-19 and long COVID.
macrophages, leading to the release of S100A8/9, which binds to TLR4 and RAGE receptors. This interaction triggers an inflammatory feedback loop,
promoting neutrophil activation and the production of immature neutrophils in the bone marrow. Elevated S100A8/9 levels contribute to severe
COVID-19 by inducing ARDS, sepsis, and multiorgan damage through the release of IL-6, TNF-a, and CXCL2. On the other hand, severe COVID-19
increases the systemic inflammation and tissue hypoxia that leads to increased expression of S100B levels. Persistent viral epitopes and unresolved
infammation perpetuate long COVID, with S1I00A8/9 continuing to drive TLR4 and RAGE activation. ARDS, acute respiratory distress syndrome;
CXCL2, chemokine (C-X-C Motif) ligand 2; TNF-a, tumor necrosis factor-

SARS-CoV-2 infection activates lung epithelial cells, neutrophils, and

alpha.

Conclusion

In recent years, there has been significant progress in unraveling
the roles of S100 proteins in pulmonary diseases, offering potential
therapeutic avenues. Despite advancements in understanding S100
protein biology, gaps persist in comprehending the mechanism
of many S100 proteins in the etiology of many diseases.
Interestingly, the ongoing COVID-19 pandemic has brought to
light the potential implication of S100 proteins in tissue damage,
highlighting the imperative for further exploration in this field.
Continued research on the intricate interactions and signaling
mechanisms of S100 proteins is crucial for devising diagnostic
biomarkers and innovative therapeutic targets to tackle lung
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diseases effectively. The ongoing research on S100 proteins may
promise future development of tailored therapies in the domain of
respiratory medicine.

Points for clinical practice and future
research

S100 proteins are emerging as promising biomarkers and
therapeutic targets, with significant potential in lung diseases, such
as elevated levels of SI00A8/A9 (calprotectin) correlating with
severe COVID-19 and cytokine storms, which suggests their utility
as predictive markers. Monitoring these proteins may also help
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identify patients at risk for long COVID. Given their role in
inflammation, airway remodeling, and tumor progression, S100
proteins are valuable for therapeutic development in pulmonary
diseases. However, further research is needed to understand
their molecular mechanisms in inflammation, protein-protein
interaction, and synergy with other S100 proteins in disease
progression and tumor metastasis, as well as their broader potential
as cross-disease biomarkers, to enhance clinical applications.
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