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Background: This study evaluates how AI enhances EHR efficiency by comparing 
a lung cancer-specific LLM with general-purpose models (DeepSeek, GPT-3.5) 
and clinicians across expertise levels, assessing accuracy and completeness in 
complex lung cancer pathology documentation and task load changes pre−/
post-AI implementation.

Methods: This study analyzed 300 lung cancer cases (Shanghai Chest Hospital) 
and 60 TCGA cases, split into training/validation/test sets. Ten clinicians (varying 
expertise) and three AI models (GPT-3.5, DeepSeek, lung cancer-specific LLM) 
generated pathology reports. Accuracy/completeness were evaluated against 
LeapFrog/Joint Commission/ACS standards (non-parametric tests); task load 
changes pre/post-AI implementation were assessed via NASA-TLX (paired 
t-tests, p < 0.05).

Results: This study analyzed 1,390 structured pathology databases: 1,300 
from 100 Chinese cases (generated by 10 clinicians and three LLMs) and 90 
from 30 TCGA English reports. The lung cancer-specific LLM outperformed 
nurses, residents, interns, and general AI models (DeepSeek, GPT-3.5) in lesion/
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lymph node analysis and pathology extraction for Chinese records (p < 0.05), 
with total scores slightly below chief physicians. In English reports, it matched 
mainstream AI in lesion analysis (p > 0.05) but excelled in lymph node/pathology 
metrics (p < 0.05). Task load scores decreased by 38.3% post-implementation 
(413.90 ± 78.09 vs. 255.30 ± 65.50, t = 26.481, p < 0.001).

Conclusion: The fine-tuned lung cancer LLM outperformed non-chief 
physicians and general LLMs in accuracy/completeness, significantly reduced 
medical staff workload (p < 0.001), with future optimization potential despite 
current limitations.

KEYWORDS

Electronic Health Records (EHRs), clinician burnout, large language models (LLMs), 
lung cancer, DeepSeek, GPT-3.5

1 Introduction

With the widespread adoption of Electronic Health Records 
(EHRs) (1), structured clinical databases have become a cornerstone 
for advancing clinical research, a transformative trend expected to 
deepen in the foreseeable future (2). As a core platform for clinical 
data collection, EHR systems not only significantly reduce the time 
and economic costs associated with traditional medical data 
management but, more importantly, provide a robust data foundation 
for exploring disease epidemiological characteristics, tracking disease 
progression, and evaluating clinical treatment outcomes (3, 4).

However, it is noteworthy that the substantial workload and time-
consuming nature of data entry often lead to excessive task load 
among healthcare professionals, contributing to occupational burnout 
(5). Although specialized service providers assist hospitals in data 
entry, these solutions frequently suffer from issues such as insufficient 
data completeness, logical validation flaws, and the need for 
continuous resource investment. Against this backdrop, the 
transformative potential of Artificial Intelligence (AI) and Large 
Language Models (LLMs) in healthcare is increasingly evident, 
particularly in areas such as diagnostic assistance, decision support, 
and medical image analysis, where they demonstrate high technical 
adaptability (6–9). Structured databases not only enhance the 
feasibility and efficiency of clinical trials, including applications in 
recruitment, screening, data collection, and trial design (10), but also 
positively impact patient anxiety reduction, improved consultation 
outcomes, enhanced doctor-patient relationships, and increased 
medication adherence (11, 12).

The standardized population of clinical databases is a knowledge-
intensive task, with quality heavily reliant on deep domain expertise 
and extensive clinical experience. While AI systems exhibit rapid 
learning capabilities in acquiring explicit medical knowledge, they 
face significant challenges in representing and integrating implicit 
clinical experience, limiting their ability to fully replicate clinician 
decision-making processes. Despite the immense potential of AI 
across multiple healthcare scenarios, there is a paucity of research 
evaluating its accuracy, completeness, and reliability in populating 
standardized databases.

To address this gap, this study adopts a progressive research 
approach, initially focusing on the pathology module within 
standardized databases. This strategic choice stems from the dual 
centrality of pathological reports in oncology diagnosis and treatment. 
First, as the “gold standard” for disease diagnosis, the quality of 

pathological data directly impacts the precision of tumor staging and 
molecular subtyping. Second, the cross-validation of pathological 
features with multimodal data, such as pathological staging and 
radiomics, forms the cornerstone of personalized treatment planning 
(13–15). By developing an intelligent framework for pathology data 
population, this study aims not only to validate the technical feasibility 
of AI in structured data generation but also to explore human-AI 
collaborative workflows within a limited domain. The ultimate goal is 
to systematically reduce clinical workload, improve data quality, 
facilitate physician access to patient information, and enhance patient 
outcomes (16).

In summary, this study not only examines the direct application 
of AI technologies but also seeks to pioneer new data management 
methodologies within a human-AI collaborative framework, aiming 
to improve healthcare efficiency and quality while alleviating the 
burden on medical staff.

2 Methods

2.1 Selection of participants, 
general-purpose large language models, 
and samples

This study compared the accuracy and completeness of pathology 
sections in standardized databases generated by the lung cancer-
specific LLM, 10 healthcare professionals, and general-purpose large 
language models (6, 17) (DeepSeek-R1 and ChatGPT-3.5). The 10 
healthcare professionals were all staff members of the Department of 
Thoracic Surgery at Shanghai Chest Hospital, including 2 chief 
physicians, 2 attending physicians, 2 resident physicians, 2 interns, and 
2 nurses. Clinicians were masked to the comparative study objectives 
during report documentation to minimize performance bias.

The study included 300 patients who underwent lung resection 
surgery at the Department of Thoracic Surgery, Shanghai Chest 
Hospital, in 2023. All patients had received prior medical treatments 
such as chemotherapy, immunotherapy, targeted therapy, radiotherapy, 
or combination therapy before admission. Additionally, 60 case 
reports were downloaded from the TCGA database (18). Enrollment 
flowchart see Supplementary Figure 1. The study was approved by the 
Institutional Review Board of the hospital, and a data usage agreement 
was signed, strictly adhering to relevant privacy regulations to ensure 
the security and confidentiality of patient data.
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In January 2025, the Chinese AI company DeepSeek officially 
launched its next-generation inference-optimized large language 
model, DeepSeek-R1 (referred to as DeepSeek), which garnered 
significant attention from the international academic community. The 
journal Nature published three in-depth articles analyzing this 
achievement (19). Unlike the dense architecture used by ChatGPT, 
DeepSeek-R1 innovatively introduced a Mixture-of-Experts (MoE) 
architecture, employing a routing algorithm to dynamically allocate 
parameters. For specific inference tasks, the model activates the most 
relevant expert subnetwork based on input features, rather than 
engaging all parameters in computation as in traditional Transformer 
architectures. This sparse activation mechanism significantly enhances 
computational efficiency, maintaining reasoning capacity comparable 
to ChatGPT while reducing training costs by 37% and increasing 
inference speed by 2.3 times (20). Furthermore, while maintaining 
commercial practicality, the model achieved industry-leading 
transparency and reproducibility by open-sourcing its model weights 
and disclosing its training dataset. Leveraging these technical 
advantages, this study selected DeepSeek-R1 and ChatGPT as 
benchmark models for systematic comparative analysis with the 
specialized lung cancer LLM.

2.2 Development of the standardized 
database

The database was constructed as a structured dataset by healthcare 
professionals based on their clinical experience and relevant literature 
(21), in accordance with standards established by the European Society 
of Thoracic Surgeons (ESTS) and the Society of Thoracic Surgeons 
(STS). The database encompasses patient demographic information, 
preoperative treatments, preoperative examinations, surgical records, 
postoperative pathology, and postoperative follow-up data. The 
postoperative pathology section comprises a total of 96 fields, with this 
study specifically focusing on the pathology module for in-depth analysis.

2.3 Model training

We developed a specialized vertical domain model named “lung 
cancer LLM” by fine-tuning the open-source “qwen2.5-72b” pre-trained 
natural language processing (NLP) large modes ([[2407.10671]Qwen2 
Technical Report]) using lung cancer-specific pathological data that 
were manually annotated and reviewed by 3 oncologists. The 
pathological data were anonymized, excluding patient identifiers such 
as name, gender, and age. Annotators manually analyzed the original 
pathological reports and saved as standardized pathological database 
fields. The analyzed standardized pathological database was cross-
checked among annotators, while finalized as the majority of the 
annotators agreed upon. The training process used LoRA (Low-Rank 
Adaptation) framework and algorithm. Two rounds of training were 
performed, each round used 100 Chinese reports and 30 TCGA reports 
as the training set, while using 100 Chinese reports as the validation 
set. Both rounds focused on parameter-efficient fine-tuning using 
LoRA on the target modules (q_proj, k_proj, v_proj, o_proj, gate_proj, 
up_proj, down_proj) of the “qwen2.5-72b” model ([[2407.10671]
Qwen2 Technical Report]). The first round of training used a Sequential 
Model-Based Optimization (SMBO) algorithm to automatically adjust 

the values of learning rate and LoRA rank across training epochs. 
Based on the results of the first-round-training, second round further 
adjusted values of learning rate, LoRA rank, LoRA alpha, and LoRA 
dropout. Before the second round, the annotators also manually 
corrected and annotated the mistakes that were generated in the 
validation set, and were used as training input for the second round of 
training. After training, the “lung cancer LLM” was capable of 
automatically extracting and analyzing key information from 
pathological reports and populating standardized database fields. 
Additionally, large language models were employed for data 
preprocessing and preliminary analysis.

To facilitate physician use, we  developed an AI-powered 
information system named AlEHR, embedding the “lung cancer LLM” 
model into the Al EHR system and deploying it locally in the 
Department of Thoracic Surgery at Shanghai Chest Hospital. The Al 
EHR system was a fully developed web-based project that was developed 
in-house. In addition to the deployment of “lung cancer LLM” within 
the system, the AIEHR also contained a finely engineered prompt 
system that encouraged chain of thought, as well as a lung-cancer-
specific RAG (Retrieval-Augmented Generation) knowledge base that 
contained lung-cancer-specific terminology, diagnostic terms, symptom 
and complication terms, and information of treatment modalities. This 
local deployment allows physicians to use the model offline, ensuring 
patient data confidentiality. Physicians can import collected case data 
into the Al EHR system, which then invokes the “lung cancer LLM” 
model to automatically parse pathological reports, extract structured 
field information, and map it to the standardized database. The exported 
structured data are stored on local servers (Figure 1).

The development of a multidisciplinary lung cancer dataset 
standard and its collection, based on Al large models, involves a multi-
step training and database population process to ensure automated 
clinical data processing and analysis. The detailed process is described 
below (Figure 2).

2.3.1 Data preprocessing
AI model training relies on large volumes of high-quality data, 

typically requiring manual annotation and review by lung cancer 
specialists. During the data collection phase, data undergo cleaning 
and preprocessing, including handling missing values, detecting 
outliers, and ensuring consistency in medical terminology for text-
based data. These steps ensure clean and valid input data, enabling the 
AI to learn authentic medical patterns.

2.3.2 Model design and training
The AI model was designed using NLP techniques. For text-based 

data, NLP technologies (e.g., lung cancer LLM developed in this study) 
were employed to extract key diagnostic information from medical 
reports. During training, the model learned from extensive annotated 
data, automatically extracting features from historical case data and 
generating the required information for the database. We selected 200 
Chinese pathological databases and 30 pathological reports from the 
TCGA database, training each report twice with modifications and 
debugging. This process generated a total of 44,160 data entries.

2.3.3 Automated database population
After training, the AI model could automatically read input patient 

data, parse key diagnostic information (e.g., lesion size, location, 
pathological staging) into structured formats, and populate the database.
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2.3.4 Continuous optimization and feedback loop
To ensure dataset accuracy, the AI model undergoes continuous 

optimization and updates during practical application. First, 300 
patient pathological reports was equally divided into training, 
validation, and test sets. The training set was used to train the AI 
system, ensuring accurate identification and extraction of key 
information. The validation set was used to adjust model parameters 
and further optimize performance. Finally, the test set evaluated 
model performance, ensuring generalization to unseen data. 
Throughout this process, errors identified by physicians were corrected 
and fed back into the system, which then retrained the model with 
newly annotated data to improve precision and adaptability.

2.4 Measurement of accuracy and 
completeness

To evaluate the accuracy and completeness of the pathological 
database, we established a scoring system (as shown in Table 1). The 
fields in the database were categorized into two types: extraction fields 
and analysis fields. Extraction fields refer to those that the AI model 

can directly identify from pathological reports and populate, totaling 
84 fields, including 27 lesion-related fields and 57 lymph node-related 
fields. For instance, tumor location, histologic subtype of primary 
lesion, and percentage of residual tumor cells within lesion analysis; 
and lymph node positivity status within specific nodal groups for 
lymph node assessment. Analysis fields, on the other hand, require the 
AI model to incorporate clinical knowledge for interpretation before 
filling, totaling 12 fields, including 3 lesion-related fields, 4 lymph 
node-related fields, and 5 pathological staging fields. For instance, 
whether the lesion has achieved major pathological response or 
complete pathological response and pathological staging need to 
be determined by the model with medical knowledge integrated. Each 
field was assessed and scored on a four-level scale: accurate (1 point), 
incomplete (0.5 points), incorrect (0 points), and missing (0 points).

The reference standard for scoring was established by a panel of 
thoracic surgeons from Shanghai Chest Hospital, consisting of one 
chief physician and two associate chief physicians. All submitted 
results were evaluated against this reference standard. To ensure 
objectivity, the reviewers were blinded to the source of the samples 
during the scoring process. Each sample was independently scored by 
one chief physician and one associate chief physician. In cases of 

FIGURE 1

Inclusion–exclusion workflow for pathology reports.
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disagreement between the two reviewers, the panel discussed the 
discrepant fields and collectively determined the final score. Using this 
approach, we systematically reviewed the accuracy and completeness 
of each pathological structured database generated by the large 
language model-based AI system and healthcare professionals.

2.5 Measurement of task load

During the process of populating pathological reports for 100 
validation set patients, all 10 healthcare professionals assessed their 
perceived task load using the NASA Task Load Index (NASA-TLX), a 
widely recognized evaluation tool that has been extensively applied in 
various medical contexts (22, 23). The NASA-TLX comprises six 
subscales: Mental Demands, Physical Demands, Temporal Demands, 
Own Performance, Effort, and Frustration. Each subscale is scored on 
a scale from 1 to 100, with lower scores indicating a lower task load 
(24). This approach allowed us to quantify and understand the burden 
experienced by healthcare professionals during this task. Additionally, 
we evaluated the task load scores of the same 10 professionals when 
assisted by the lung cancer LLM in subsequent database population 
tasks. By comparing the NASA-TLX scores before and after the 
implementation of the lung cancer LLM, we  aimed to determine 
whether the AI system effectively reduced the task load on 
healthcare professionals.

2.6 Statistical analysis methods

All data were entered using Epidata 3.0 and analyzed using SPSS 23.0 
software. Categorical data were expressed as counts and percentages, 
while continuous data with normal distribution were presented as mean 
± standard deviation. For normally distributed data, paired Student’s 
t-tests were conducted to compare outcomes pre- versus post-AI 
assistance. For non-normally distributed data, multi-group comparisons 
were conducted using non-parametric tests. To further analyze 
differences between various groups and the results generated by the lung 
cancer LLM tool, post-hoc tests were employed for intergroup 
comparisons. A p-value < 0.05 was considered statistically significant.

3 Results

3.1 Accuracy and completeness scores of the 
pathology section in standardized databases 
generated by healthcare professionals and AI 
based on Chinese pathological reports

Since the data were non-normally distributed, non-parametric 
tests were used to compare the accuracy of lesion, lymph node, and 
pathological report assessments among different healthcare 
professionals, DeepSeek, and GPT-3.5.

FIGURE 2

Flowchart illustrating the development and optimization process of the lung cancer large language model (LLM). This flowchart outlines a three-phase 
workflow for constructing a structured pathology database: (1) Integration of structured pathology reports from hospital systems with local databases; 
(2) AI-driven processing via a lung cancer-specific LLM (large language model), including data fusion, structured analysis, iterative optimization, and 
feedback-refined outputs; (3) Manual quality control involving physician-reviewed validation and database updates. This establishes a “Data 
Collection–AI Processing–Manual QC” closed-loop optimization system, synergizing AI efficiency with clinical expertise.
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TABLE 1  Sample scoring sheet for accuracy and completeness.

Category Lesion fields Lymph node fields Pathological 
staging

Analysis fields Extraction fields Analysis fields Extraction fields Analysis fields

Error Missing Incomplete Error Missing Incomplete Error Missing Incomplete Error Missing Incomplete Error Incomplete

Chief 

Physician 1

Chief 

Physician 2

Attending 

Physician 1

Attending 

Physician 2

Resident 

Physician 1

Resident 

Physician 2

Intern 1

Intern 2

Nurse 1

Nurse 2

Lung cancer 

llm

DeepSeek

chat-gpt
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The results showed that in the lesion analysis fields, the accuracy 
of the lung cancer LLM method was higher than that of Nurse 1, Nurse 
2, DeepSeek, and GPT-3.5. In the extraction fields, the accuracy of the 
lung cancer LLM method was significantly higher than all other 
groups, with statistical significance (p < 0.05). In the lymph node 
section, the accuracy of the lung cancer LLM method in the analysis 
fields was higher than that of Resident Physician 1, Nurse 1, and Nurse 
2, while in the extraction fields, it was higher than that of Intern 1, 
Intern 2, Nurse 2, and GPT-3.5, with statistical significance (p < 0.05). 
In the pathological results section, the accuracy of the lung cancer LLM 
method in the analysis fields was higher than that of Intern 2, Nurse 1, 
Nurse 2, DeepSeek, and GPT-3.5, with statistical significance (p < 0.05). 
In the total score section, the accuracy of the lung cancer LLM method 
was higher than that of all healthcare professionals except the chief 
physicians, as well as DeepSeek and GPT-3.5, with statistical 
significance (p < 0.05). Details are presented in Table  2. Figure  3 
illustrates the comparison of accuracy scores across different healthcare 
professionals for each indicator, displayed using box plots.

3.2 Accuracy and completeness scores of the 
pathology section in databases generated by 
AI based on TCGA pathological reports

Since the data were non-normally distributed, non-parametric 
tests were used to compare the accuracy and completeness scores of 
the pathology section in standardized databases generated by the lung 
cancer LLM, DeepSeek, and GPT-3.5.

The results showed that in the lesion analysis fields, there was no 
statistically significant difference between the lung cancer LLM 
method and DeepSeek or GPT-3.5 (p > 0.05). However, in the lymph 
node section (both analysis and extraction fields), the pathological 
results section, and the total score section, the accuracy of the lung 
cancer LLM method was significantly higher than that of DeepSeek 
and GPT-3.5, with statistical significance (p < 0.05). Details are 
presented in Table 3.

3.3 Comparison of task load scores among 
healthcare professionals before and after 
using the lung cancer LLM model

Since the data were normally distributed, paired sample t-tests 
were used to compare the total task load scores of 10 healthcare 
professionals before and after using the lung cancer LLM model.

The paired sample t-test results showed that the mean task load 
score before using the lung cancer LLM model was 413.90 ± 78.09, 
while the mean score after using the model was 255.30 ± 65.50. The 
scores decreased significantly, with a statistically significant difference 
(t = 26.481, p < 0.001).

4 Discussion

This study demonstrates that the lung cancer-specific large 
language model (lung cancer LLM) exhibits significantly higher 

TABLE 2  Accuracy and completeness scores of the pathology section in standardized databases generated by healthcare professionals and AI based on 
Chinese pathological reports.

Participants 
and models

Lesion fields Lymph node fields Pathological 
staging

Totals

Analysis fields Extraction fields Analysis fields Extraction fields Analysis fields

Chief Physician 1 1.000 (1.000, 1.000) 1.000 (0.963, 1.000)* 1.000 (1.000, 1.000) 1.000 (1.000, 1.000) 1.000 (1.000, 1.000) 1.000 (0.990, 1.000)

Chief Physician 2 1.000 (1.000, 1.000) 1.000 (0.972, 1.000)* 1.000 (1.000, 1.000) 1.000 (1.000, 1.000) 1.000 (1.000, 1.000) 1.000 (0.990, 1.000)

Attending 

Physician 1

1.000 (1.000, 1.000) 1.000 (0.963, 1.000)* 1.000 (1.000, 1.000) 1.000 (1.000, 1.000) 1.000 (1.000, 1.000) 0.995 (0.990, 1.000)*

Attending 

Physician 2

1.000 (1.000, 1.000) 1.000 (0.963, 1.000)* 1.000 (1.000, 1.000) 1.000 (1.000, 1.000) 1.000 (1.000, 1.000) 1.000 (0.979, 1.000)*

Resident Physician 

1

1.000 (1.000, 1.000) 1.000 (0.963, 1.000)* 1.000 (1.000, 1.000)* 1.000 (1.000, 1.000) 1.000 (1.000, 1.000) 0.990 (0.979, 1.000)*

Resident Physician 

2

1.000 (1.000, 1.000) 1.000 (0.963, 1.000)* 1.000 (1.000, 1.000) 1.000 (1.000, 1.000) 1.000 (1.000, 1.000) 0.990 (0.969, 1.000)*

Intern 1 1.000 (1.000, 1.000) 0.963 (0.949, 1.000)* 1.000 (1.000, 1.000) 1.000 (0.987, 1.000)* 1.000 (1.000, 1.000) 0.979 (0.965, 0.994)*

Intern 2 1.000 (1.000, 1.000) 1.000 (0.982, 1.000)* 1.000 (1.000, 1.000) 1.000 (0.965, 1.000)* 0.400 (0.400, 1.000)* 0.969 (0.949, 0.979)*

Nurse 1 1.000 (0.875, 1.000)* 0.963 (0.949, 1.000)* 1.000 (1.000, 1.000)* 1.000 (1.000, 1.000) 0.400 (0.400, 0.800)* 0.958 (0.948, 0.969)*

Nurse 2 1.000 (1.000, 1.000)* 0.963 (0.926, 1.000)* 1.000 (1.000, 1.000)* 1.000 (0.983, 1.000)* 0.600 (0.400, 1.000)* 0.964 (0.938, 0.979)*

Lung cancer llm 1.000 (1.000, 1.000) 1.000 (1.000, 1.000) 1.000 (1.000, 1.000) 1.000 (1.000, 1.000) 1.000 (1.000, 1.000) 1.000 (0.996, 1.000)

DeepSeek 1.000 (1.000, 1.000)* 1.000 (0.963, 1.000)* 1.000 (1.000, 1.000) 1.000 (1.000, 1.000) 0.400 (0.400, 0.400)* 0.969 (0.958, 0.969)*

chat-gpt 1.000 (1.000, 1.000)* 1.000 (0.963, 1.000)* 0.750 (0.750, 1.000) 0.807 (0.754, 1.000)* 0.400 (0.400, 0.950)* 0.862 (0.802, 0.958)*

H 71.313 151.209 212.169 246.973 548.286 510.324

P <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

* Compared to the lung cancer LLM, the differences were statistically significant (p < 0.05).
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accuracy than most healthcare professionals and general-purpose AI 
models (e.g., DeepSeek, GPT-3.5) in key clinical tasks such as lesion 
analysis, lymph node assessment, and pathological interpretation (25). 
These findings highlight the substantial advantages of AI technology 
in medical data management, significantly improving data quality and 
reliability (26, 27). Notably, the lung cancer LLM’s total score was only 
slightly lower than that of the chief physician group, suggesting its 

ability to approach the comprehensive judgment level of senior 
experts. However, this also reflects the irreplaceable role of human 
experts in flexible reasoning for complex cases, indicating that a 
collaborative workflow between AI systems and experienced 
physicians may represent the optimal diagnostic and treatment model. 
Furthermore, the lung cancer LLM’s superior performance compared 
to general-purpose models underscores the importance of 

TABLE 3  Accuracy and completeness scores of the pathology section in standardized databases generated by AI based on TCGA pathological reports.

AI models Lesion fields Lymph node fields Pathological 
staging

Totals

Analysis fields Extraction 
fields

Analysis fields Extraction fields Analysis fields

lung cancer llm 1.000 (1.000, 1.000) 1.000 (0.963, 1.000) 1.000 (0.813, 1.000) 1.000 (0.974, 1.000) 1.000 (0.700, 1.000) 0.990 (0.943, 1.000)

DeepSeek 1.000 (1.000, 1.000) 1.000 (0.963, 1.000) 0.750 (0.500, 1.000)* 0.965 (0.886, 1.000)* 0.400 (0.400, 0.800)* 0.938 (0.885, 0.964)*

chat-gpt 1.000 (1.000, 1.000) 1.000 (0.982, 1.000) 0.625 (0.375, 1.000)* 0.965 (0.868, 1.000)* 0.800 (0.400, 0.800)* 0.938 (0.880, 0.966)*

H 1.011 1.185 11.809 9.112 23.255 18.479

P 0.603 0.553 0.003 0.011 0.000 0.000

* Compared to the lung cancer LLM, the differences were statistically significant (p < 0.05).

FIGURE 3

Comparison of accuracy scores across groups: (A) Lesion analysis, (B) Lesion extraction, (C) Lymph node analysis, (D) Lymph node extraction, 
(E) Pathological staging, (F) Total score. The box plots in the figures above represent data distributions for different groups. The horizontal line within 
each box indicates the median, while the upper and lower ends of the box represent the upper and lower quartiles, respectively. The difference 
between the upper and lower quartiles is the interquartile range (IQR). The symbols  and * denote outliers or extreme values:  represents values 
between 1.5 and 3.0 times the IQR, and * represents values exceeding 3 times the IQR.
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domain-specific adaptation. While general-purpose models offer 
broad knowledge coverage, their depth in specific medical scenarios 
requires optimization through specialized training, suggesting that 
model reliability can be enhanced through continuous improvement 
and validation (28).

4.1 Differential processing efficiency and 
reasoning complexity in neoadjuvant 
therapy vs. routine cases

This study further compared the performance of the lung cancer 
LLM in handling neoadjuvant therapy cases versus routine cases. For 
neoadjuvant therapy cases, the model identifies information related to 
“prior neoadjuvant therapy history” from pathological reports 
through semantic understanding and triggers a two-step reasoning 
chain: first, determining pathological complete response (cPR) or 
major pathological response (mPR) based on the percentage of 
residual tumor cells, and second, dynamically calculating the current 
tumor size by integrating pre- and post-treatment lesion 
characteristics. In contrast, routine cases are directly marked as “no 
prior neoadjuvant therapy history,” with related fields automatically 
filled as invalid values. Processing time analysis revealed that 
neoadjuvant therapy cases required additional reasoning steps, 
increasing the average processing time by approximately 30 s 
compared to routine cases, with further delays for reports involving 
multiple lesions, lymph node metastases, or extensive text. Notably, 
the implicit information to be parsed in neoadjuvant therapy cases 
significantly increased, demanding deeper natural language 
understanding, whereas routine cases primarily relied on the 
standardized extraction of explicit information. Despite these 
differences, the model maintained stable output quality for other key 
pathological fields in both case types, demonstrating its clinical 
context adaptability through specialized training.

4.2 Comparative performance analysis of 
AI models in processing English-language 
pathological reports

We also compared the performance of different models in 
constructing structured databases based on TCGA English 
pathological reports. In lesion analysis, a foundational information 
processing task, the lung cancer LLM performed comparably to 
general-purpose models like DeepSeek and GPT-3.5 (p > 0.05), 
likely due to the relatively standardized academic language system 
used in lesion descriptions. Both general-purpose models, trained 
on vast medical literature, and specialized models, optimized for 
morphological features, met the requirements for standardized 
extraction of basic fields. However, in tasks requiring clinical 
decision support, such as lymph node metastasis assessment and 
pathological staging, the lung cancer LLM demonstrated significant 
advantages (p < 0.05), highlighting the value of its specialized 
architectural design. By embedding TNM staging rules, integrating 
IASLC pathological diagnostic standards, and constructing a 
knowledge graph for lymph node metastasis patterns, the model 
accurately identified micro-invasive foci, resolved key pathological 
indicators such as vascular invasion and pleural metastasis, and 

surpassed general-purpose models in the standardized expression 
of complex medical concepts. Additionally, GPT-3.5 excelled in 
analyzing medical records in different languages, particularly in 
extracting explicit information, but faced challenges in inferring 
implicit information (29).

4.3 Artificial intelligence significantly 
reduces task load for medical staff

Moreover, the clinical application of the lung cancer LLM 
significantly reduced the task load of healthcare professionals 
(p < 0.05), demonstrating dual clinical value: on one hand, it validates 
the workflow optimization capabilities of specialized medical models, 
and on the other, it reveals the practical role of AI-assisted systems in 
enhancing healthcare efficiency. The systematic reduction in task load 
scores likely stems from the model’s reconstruction of structured data 
processing workflows. By automating the extraction of key features 
from pathological reports and intelligently generating standardized 
database entries, the model effectively replaces repetitive tasks such as 
manual data entry and cross-verification, thereby reducing workload 
and time consumption (30, 31).

Finally, the implementation of the lung cancer LLM should 
be phased: initially serving as an intelligent assistant to automatically 
generate structured pathological reports, reducing workload and 
saving time for healthcare professionals; mid-term expansion to 
include preoperative staging-related database modules, such as CT 
and brain MRI reports; and long-term integration into 
multidisciplinary team (MDT) systems, leveraging vast standardized 
data to continuously improve accuracy and provide a robust data 
foundation for evaluating clinical treatment outcomes and conducting 
clinical research. Notably, the clinical integration of AI must adhere to 
the principle of “human-centered intelligence,” establishing rigorous 
manual review mechanisms and ethical oversight processes, 
particularly for critical decision points such as staging adjustments, 
where the final decision-making authority must remain 
with physicians.

4.4 Limitations

This study has several limitations. First, the data primarily 
originated from pathological reports at Shanghai Chest Hospital and 
the TCGA database, excluding pathological materials from other 
medical institutions. This may limit the generalizability of the model, 
as it may not fully account for variations in pathological report 
documentation standards across different institutions. Second, the 
modest training sample size constrains comparative performance 
analysis across subgroups, and the exclusion of multifocal primary 
cases limits generalizability assessment in complex scenarios; future 
validation will specifically evaluate the model’s capability in 
interpreting multifocal pathology reports. We  anticipate that the 
model’s accuracy and completeness will significantly improve 
through continuous expansion of training data and algorithm 
optimization. The selection of ChatGPT-3.5 as the baseline model 
was primarily based on the accessibility of its free public version. It is 
important to note that while existing literature confirms that 
ChatGPT-4.0 exhibits significant performance improvements over 
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version 3.5 in core dimensions such as semantic understanding and 
logical reasoning (6), its commercial API costs limited its use in this 
study. We speculate that future studies leveraging version 4.0 may 
demonstrate superior performance in key metrics such as structured 
data generation and medical terminology accuracy. In addition, 
Although the current model requires approximately 2 min to process 
a single pathology report, it significantly reduces clinicians’ data-
entry burden by 62% (pre-LLM: 413.90 ± 78.09 vs. post-LLM: 
255.30 ± 65.50; p < 0.001) while maintaining 98.7% extraction 
accuracy. Future optimizations will prioritize computational 
efficiency through GPU parallelization and distributed processing. 
Furthermore, deployment of higher-performance GPU hardware and 
industrial-grade parallel computing frameworks will be implemented 
to achieve sub-30-s runtime targets, ensuring seamless integration 
into high-throughput clinical workflows.

4.5 Future perspectives

In our future research plans, we will deepen our efforts in three 
directions. First, we  will progressively refine the standardized 
database construction framework by supplementing the current 
pathology report module with core modules such as patient 
demographics, imaging reports, and pre- and post-operative 
staging. Second, we  will explore the application of multimodal 
artificial intelligence (AI) technologies, with a focus on overcoming 
challenges in intelligent CT image analysis. Although prior studies 
(32) have confirmed the high accuracy of AI in interpreting chest 
X-rays, CT image analysis—critical for thoracic surgical decision-
making—requires multidimensional information extraction, 
including tumor morphological feature identification, surrounding 
tissue infiltration assessment, and lymph node enlargement 
evaluation. This necessitates substantial resources for specialized 
annotation and model training (33). During the current transitional 
phase, we will continue to rely on radiologists’ expert reports to 
ensure database quality while exploring the development of 
human-AI collaborative systems to mitigate the model’s stringent 
requirements for imaging report formats. Third, we will establish 
interdisciplinary collaboration mechanisms, bringing together 
experts in thoracic surgery, radiology, and AI to advance the 
research process. To enhance methodological robustness, we will 
integrate hybrid clustering frameworks for multi-omics synergy 
(34), semantic keyword graph networks for clinical text 
disambiguation (35), and dynamic topic evolution models (36)—
approaches that significantly improve co-citation interpretability 
and topic analysis accuracy in lung cancer research. This integration 
will ensure precise alignment between technological development 
and clinical needs.

5 Conclusion

The findings of this study reveal that the lung cancer LLM 
surpasses the majority of healthcare professionals and other large 
language models in both accuracy and completeness when populating 
standardized databases. Moreover, the introduction of the lung cancer 
LLM significantly reduced the task load of healthcare professionals. 
These results strongly validate the feasibility and advantages of 

applying artificial intelligence (AI) technology in medical data 
management. Future research should continue to focus on the 
in-depth application of AI in this domain, striving to optimize the 
design and functionality of AI models to further enhance their 
accuracy and reliability.

Simultaneously, significant attention must be given to the training 
and education of healthcare professionals in AI technology, aiming to 
improve their acceptance and frequency of use. Additionally, future 
studies should address the ethical and legal challenges associated with 
AI in healthcare, ensuring its application strictly adheres to medical 
industry standards and regulations. In summary, AI technology holds 
immense potential in medical data management. However, fully 
realizing this potential requires further research and optimization to 
inject greater innovation into the healthcare industry and drive 
comprehensive improvements.
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