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Introduction: Immunoglobulin A nephropathy (IgAN) and membranous nephropathy 
(MN) are among the most common forms of primary glomerular diseases, with a rising 
global incidence. Despite their clinical importance, the underlying pathogenesis of 
these diseases and the development of reliable non-invasive diagnostic tools remain 
inadequately understood. Accumulating evidence suggests that gut microbiota 
and its associated metabolites may play a crucial role in the development of kidney 
diseases via the gut-kidney axis. However, comprehensive studies integrating both 
microbiome and metabolomic data in IgAN and MN are still limited.

Methods: In this study, we performed integrated metagenomic sequencing 
and untargeted metabolomic profiling to investigate alterations in gut microbial 
composition and systemic metabolic changes associated with IgAN and MN. 
Fecal samples were collected from 24 patients with IgAN, 20 patients with MN, 
and 17 healthy controls. Microbial diversity and composition were assessed 
using metagenomic analysis, while metabolic profiles were evaluated through 
untargeted LC -MS-based metabolomics. Multivariate statistical analyses and 
biomarker modeling were employed to identify discriminative features and 
evaluate diagnostic performance. Microbiota-metabolite correlation networks 
were constructed to explore potential mechanistic links.

Results: Metagenomic analysis showed that both the IgAN and MN groups 
had significantly reduced α-diversity. Although β-diversity analysis did not 
reveal significant differences between the three groups, the IgAN and MN 
groups exhibited higher sample dispersion than the control group. Notably, 
both IgAN and MN patients showed a decrease in the abundance of certain 
specific microbial taxa. A total of 34 and 28 differentially abundant microbial 
species were identified in IgAN and MN, respectively, compared to healthy 
controls, with 16 taxa consistently downregulated in both disease groups. 
Notably, Streptococcus oralis was significantly enriched in the MN group, while 
[Clostridium] innocuum was markedly depleted. Metabolomic profiling identified 
307 and 209 differentially abundant metabolites in IgAN and MN, respectively. 
Dipeptides (e.g., prolylleucine) were consistently upregulated, while the levels 
of certain short-chain fatty acids (SCFA) were reduced. Multivariate biomarker 
models demonstrated excellent diagnostic performance, achieving area under 
the curve (AUC) of 0.919 (IgAN vs. control), 0.897 (MN vs. control) and 0.912 
(IgAN vs. MN), surpassing individual metabolite markers.
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Discussion: Our findings highlight significant alterations in gut microbial 
composition and systemic metabolite profiles in both IgAN and MN patients 
compared to healthy individuals. The consistent reduction in microbial diversity 
and SCFA-producing taxa, along with characteristic changes in metabolic 
signatures, supports the involvement of the gut-kidney axis in disease 
pathogenesis. The diagnostic models developed in this study provide promising 
non-invasive biomarkers for distinguishing IgAN and MN with high accuracy. 
These results contribute novel insights into the microbe-metabolite interplay 
in glomerular diseases and offer potential targets for future diagnostic and 
therapeutic strategies.
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1 Introduction

Chronic kidney disease (CKD) is an increasingly severe global 
public health issue, characterized by a persistent decline in renal 
function, which may eventually progress to end-stage renal disease 
(ESRD). In recent years, the gut-kidney axis has garnered significant 
attention for its critical role in the pathogenesis of CKD. A growing 
body of research indicates that the gut microbiota plays an important 
role in the onset and progression of CKD. Bibliometric analyses have 
shown that from 2001 to 2022, studies related to the gut microbiota in 
the context of CKD have steadily increased, becoming a research 
hotspot. The mechanisms underlying this association and the potential 
for therapeutic intervention are being extensively explored (1). 
Current research primarily focuses on the impact of dysbiosis on 
disease progression, the potential efficacy of probiotic interventions, 
and the elucidation of microbial metabolic pathways. These findings 
provide a theoretical basis for better understanding CKD pathogenesis 
and exploring novel treatment strategies. Recent studies further 
confirm the therapeutic potential of specific bacterial strains in 
CKD. For instance, the abundance of Lactobacillus johnsonii has been 
found to be significantly reduced in CKD patients, with a positive 
correlation between its abundance and renal function. In animal 
models, supplementation with L. johnsonii effectively alleviated renal 
injury and fibrosis (2). This finding not only underscores the close 
relationship between gut microbiota and renal function, but also offers 
a new perspective for microbiota-based therapeutic strategies in CKD.

In addition to microbial dysbiosis, CKD patients often experience 
systemic metabolic abnormalities. In recent years, metabolomics has 
emerged as a key tool for elucidating physiological and pathological 
metabolic pathways, playing a crucial role in the identification of 
CKD-related biomarkers, clarification of metabolic mechanisms, and 
exploration of therapeutic pathways. Studies have shown that 
dysregulation in phospholipid metabolism, fatty acid oxidation, and 
amino acid metabolism is closely associated with CKD and renal 
fibrosis. For example, various phospholipid and glycerophospholipid 
metabolites are significantly elevated in patients with ESRD and 
remain high even after dialysis, potentially increasing the risk of 
cardiovascular and other complications (3). In animal models of CKD, 
disrupted phosphatidylcholine metabolism has been shown to 
regulate inflammatory responses and membrane remodeling through 
the phospholipase A₂ (PLA₂) pathway, potentially contributing to 
renal fibrosis (Wang et al., 2023). Moreover, diabetic kidney disease 
(DKD), a serious complication of diabetes, involves complex 

pathogenic mechanisms encompassing multiple metabolic and 
immune pathways. Studies have revealed that DKD patients exhibit 
gut microbiota dysbiosis and abnormal microbial metabolites, which 
are closely linked to renal inflammation and fibrosis (5). In terms of 
treatment, traditional Chinese medicine (TCM) formulations, such as 
the combination of Astragalus and Curcuma, have shown efficacy in 
improving renal function in CKD animal models by modulating 
amino acid, energy, and lipid metabolism pathways (6). Additionally, 
metabolomics-based research has identified a range of metabolites as 
potential biomarkers for the diagnosis, classification, and prognosis of 
CKD (7).

Immunoglobulin A nephropathy (IgAN) and membranous 
nephropathy (MN) are two common primary glomerular diseases 
(PGD), both of which can lead to chronic kidney injury and may 
progress to CKD or ESRD. IgAN is characterized by the abnormal 
deposition of immunoglobulin A (IgA) in the glomerular mesangial 
area. Its pathogenesis may involve both genetic and environmental 
factors, including infections, dietary antigens, microbiota alterations, 
and dysregulated mucosal immune responses (8). MN is a chronic 
autoimmune disease characterized by the deposition of immune 
complexes in the subepithelial region of the glomerular basement 
membrane, leading to glomerular injury (10, 9). Although the two 
diseases differ in their pathological mechanisms, both are closely 
associated with immune dysregulation and may be jointly influenced 
by the host microbiota and its metabolic products. More importantly, 
retrospective studies have shown that PGD remain the most common 
kidney diseases in China, with IgAN having the highest prevalence, 
followed by MN. Furthermore, the incidence of MN is increasing 
(12–14). At present, the diagnosis of both diseases primarily relies on 
renal biopsy. However, this invasive procedure increases the physical 
burden and psychological stress on patients, thereby limiting its 
application in early screening and large-scale studies. Therefore, 
current research efforts are focused on identifying new biomarkers 
with the aim of achieving earlier and more accurate diagnosis and 
prediction (15–18). Therefore, IgAN and membranous nephropathy 
MN as research subjects not only helps to uncover their respective 
pathogenic mechanisms but also provides an opportunity to explore 
their potential shared features. Meanwhile, given that the diagnosis of 
both diseases currently relies heavily on renal biopsy, identifying 
non-invasive biomarkers has become an urgent need for achieving 
early diagnosis and precise monitoring.

An increasing body of research suggests that gut microbiota plays 
a crucial role in the onset and progression of IgAN and MN, with its 
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dysbiosis potentially impacting kidney health through various 
mechanisms (19–20). Studies have shown that alterations in the gut 
microbiota may mediate the production of galactose-deficient IgA1 
(gd-IgA1) by affecting the mucosal immune system and intestinal 
barrier function, thereby promoting the onset and progression of 
IgAN (22–24). Several studies have investigated microbiome 
characteristics in patients with IgAN and MN. For instance, research 
has demonstrated that the gut microbiome of MN patients exhibits 
significantly lower diversity and richness compared to healthy 
individuals, highlighting the potential value of gut microbiota as a 
non-invasive diagnostic tool for MN (25, 26). In addition, some 
studies have preliminarily revealed the potential role of the gut-kidney 
axis in IgAN patients (28–27), Wu et al. established a relationship 
network between the microbiota, fecal metabolites, and serum 
metabolites in IgAN, identifying six key metabolites (including 
bilirubin, trimethoprim, stearamide, phenylalanine, cis-9,10-
epoxystearic acid, and PE lyso 17:0) that highlight the metabolic 
network connection between the gut and blood (27). However, 
research on the pathological state of MN remains limited, and 
comparative studies between MN and IgAN are lacking. Notably, 
these studies are still based on 16S rRNA sequencing, which has 
limitations in resolution and functional annotation, and thus fails to 
fully uncover the complex interplay between the microbiota 
and metabolites.

By integrating metagenomics and metabolomics, this approach 
can provide higher-resolution insights into the composition and 
functionality of the gut microbiome, offering a deeper understanding 
of how microbial metabolites impact kidney health. Through the 
integration of these two omics technologies, this study will 
comprehensively analyze the specific microbiome characteristics and 
related metabolic changes in IgAN and MN. Furthermore, based on 
these findings, potential biomarkers will be identified, providing new 
strategies for early diagnosis, accurate prognosis, and the development 
of personalized treatment approaches.

2 Materials and methods

2.1 Study subjects and sample collection

A total of 61 subjects from Guang’an First People’s Hospital, 
Sichuan Province, China, were enrolled in this study. The participants 
were categorized into three groups: healthy controls (control, n = 17), 
patients with IgA nephropathy (IgAN, n = 24), and patients with 
membranous nephropathy (MN, n = 20). Patients in the IgAN and 
MN groups were diagnosed via renal biopsy and confirmed through 
direct immunofluorescence, light microscopy, and electron 
microscopy evaluations, while secondary glomerular diseases were 
excluded. None of the patients had received glucocorticoids, 
immunosuppressants, or other therapeutic interventions prior to 
diagnosis, although a subset of patients had used angiotensin receptor 
blockers (ARB) before sample collection to reduce urinary protein 
excretion. The healthy control group was confirmed through physical 
examination to have no history of kidney disease, normal liver and 
kidney function, and no abnormalities in urine and stool routine tests. 
Detailed inclusion and exclusion criteria for IgAN and MN are 
provided in Appendix 1. Basic clinical information, including age, sex, 
and renal function indicators, was collected for all participants. Fecal 

samples were collected in sterile sampling tubes and stored at −80°C 
within 2 h for subsequent metagenomic and metabolomic analyses. 
This study was approved by the Ethics Committee of Guang’an People’s 
Hospital (permit number: 2024–045).

2.2 Metagenomic sequencing and data 
processing

DNA was extracted from fecal samples and its integrity, size, and 
concentration were measured using the Agilent 5,400 (Agilent, 
United States). Library construction was then performed, including 
DNA fragmentation, end repair, 3′ A-tailing, adapter ligation, 
fragment selection, and PCR amplification. The libraries were 
evaluated for quality. Qualified libraries were sequenced using the 
NovaSeq 6,000 platform (Illumina) with paired-end 150 base pair 
(PE150) reads. Data quality control was performed using fastp to 
remove low-quality reads and adapter contamination, generating 
clean data. Clean reads were aligned to the human reference genome 
(GCF_000001405.40) using Bowtie2 (v2.5.1) to remove host 
contamination. Subsequently, species identification was performed 
using Kraken2 (v2.1.3) combined with the microbial database (PlusPF, 
2023-10-09), and taxonomic abundance was re-assigned using 
Bracken (v2.9). The resulting microbial abundance table was then 
compiled. The metagenomic clean reads were assembled individually 
using MEGAHIT (v1.2.9). Gene prediction was performed using 
Prodigal (v2.6.3), followed by redundancy removal using CD-HIT 
(v4.8.1) with 95% similarity and 90% coverage. The nucleotide 
sequences were then translated into amino acid sequences. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) orthologous gene 
annotation was carried out using EggNOG-mapper (v2.1.12) in 
conjunction with the eggNOG database. Finally, non-redundant gene 
abundance was calculated using Salmon (v1.10.2) and normalized to 
transcripts per million (TPM).

2.3 Untargeted metabolomics analysis and 
data processing

Fecal samples (100 mg) were added to 500 μL of 80% methanol 
aqueous solution (Methanol: LC–MS Grade, Thermo Fisher, 
United States; Water: LC–MS Grade, Merck, Germany), vortexed, and 
incubated in an ice bath for 5 min. The samples were then centrifuged 
at 15,000 g and 4°C for 20 min. The supernatant was collected and 
diluted to a final methanol concentration of 53%. After a second 
centrifugation, the supernatant was used for LC–MS analysis. QC 
samples were prepared by pooling equal volumes of extracts from each 
fecal sample and were used to assess the stability and reproducibility 
of the metabolomics analysis platform. Blank samples were prepared 
by replacing the fecal material with 53% methanol–water and 
processed using the same pretreatment procedure, serving to eliminate 
background ions. LC–MS analysis was performed using a Q 
Exactive™ HF/Q Exactive™ HF-X mass spectrometer (Thermo 
Fisher, Germany) coupled with a Vanquish UHPLC system 
(ThermoFisher, Germany). A Hypersil Goldcolumn (100 × 2.1 mm, 
1.9 μm, Thermo Fisher, USA) was used for chromatographic 
separation, employing gradient elution with a column temperature of 
40°C and a flow rate of 0.2 mL/min. Mass spectrometry was conducted 
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using an electrospray ionization (ESI) source in both positive and 
negative ion modes, with a scanning range of m/z 100–1,500. The raw 
data were imported into Compound Discoverer 3.3 (CD 3.3) software 
for preliminary processing. Each metabolite was initially screened 
based on parameters such as retention time and mass-to-charge ratio 
(m/z), with peak area correction performed using the first QC sample 
to enhance the accuracy of metabolite identification. The mass 
tolerance was set to 5 ppm, and the signal intensity deviation was set 
to 30%, with a minimum intensity threshold defined. Additional 
parameters such as adduct ions were considered for peak extraction 
and peak area quantification. Based on this, target ion information 
was integrated and molecular formulas were predicted using 
molecular and fragment ion peaks. Metabolite identification was 
conducted by matching against the mzCloud,1 mzVault and Masslist 
databases, while background ions were removed based on blank 
sample data. The raw quantitative data were normalized using the 
following formula: Sample raw intensity / (Total metabolite intensity 
in the sample / Total metabolite intensity in QC1 sample), yielding 
relative peak areas. Metabolites with a coefficient of variation (CV) 
greater than 30% in QC samples were excluded. The final results 
included both metabolite identification and relative quantification. 
Identified metabolites were further annotated for biological 
significance using KEGG database,2 HMDB database3 and LIPIDMaps 
databases.4

2.4 Statistical analysis

Statistical analyses in this study were conducted using R 
software. Clinical data analyses were performed using the tableone 
(v0.13.2) R package (31). Categorical variables were analyzed 
using the Chi-square test, whereas continuous variables were 
compared between two groups using the t-test. Metagenomic 
microbial composition analyses were performed using the vegan 
(v2.6–10) R package (32). Bray–Curtis distance matrices were 
constructed to assess differences in microbial community 
composition among groups, and statistical significance was 
evaluated using permutational multivariate analysis of variance 
(PERMANOVA) implemented via the adonis2 function. 
Furthermore, beta diversity dispersion was computed using the 
betadisper function, and the significance was tested using 
permutest. The Alpha diversity index was calculated using the 
vegan package. Differential species screening was performed 
using the microeco (v1.9.1) R package (30) based on the Linear 
Discriminant Analysis Effect Size (LEfSe) method, employing 
Linear Discriminant Analysis (LDA) to select significant features 
with LDA > 2 and p < 0.05. Metagenomic KEGG Orthology (KO) 
gene functional analysis was conducted using the 
MicrobiotaProcess (v1.10.0) R package, with mp_diff_analysis for 
differential gene identification, followed by functional enrichment 
analysis based on the KEGG database using the clusterProfiler 
(v4.8.1) R package. Metabolite data analysis was performed using 

1 https://www.mzcloud.org/

2 https://www.genome.jp/kegg/pathway.html

3 https://hmdb.ca/metabolites

4 http://www.lipidmaps.org/

the MetaboAnalystR (v3.0.3) R package (34). Median 
normalization was applied to eliminate batch effects, followed by 
auto-scaling to enhance data consistency. Principal Component 
Analysis (PCA) and Orthogonal Partial Least Squares 
Discriminant Analysis (OPLS-DA) were then used for 
classification modeling. Model performance was evaluated using 
R2X, R2Y, and Q2 to assess goodness-of-fit and predictive ability. 
In addition, Variable Importance in Projection (VIP) scores were 
calculated to evaluate the contribution of individual metabolites 
to the model. Differential metabolite analysis was performed by 
calculating the fold change (FC) and assessing significance using 
the Student’s t-test. Metabolites with FC > 1.5 or FC < 0.667, 
VIP > 1, and p < 0.05 were considered as significant differential 
metabolites. Metabolic pathway analysis was conducted using the 
pathway analysis module of MetaboAnalyst 6.0.5 To assess the 
classification performance of the metabolic features, 
we constructed a Logistic Regression model and employed 1,000 
bootstrap resampling iterations to calculate the Receiver 
Operating Characteristic (ROC) curve, along with the Area under 
the Curve (AUC), to evaluate the model’s stability and accuracy. 
First, metabolites with p < 0.05 and AUC > 0.8 were selected as 
potential biomarkers. Then, metabolites with p < 0.05 and 
AUC > 0.7 were included in Lasso regression for feature selection, 
and 10-fold cross-validation was used to optimize the model. 
Finally, metabolites with a Variance Inflation Factor (VIF) < 10 
were chosen to construct a multivariable Logistic Regression 
model. Additionally, Spearman’s rank test was used to calculate 
the correlation between microbiota and metabolite concentrations, 
aiming to explore their potential interactions. All statistical 
analyses were performed with a significance threshold of p < 0.05.

3 Results

3.1 Clinical characteristics

The age of the IgAN group was significantly different 
compared to the MN group (p < 0.05), while there were no 
statistically significant differences in gender, hypertension, or 
diabetes prevalence across the three groups (p > 0.05). In terms of 
kidney function-related indicators, the IgAN group showed a 
significant decrease in estimated Glomerular Filtration Rate 
(eGFR; p = 0.022) and a significant increase in serum creatinine 
levels (p = 0.006) compared to the control group, whereas no 
significant differences were observed in these two indicators for 
the MN group (p = 0.245/0.19). In addition, there were no 
statistically significant differences in urea levels among the three 
groups (p > 0.05). Both the IgAN and MN groups had significantly 
higher uric acid levels compared to the control group 
(p = 0.02/0.023). Furthermore, the MN group had significantly 
higher Low-Density Lipoprotein Cholesterol (LDL-C) levels than 
both the control group (p = 0.005) and the IgAN group (p = 0.009), 
while serum albumin levels were significantly lower than those in 
the other two groups (p < 0.001). There were no significant 

5 https://www.metaboanalyst.ca
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differences in LDL-C and serum albumin levels between the IgAN 
group and the control group (p = 0.364/0.21) (Table 1).

3.2 Metagenomics analysis

At the phylum level, Bacillota, Bacteroidota, Pseudomonadota and 
Actinomycetota were the dominant phyla in all three groups. Among 
them, the relative abundance of Bacteroidota was lower in the IgAN 
group, while the relative abundance of Actinomycetota was higher; the 

control group showed a trend of lower relative abundance of 
Pseudomonadota (Figure 1A). Figure 1B displays the top 20 genera by 
relative abundance in the three groups. At the genus level, we calculated 
β-diversity using Bray-Curtis distance and visualized microbial 
compositional differences between samples through Principal 
Coordinate Analysis (PCoA). PERMANOVA results indicated no 
significant differences between the IgAN, MN, and control groups 
(p > 0.05; Figure 1C). Additionally, β-diversity analysis assessed the 
variation in sample diversity within each group. The results indicated 
that the control group had lower dispersion, while the IgAN and MN 

TABLE 1 Clinical characteristics.

Parameters control (n = 17) IgAN (n = 24) MN (n = 20) p value (control 
vs. IgAN/MN)

p value (IgAN 
vs. MN)

Age (yr), mean±SD 52.44 ± 19.55 43.96 ± 12.25 53.75 ± 9.08 0.092/0.79 0.005

Male, n (%) 10 (55.6) 9 (37.5) 12(60.0) 0.395/1 0.236

Hypertension, n (%) 3(16.7) 11 (45.8) 9 (45.0) 0.098/0.127 1

Diabetes, n (%) 1 (5.6) 0 (0.0) 1 (5.0) 0.884/1 0.926

eGFR (ml/min per 1.73 m2), mean±SD 97.96 ± 19.73 76.85 ± 33.25 90.31 ± 20.09 0.022/0.245 0.121

Blood Creatinine (umol/L), mean±SD 67.44 ± 20.48 102.53 ± 47.44 81.00 ± 38.33 0.006/0.19 0.11

Urea (mmol/l), mean±SD 6.43 ± 1.80 6.11 ± 1.93 7.28 ± 2.58 0.585/0.252 0.092

Uric acid (μmol/L), mean±SD 307.86 ± 114.99 403.45 ± 118.14 399.46 ± 107.21 0.02/0.023 0.908

LDL-C (mmol/L), mean±SD 2.96 ± 1.38 3.39 ± 1.38 4.83 ± 1.98 0.364/0.005 0.009

Albumin Blood (g/L), mean±SD 43.46 ± 3.82 40.92 ± 6.82 29.22 ± 7.93 0.21/<0.001 <0.001

FIGURE 1

Metagenomic species annotation. (A) Stacked bar chart showing the average relative abundance of the top 10 phyla in each group, reflecting the 
phylum-level microbiota composition across IgAN, MN and controls; (B) Stacked bar chart showing the average relative abundance of the top 20 
genera in each group, reflecting the genus-level microbiota composition across IgAN, MN and controls; (C) PCoA based on genus-level microbial 
composition, with group differences assessed by PERMANOVA. The adonis results showed R2 = 0.05 and p-value = 0.118; (D) Box plot of β-diversity 
(Beta-dispersion) at the genus level (no significant differences between groups); (E) Box plot of α-diversity (Simpson and Shannon index) at the genus 
level.
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groups exhibited higher dispersion. However, this difference was not 
statistically significant (p > 0.05; Figure 1D). In terms of α-diversity, 
both the IgAN and MN groups showed a significant decrease in 
Simpson and Shannon indices compared to the control group, while 
no significant difference was observed between the two disease groups 
(Figure 1E).

The LEfSe algorithm was applied to identify species-level 
microbial differences among the IgAN, MN, and control groups. 
The results revealed that 34 differential microorganisms were 
identified between the IgAN group and the control group, 28 
between the MN group and the control group, and 6 between the 
IgAN and MN groups (LDA score > 2.0, p < 0.05; Figure  2A; 
Supplementary Table  2). Among these differential species, 16 
exhibited significantly higher relative abundance in the control 
group compared to both disease groups. In addition, two species 
showed distinct alterations in the MN group relative to both the 
IgAN and control groups (Figure 2B). [Clostridium] innocuum 
displayed the lowest relative abundance in the MN group, 
whereas Streptococcus oralis showed the highest relative 
abundance in the MN group (Figure  2C). In the comparison 
between the IgAN group and the control group, a total of 15 
significantly enriched pathways were identified. These mainly 
involved carbohydrate and amino acid metabolism, including 
degradation of aromatic compounds (ko01220), phenylalanine 
metabolism (ko00360), C5-branched dibasic acid metabolism 
(ko00660), fructose and mannose metabolism (ko00051), and 
amino sugar and nucleotide sugar metabolism (ko00520). In the 
MN group compared to the control group, 8 pathways were 
significantly enriched, such as quorum sensing (ko02024), folate 
biosynthesis (ko00790), and tyrosine metabolism (ko00350). 
Additionally, comparison between the IgAN and MN groups 
revealed significant enrichment of biosynthesis of ansamycins 
(ko01051) and galactose metabolism (ko00052) in the IgAN 
group, indicating distinct microbial functional signatures 
between the two diseases (Figure 2D).

3.3 Fecal metabolomics analysis

A total of 1,347 and 782 metabolites were identified in the positive 
and negative ion modes, respectively, across 61 fecal samples 
(Supplementary Table 3). The chemical classification of the identified 
metabolites was statistically analyzed, and pie charts for Metabolite 
Class I  were created to reflect the classification of the detected 
metabolites and the count of metabolites in each category. In positive 
ion mode, the five most abundant classes were Lipids and lipid-like 
molecules, Organic acids and derivatives, Organoheterocyclic 
compounds, Benzenoids, and Phenylpropanoids and polyketides 
(Figure 3A). In negative ion mode, the top classes were Lipids and 
lipid-like molecules, Organic acids and derivatives, Organoheterocyclic 
compounds, Benzenoids, and Organic oxygen compounds (Figure 3B). 
Metabolites from both ion modes were combined for PCA to assess 
overall differences among the IgAN, MN, and control groups. The PCA 
score plot showed significant differences between the IgAN and control 
groups (p = 0.001) and between the MN and control groups (p = 0.012), 
while no significant difference was observed between the IgAN and 
MN groups (p = 0.565; Figure 3C). Further OPLS-DA model analysis 
also confirmed that the disease groups were clearly separated from the 

healthy controls, indicating significant changes in the metabolic state 
of both IgAN and MN patients. The R2X and R2Y values of the model 
assessed the explained variance of the independent and dependent 
variable matrices, while Q2 represented the model’s predictive ability. 
Different clustering results were observed in the comparisons between 
the groups (IgAN vs. control: R2X = 0.198, R2Y = 0.998, Q2 = 0.478; 
MN vs. control: R2X = 0.232, R2Y = 0.995, Q2 = 0.32; IgAN vs. MN: 
R2X = 0.142, R2Y = 0.981, Q2 = 0.156; Figures 3D–F).

Differential metabolite screening was conducted using fold change 
(FC), variable importance in projection (VIP), and p-value criteria 
(Figure 4A). Between the IgAN and control groups, 307 significantly 
differential metabolites were identified, with 97 metabolites 
significantly upregulated and 210 metabolites significantly 
downregulated. Between the MN and control groups, 209 significantly 
differential metabolites were identified, with 115 metabolites 
significantly upregulated and 94 metabolites significantly 
downregulated. Between the IgAN and MN groups, 85 significantly 
differential metabolites were identified, with 16 metabolites 
significantly upregulated and 69 metabolites significantly 
downregulated (Supplementary Table  4). The Venn diagram of 
differential metabolites shows the number of overlapping and unique 
differential metabolites between each pair of groups (Figure 4B). There 
are 163 unique differential metabolites between IgAN and control; 84 
unique differential metabolites between MN and control; and 31 
unique differential metabolites between IgAN and MN. The three 
groups shared three common differential metabolites. We imported the 
selected differential metabolites into MetaboAnalyst 6.0 for pathway 
analysis. Based on the topological structure of the metabolic pathways, 
we  calculated the significance and impact factor of each pathway 
(Figures 4C–E). The metabolic pathways enriched in the IgAN and 
control groups (p < 0.05) included Steroid hormone biosynthesis, 
Tyrosine metabolism, and Glycerophospholipid metabolism. The 
metabolic pathways enriched in the MN and control groups (p < 0.05) 
included β-Alanine metabolism, Purine metabolism, and Histidine 
metabolism. Between the IgAN and MN groups (p < 0.05), the 
enriched pathways included purine metabolism, pyrimidine 
metabolism, and alanine, aspartate, and glutamate metabolism. 
Detailed metabolite levels and impact scores are provided in 
Supplementary Table 5.

3.4 Metabolite biomarker analysis

To reduce the impact of external factors (such as vitamin 
supplements, medications, smoking, and diet) on metabolite levels, 
exposomics and vitamin metabolites were excluded from the analysis. 
Univariate logistic regression analysis was first conducted to identify 
metabolites with p < 0.05 and AUC > 0.8 as candidate biomarkers 
(Supplementary Table 6). In IgAN, a total of 14 potential biomarkers 
were identified, including alpha-Linolenoyl ethanolamide, Oleoyl 
ethanolamide and N-Oleoyl Glycine. In MN, three potential biomarkers 
were identified: 5-Methyl-2′-deoxycytidine, Prostaglandin D3 and 
N-Acetyl-D-tryptophan. For distinguishing between IgAN and MN, 
4-Methyl-2-Oxopentanoic Acid was identified as a potential biomarker. 
All of these biomarkers demonstrated good diagnostic performance. 
Further screening of metabolites with AUC > 0.7 revealed that 1,4-Dihydro- 
1-Methyl-4-Oxo-3-Pyridinecarboxamide and alpha-Linolenoyl 
ethanolamide, when considered as univariate biomarkers for IgAN, had 
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AUC values of 0.735 and 0.848, respectively. However, the combination 
of these two metabolites yielded an AUC of 0.919 [95% confidence 
interval (CI), 0.813–1.00], with a sensitivity of 1 and specificity of 0.875 

(Figures 5A,B). For MN, 5-Methyl-2′-deoxycytidine and Prostaglandin 
D3, as univariate biomarkers, both had AUC values of 0.821. The 
combination of these two metabolites resulted in an AUC of 0.897 [95% 

FIGURE 2

Metagenomic differential analysis. (A) LEfSe analysis results showing significantly different taxa among the IgAN vs. control, MN vs. control, and IgAN 
vs. MN groups (LDA score > 2, p < 0.05). The upper panel displays the relative abundance bar plots, while the lower panel shows the corresponding 
LDA scores. (B) Venn diagram summarizing the overlap of significantly different taxa among the three pairwise comparisons. Shared taxa between IgAN 
and MN (vs. controls) are highlighted in red, suggesting potentially common microbial alterations. Taxa shared between MN vs. control and IgAN vs. 
MN are marked in green. These taxa are consistently color-coded in panel A for cross-reference; (C) Box plots showing the relative abundance of two 
representative taxa with disease-specific alterations: Streptococcus oralis, significantly enriched in MN, and [Clostridium] innocuum, significantly 
depleted in MN, compared to controls and IgAN. (D) Bubble plot illustrating KEGG pathway enrichment analysis of differentially abundant KO genes. 
Bubble size represents the number of enriched KO terms within each pathway, while color intensity reflects the statistical significance of enrichment (p 
value), revealing distinct functional disturbances in the gut microbiome across disease groups.
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confidence interval (CI), 0.780–0.981], with a sensitivity of 0.941 and 
specificity of 0.75 (Figures 5C,D). For distinguishing IgAN and MN, 
2-Methoxybenzaldehyde, acetoacetate, and Xanthine as univariate 
biomarkers had AUC values of 0.710, 0.777, and 0.754, respectively. The 
combination of these three metabolites resulted in an AUC of 0.912 [95% 
confidence interval (CI), 0.816–0.979], with a sensitivity of 0.95 and 
specificity of 0.75 (Figures 5E,F). These results demonstrate that the 
combination of biomarkers significantly improved the predictive ability 
of the model.

3.5 Correlation analysis between 
microbiota and metabolites

Spearman correlation analysis was used to assess the relationship 
between the microbiota and metabolites (Figures  6A,C). In IgAN, 
Oscillibacter hominis was significantly positively correlated with 
metabolites such as 2-Methylbutyric acid, 4-Methylvaleric Acid, Adipic 
acid, Ecgonine and Prostaglandin H1, and significantly negatively 
correlated with metabolites such as Taurolithocholic acid 3-sulfate, 

Prolylleucine, N-Oleoyl Glycine and 1-Palmitoylglycerol. Vescimonas 
coprocola was significantly positively correlated with metabolites like 
Stercobilin, Prostaglandin H1, Dehydroepiandrosterone and 
2-Methylbutyric acid, and significantly negatively correlated with 
metabolites like N-Acetylputrescine and 1-Palmitoylglycerol. 
Intestinimonas butyriciproducens was significantly positively correlated 
with metabolites such as Diosgenin, Pilocarpine, Stercobilin and 
N-2-Fluorenylacetamide, and significantly negatively correlated with 
Prolylleucine (Figure 6B). In MN, Intestinimonas butyriciproducens was 
significantly positively correlated with metabolites like Cannabigerolic 
acid, Dehydroepiandrosterone, 2,6-Di-tert-butyl-1,4-benzoquinone and 
Skatole, and significantly negatively correlated with metabolites such as 
Mevalonic acid, Palmitoylcarnitine, Ergosterol and Arachidonic acid 
(Figure 6D).

4 Discussion

In this study, we analyzed the metagenomic and metabolomic 
features of IgAN and MN patients compared to healthy individuals.

FIGURE 3

Metabolite classification and multivariate statistical analysis. (A) Pie chart of Class I metabolite classification in positive ion mode; (B) Pie chart of Class 
I metabolite classification in negative ion mode; (C) PCA score plot for IgAN, MN and control groups. The figure illustrates the distribution of samples 
among the IgAN, MN and control groups, with IgAN represented in green, MN in blue, and controls in red; (D) OPLS-DA score plot for IgAN vs. control. 
This model was employed to identify metabolite-level differences between the IgAN and control groups. The model’s goodness-of-fit metrics were 
R2X = 0.198 and R2Y = 0.998, with a predictive ability of Q2 = 0.478; (E) OPLS-DA score plot for MN vs. control. This model was employed to identify 
metabolite-level differences between the MN and control groups. The model’s goodness-of-fit metrics were R2X = 0.232 and R2Y = 0.995, with a 
predictive ability of Q2 = 0.32; (F) OPLS-DA score plot for IgAN vs. MN. This model was employed to identify metabolite-level differences between the 
IgAN and MN groups. The model’s goodness-of-fit metrics were R2X = 0.142 and R2Y = 0.981, with a predictive ability of Q2 = 0.156.
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4.1 Gut microbiota dysbiosis in IgAN and 
MN

The metagenomic results indicated that microbial diversity, 
community structure and the abundance of specific microbial taxa 
in the IgAN and MN groups were altered, suggesting that the gut 
microbiota in these two kidney disease patient groups has distinct 
compositional characteristics. In the β-diversity analysis, 
we  observed greater dispersion in the IgAN and MN groups 
compared to the control group, indicating higher variability in 
microbial composition among individuals within these two groups. 
This increased dispersion could be influenced by various factors, 
such as the progression of the disease (25). Additionally, in the 
α-diversity analysis, we  found a decrease in the Simpson and 
Shannon index at the genus level in both the IgAN and MN groups. 
It is noteworthy that several studies have already reported 
significant differences in α-diversity between IgAN patients and 
healthy controls (35–37).

At the species level, the relative abundance of certain specific 
microbial taxa was significantly different between IgAN and MN patients. 

For example, Bacteroides fragilis was enriched in the healthy control group 
but significantly decreased in the MN group. Studies have shown that 
Bacteroides fragilis alleviates kidney fibrosis in mice by reducing 
lipopolysaccharide (LPS) levels and increasing 1,5-anhydroglucitol 
(1,5-AG) levels. As an activator of TGR5, 1,5-AG can inhibit oxidative 
stress and inflammation, thereby alleviating kidney fibrosis (38). 
Additionally, Blautia hansenii was enriched in the IgAN group. Studies 
have found that changes in the abundance of bacteria such as Blautia 
hansenii and Blautia producta are significantly negatively correlated with 
visceral fat accumulation (39), and the increase in perirenal fat is 
considered one of the risk factors for chronic kidney disease (CKD) (40). 
Intestinimonas butyriciproducens, which was significantly decreased in 
both disease groups, is a key participant in the metabolism of fructose and 
lysine in the gut (41). At the functional level, we found that phenylalanine 
metabolism was enriched in the IgAN group. Studies have shown that the 
kidneys play an important role in converting phenylalanine to tyrosine. 
However, in patients with chronic kidney failure, this metabolic process 
may be impaired, leading to reduced tyrosine production, which in turn 
affects protein synthesis and other metabolic functions (42). Kim et al. 
proposed that chronic inflammation mediated by the gut–kidney axis 

FIGURE 4

Differential metabolite analysis and enriched metabolic pathway analysis. (A) Volcano plots of metabolites between IgAN vs. control, MN vs. control 
and IgAN vs. MN. The highlighted points in the figure represent significantly differential metabolites selected based on the criteria of Variable 
Importance in Projection (VIP) > 1.0, log2 fold change (Log2 FC) ≥ 1 and statistical significance with p- value < 0.05. Blue represents downregulated 
differential metabolites, and red represents upregulated differential metabolites; (B) Venn diagram of differential metabolites. The numbers in the 
diagram represent the number of overlapping differential metabolites between groups or the unique differential metabolites in each group; 
(C) Metabolic pathway topology map for IgAN vs. control. The y-axis represents the -log(p) value from pathway enrichment analysis, and the x-axis 
represents the impact factor from topology analysis; (D) Metabolic pathway topology map for MN vs. control; (E) Metabolic pathway topology map for 
IgAN vs. MN.
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may be a key mechanism underlying the progression from acute kidney 
injury (AKI) to chronic kidney disease (CKD) in the elderly (43). Li et al. 
reviewed the role of the gut microbiota in renal fibrosis, inflammation and 
oxidative stress, explored the potential of using microbiota-targeted 
interventions, such as probiotics, for CKD treatment (5). Zhang et al. 
further validated the therapeutic effect of Bifidobacterium bifidum 
tetragonum tablets in patients with diabetic kidney disease (DKD), 
demonstrating that the intervention improved clinical symptoms by 
suppressing inflammation and modulating the composition of the gut 
microbiota (44). In summary, these microbial changes may play a 

significant role in the pathogenesis of IgAN and MN by influencing SCFA 
metabolism, immune regulation, and inflammatory status.

4.2 Metabolic perturbations and diagnostic 
biomarkers

Currently, increasing attention has been given to the role of 
endogenous metabolites in kidney diseases. Cao et al. found that the 
metabolite 1-methoxypyrene (MP) can promote tubulointerstitial 

FIGURE 5

Evaluation of fecal metabolic biomarkers in distinguishing disease patients from healthy controls and in differentiating between two kidney different 
diseases. (A) ROC analysis of multivariable biomarker combinations for distinguishing IgAN from control, with an AUC value of 0.919; (B) ROC analysis 
of univariable biomarkers for distinguishing IgAN from control, including 1,4-Dihydro-1-Methyl-4-Oxo-3-Pyridinecarboxamide and alpha-Linolenoyl 
ethanolamide, with AUC values of 0.735 and 0.848, respectively; (C) ROC analysis of multivariable biomarker combinations for distinguishing MN from 
control, with an AUC value of 0.897; (D) ROC analysis of univariable biomarkers for distinguishing MN from control, including 5-Methyl-2′-
deoxycytidine and Prostaglandin D3, both with AUC values of 0.821; (E) ROC analysis of multivariable biomarker combinations for distinguishing IgAN 
from MN, with an AUC value of 0.912; (F) ROC analysis of univariable biomarkers for distinguishing IgAN from MN, including 2-Methoxybenzaldehyde, 
acetoacetate and Xanthine, with AUC values of 0.71, 0.777 and 0.754, respectively.
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FIGURE 6

Correlation analysis between differentially abundant microorganisms and differentially abundant metabolites. (A) Heatmap of correlations between 
differentially abundant microorganisms and differentially abundant metabolites in IgAN vs. control. The colors in the heatmap represent the strength 
and direction of correlations, with red indicating positive correlations and blue indicating negative correlations. Statistical significance of the 
correlations is indicated by asterisks: an asterisk ‘*’ indicates 0.01 < p < 0.05, while two asterisks ‘**’ indicate p < 0.01. No significance is marked with an 
empty space; (B) Chord diagram of the correlation between differentially abundant microorganisms and differentially abundant metabolites in IgAN vs. 
control, based on FDR-corrected significance (p < 0.05) and strong correlation (|r| > 0.6). The chord colors indicate the strength and direction of 
correlations, with red representing positive correlations and blue representing negative correlations, thereby facilitating the identification of key 
microbe-metabolite interaction pairs; (C) Heatmap of correlations between differentially abundant microorganisms and differentially abundant 
metabolites in MN vs. control; (D) Chord diagram of the correlation between differentially abundant microorganisms and differentially abundant 
metabolites in MN vs. control, based on FDR-corrected significance (p < 0.05) and strong correlation (|r| > 0.6).
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fibrosis (TIF) by activating the aryl hydrocarbon receptor (AhR) 
signaling pathway (45). Our metabolomic feature analysis revealed a 
significant upregulation of various dipeptides in the IgAN group, 
including Prolylleucine, Phe-Phe, Thr-Leu, Ala-Ile, Ala-Val, 
Alanyltrosine, L-Leucyl-L-Alanine and Tyrosylalanine. Similarly, many 
dipeptides were also upregulated in the MN group, such as 
Prolylleucine, Phe-Phe, Carnosine, Thr-Leu and Ala-Val. Several 
studies have shown that dipeptides are enriched in the fecal metabolites 
of patients with intestinal diseases, suggesting that dipeptide metabolic 
dysregulation may be  a common feature of gut microbiome 
disturbance. Research by Mills RH et al. found that in patients with 
ulcerative colitis (UC), the symbiotic bacterium Bacteroides vulgatus 
can enhance protease activity, promoting protein hydrolysis and 
leading to the abnormal accumulation of dipeptides in fecal metabolites 
(46). Schirmer M et al. also observed the enrichment of dipeptides in 
the fecal metabolites of children with moderate to severe, newly 
diagnosed UC. This phenomenon may be mediated by the inhibition 
of proton-dependent oligopeptide transporter (POT) function due to 
the acidic environment in the colon (47), leading to disturbances in 
dipeptide metabolism between the host and microbiota (48). Bammens 
B provided evidence of impaired protein anabolism in chronic renal 
failure (CRF). This impairment may lead to protein malnutrition in 
CRF patients (49). Therefore, the dipeptide metabolic abnormalities 
observed in the fecal samples of our IgAN and MN patients may 
be  associated with various factors, including changes in the gut 
microbiota and impaired protein anabolism. Additionally, numerous 
studies have explored the connection between amino acid metabolism 
abnormalities and kidney disease. Liu Y et al. found that the intestinal 
amino acid metabolic profile becomes dysregulated as CKD progresses 
in 5/6 Nx rats, suggesting that modulation of intestinal amino acid 
metabolism pathways could be a potential approach to intervene in the 
progression of CKD (50). Miao et al. found that Lactobacillus species 
improve MN by inhibiting the aryl hydrocarbon receptor pathway 
through tryptophan-derived indole metabolites (51). Moreover, 
previous studies have reported increased levels of free amino acids 
(FAAs) in the serum (52), plasma (53) and fecal metabolites (54) of 
IgAN patients. However, in our fecal samples from IgAN and MN 
patients, most FAAs did not show significant differences.

Some traditional biomarkers for predicting CKD are easily 
affected by external factors, limiting diagnostic accuracy. Therefore, 
researchers are focusing on identifying more reliable novel 
biomarkers. For example, Chen et  al. identified five serum 
metabolites—5-MTP, canavaninosuccinate, acetylcarnitine, 
tiglylcarnitine and taurine—that can effectively distinguish CKD 
patients at various stages from healthy individuals (55). We also 
identified several potential biomarkers: 14 metabolites effectively 
distinguished IgAN from healthy controls, 3 metabolites effectively 
distinguished MN from healthy controls, and 4-Methyl-2-
Oxopentanoic Acid differentiated IgAN from MN. The AUC values 
for these univariate biomarkers ranged from 0.8 to 0.85. Further 
analysis revealed that multivariate combinations of biomarkers 
exhibited superior diagnostic performance: the combination of 
1,4-Dihydro-1-Methyl-4-Oxo-3-Pyridinecarboxamide and alpha-
Linolenoyl ethanolamide distinguished IgAN from healthy 
controls (AUC = 0.919), the combination of 5-Methyl-2′-
deoxycytidine and Prostaglandin D3 distinguished MN from 
healthy controls (AUC = 0.897), and the combination of 
2-Methoxybenzaldehyde, acetoacetate, and Xanthine distinguished 

the two kidney diseases (AUC = 0.912). The results indicate that, 
compared to individual metabolites, the combination of biomarkers 
significantly enhances diagnostic performance, demonstrating 
high sensitivity (≥94%) and specificity (≥75%). This highlights the 
potential application value of multidimensional metabolomic 
analysis in disease diagnosis.

4.3 Microbiota-metabolite interactions in 
the gut-kidney Axis

The interaction between microorganisms and metabolites is 
widespread in the human body (56). This bidirectional regulatory 
mechanism is closely related to host physiological processes and 
plays a crucial role in the onset and progression of various chronic 
diseases (58–59). Currently, studies using db/db mice have 
provided evidence for the gut-metabolism-kidney axis (60). In 
addition, Zhi W et al. conducted clinical trials using features such 
as gut microbiota and metabolomics for monitoring, and 
preliminarily validated the safety and efficacy of fecal microbiota 
transplantation (FMT) in patients with IgAN (61). Shi et al. also 
investigated alterations in gut microbiota and metabolites in 
patients with idiopathic membranous nephropathy (IMN), and 
further developed a biomarker prediction model based on 
microbial features (29). Li et al. compared the gut microbiota and 
metabolite changes in patients undergoing Continuous Ambulatory 
Peritoneal Dialysis (CAPD), suggesting that the gut microbiome 
may serve as a potential target for the diagnosis and treatment of 
CAPD (62).

Our study shows that the levels of 4-Methylvaleric Acid and 
2-Methylbutyric Acid in the fecal metabolites of the IgAN group are 
significantly lower than those in healthy controls, while the level of 
2-Methylbutyric Acid in the MN group is significantly lower than that 
in healthy controls. SCFA are primarily produced through the 
fermentation of undigested dietary fibers by gut microbiota (63). 
These SCFAs serve as an important energy source for intestinal 
epithelial cells, regulating their proliferation, differentiation, and 
function, which in turn affects intestinal motility and enhances gut 
barrier function (65, 64). Among them, butyrate not only maintains 
gut health through its anti-inflammatory effects (66–67) but also 
influences regulatory T (Treg) cells, which are closely associated with 
the pathogenesis of IgAN (69). De Angelis M et al. found that the total 
levels of short-chain fatty acids in the feces of both progressive and 
non-progressive IgAN patients were significantly higher compared to 
those in healthy controls (54). Existing studies have shown that 
probiotics and their metabolic product SCFA can alleviate the clinical 
and pathological manifestations of IgAN by inhibiting the NLRP3/
ASC/Caspase 1 signaling pathway (70). In addition, we also found that 
4-Methylvaleric Acid and 2-Methylbutyric Acid in the IgAN group 
were positively correlated with microbes such as Oscillibacter hominis, 
Intestinimonas butyriciproducens and Vescimonas coprocola. In the MN 
group, 2-Methylbutyric Acid was positively correlated with 
Oscillibacter hominis, Intestinimonas butyriciproducens, Vescimonas 
coprocola, Vescimonas fastidiosa and Dysosmobacter welbionis.

Some species of Oscillibacter have been found to produce SCFA 
(71, 72). Existing studies have demonstrated that the main end 
product of Vescimonas coprocola is butyrate (73). Intestinimonas 
butyriciproducens primarily produces butyrate and acetate (74). The 
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main end products of Vescimonas fastidiosa are acetate, n-butyrate, 
and isovalerate (75). Dysosmobacter welbionis primarily produces 
butyrate and has been shown to beneficially impact host metabolism 
(76). Therefore, we  hypothesize that the reduced abundance of 
microbial populations such as Oscillibacter hominis, Intestinimonas 
butyriciproducens and Vescimonas coprocola in the gut of IgAN and 
MN patients may affect the levels of SCFA and participate in host 
metabolic regulation. In MN patients, the decrease in microbes such 
as Vescimonas fastidiosa and Dysosmobacter welbionis in the gut may 
also be one of the factors contributing to the changes in SCFA levels.

4.4 Limitations

Although this study provides new insights into the gut microbiota 
and metabolomic profiles of IgAN and MN, several limitations should 
be acknowledged. First, the sample size is relatively small (24 IgAN, 
20 MN, and 17 healthy controls), which may limit the statistical power 
to detect subtle microbial or metabolic differences. Second, the study 
is cross-sectional, making it impossible to infer whether the observed 
dysbiosis and metabolic dysregulation are causes or consequences of 
renal pathology. Third, relying solely on fecal samples limits the 
understanding of host-microbiota interactions, as blood or urine 
metabolomic analyses could provide complementary information. 
Fourth, metabolite biomarkers need to be further validated in larger-
scale studies. Future prospective research should also assess the 
prognostic value of these biomarkers and verify whether they 
outperform existing clinical indicators, thereby facilitating their 
clinical translation. Finally, although metagenomics offers higher 
resolution than 16S rRNA sequencing, functional validation is 
required to confirm the pathogenic role of specific taxa (e.g., 
Oscillibacter hominis) in the depletion of SCFAs.

5 Conclusion

This study analyzed the fecal metagenomic and metabolomic 
characteristics of IgAN and MN patients compared to healthy 
controls. Both kidney disease groups exhibited distinct gut 
microbiota composition patterns. Metabolomic analysis revealed 
significant enrichment of dipeptide metabolites in the feces of 
IgAN and MN patients, with some SCFA showing decreased 
levels, which were associated with the reduced abundance of 
microorganisms such as Oscillibacter hominis, Intestinimonas 
butyriciproducens and Vescimonas coprocola. Furthermore, 
we constructed a Logistic regression model to assess the potential 
application of metabolites for non-invasive diagnosis and 
differential diagnosis of IgAN and MN, identifying multiple 
potential biomarkers. The combination of metabolites 
significantly improved the diagnostic performance of the model, 
demonstrating high sensitivity and specificity.
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