& frontiers | Frontiers in Medicine

@ Check for updates

OPEN ACCESS

EDITED BY
Habib Hamam,
Université de Moncton, Canada

REVIEWED BY

M. Rajesh Khanna,

Vel Tech Multi Tech Dr Rangarajan Dr
Sakunthala Engineering College, India
Noman Sohail,

Universitetssjukhuset i Linkoping
Paramedicinska enheten, Sweden

*CORRESPONDENCE
Fehaid Salem Alshammari
falshammari@imamu.edu.sa

RECEIVED 27 April 2025
ACCEPTED 21 July 2025
PUBLISHED 02 September 2025

CITATION
Kaur A, Alshammari FS, Rehman AU and
Bharany S (2025) Intelligent Alzheimer's
diagnosis and disability assessment: robust
medical imaging analysis using ensemble

learning with ResNet-50 and EfficientNet-B3.

Front. Med. 12:1619228.
doi: 10.3389/fmed.2025.1619228

COPYRIGHT

© 2025 Kaur, Alshammari, Rehman and
Bharany. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiersin Medicine

TYPE Original Research
PUBLISHED 02 September 2025
pol 10.3389/fmed.2025.1619228

Intelligent Alzheimer’'s diagnosis
and disability assessment: robust
medical imaging analysis using
ensemble learning with
ResNet-50 and EfficientNet-B3

Arpanpreet Kaur!, Fehaid Salem Alshammari®**,
Ateeq Ur Rehman*® and Salil Bharany!

!Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab,
India, 2Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud
Islamic University (IMSIU), Riyadh, Saudi Arabia, *King Salman Center for Disability Research, Riyadh,
Saudi Arabia, *Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute
of Medical and Technical Sciences, Chennai, Tamil Nadu, India, *Applied Science Research Center,
Applied Science Private University, Amman, Jordan

Neurodegenerative disorder Alzheimer's disease (AD) has progressive
characteristics and leads to severe cognitive impairment that reduces life
quality. Disease management along with effective intervention depends on
the detailed diagnosis conducted early. The proposed framework builds an
ensemble system from ResNet-50 and EfficientNet-B3 to conduct automated
AD diagnostics by processing high-resolution Magnetic Resonance Imaging
(MRI) images. The proposed model uses ResNet-50 to extract features coupled
with EfficientNet-B3 as its robust classifier which achieves high accuracy
alongside generalization performance. A large, high-quality dataset comprising
33,984 MRl images was used, ensuring diverse representation of different disease
stages: the study included participants with four dementia stages organized
as Mild, Moderate, Non-demented, and Very Mild Demented. The research
applied several comprehensive data preprocessing methods combining
normalization steps with rescaling algorithms alongside noise elimination
techniques to achieve enhanced performance. Performance tests on the model
required examination of accuracy along with precision and recall metrics and
F1-score and ROC curve area measurements. The ensemble model delivered
remarkable overall accuracy reaching 99.32% while surpassing separate deep
learning architectures. The confusion matrix evaluation results showed superb
classification results for Mild and Moderate stages along with non-dementia
cases while maintaining minimal Wrong choices in Very Mild Demented cases.
Experimental findings demonstrate the strength of deep learning algorithms to
detect AD disease stages accurately. The robust and accurate performance of
the proposed model indicates it has potential for use in medical environments
to support radiologists in their work of early-stage AD screening and treatment
development. Additional research in diverse clinical environments will strive
to optimize and validate the model so it can meet real-world diagnostic
requirements for medical use.

KEYWORDS

Alzheimer’s disease, neurodegenerative disorder, deep learning, MRI analysis, ResNet-
50, EfficientNet-B3, ensemble model, feature extraction

01 frontiersin.org


https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1619228
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1619228&domain=pdf&date_stamp=2025-09-02
mailto:falshammari@imamu.edu.sa
https://doi.org/10.3389/fmed.2025.1619228
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2025.1619228/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Kaur et al.

1 Introduction

Alzheimer’s disease (AD) is a primary neurodegenerative
disease that is responsible for 60%—70% of all dementia cases
across the globe, it results in progressive impairment of cognitive
and memory function, and overall physical disability mainly in
old age. The disease is defined clinically by the deposit of amyloid
plaques and neurofibrillary tangles in the brains, leading to the
gradual decline in brain volume, and resulting in confusion,
poor judgement, language disorder, personality changes, and the
inability to carry out activities of daily living (1). To date, aging is
still the biggest risk factor for developing AD, but there are also
genetic factors, unhealthy life styles, cardiovascular diseases and
physical environments that affect the development as well as the
progress of AD (2). To date, there is no known cure for Alzheimer’s
disease but major advancements in medical research have provided
methods of managing the disease, these include; cholinesterase
inhibitors, memantine, health and safety promotion through
changes in diets and coming up with strict exercise regimes that
can reduce deterioration of the patients condition (3). Prior to the
publication of DSM IV-Tre quantitative diagnosis of Alzheimer’s
disease primarily depended on clinical assessment, patient history,
and neuropsychological assessment that even though still today
have their utility, were reported to provide low sensitivity in early
diagnosis of Alzheimer’s disease as well as being time consuming
and labor intensive. Also, Magnetic Resonance Imaging (MRI)
and PET scans have been used to detect abnormalities in the
brains of mentally ill patients, although these approaches lack
high accuracy when no computational tools are applied (4). Over
the last few years, the incorporation of deep learning methods in
medical imaging has definitely advanced diagnosis, particularly for
Alzheimer’s disease as a more precise, fast, and less error-prone
approach (5).

Among these, Convolutional Neural Networks (CNNs) have
shown exceptional performance in efforts to diagnose MRI patterns
that point toward AD, all while surpassing conventional machine
learning models by learning features from raw image data. In
the context of Alzheimer’s disease, the required diagnostic tools
are significantly more diverse and refined; this is why ensemble
deep learning models have recently become popular as they unite
the results of several architectures in one model (6). As for the
CNN model selection, two advanced structures including ResNet-
50 and EfficientNet-B3 have become the most popular pro forma
architectures in recent years due to the higher image classification
performance. The vanishing gradient problem is solved through
using the ResNet architecture of a deep residual network of 50
layers; deeper networks converge well while capturing details of the
images at the same time (7, 8). On the other hand, EfficientNet-
B3 uses compound scaling method to control the network depth,
width, and so on, making it highly efficient and accurate to
extract features with little computational need. Thus, the ensemble
of ResNet-50 and EfficientNet-B3 models, where the weaknesses
of each of them are masked, and the strengths are combined,
contributes to increasing the efficiency of diagnostics compared
to using only such architectures and increases the robustness
when detecting subtle abnormalities in MRI scans. The main
goal of this research is to enhance a deep learning model for
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distinguishing between the Alzheimer’s disease and the Normal
Cognitive status by integrating ResNet-50 and EfficientNet-B3
models for MRI data. This approach operates in an attempt to
overcome the recognized deficiencies of conventional diagnostic
check techniques for AD through the development of an efficient
diagnosis system that would be automated, accurate, and fairly easy
to implement in the different human populations at the various
stages of the disease development (9). In addition, the problem
statement focuses on the requirement of an accurate diagnostic
tool to differentiate between distinct phases of Alzheimer’s disease
with robust performance, despite data imbalance, MRI scan noise,
and variation (10). Therefore, the major contributions of this
study are the development of an ensemble model that comprises
ResNet-50 and EfficientNet-B3, an assessment of the performance
of the proposed ensemble model against existing deep learning
architectures, and a proof of the usefulness of the suggested
model in enhancing the diagnostic accuracy of Alzheimer’s disease
classification. Several works have been extensively conducted on
AD detection using standalone CNNs, CNNs with Attention
Mechanisms, Ensemble of CNNs and the hybrid of them; their
performance is sometimes constrained by a limited number of
available diagnostic samples, non-normative database information,
and high computational costs (4, 8). For example, Ajagbe et al.
(3) and Shirbandi et al. (6) pointed out that applying CNN-based
models in MRI-based classification is promising; however, that
architectures should be improved to learn deeper and abstract
features. Finally, the studies by Sorour et al. (8) and Mujahid
et al. (7) showed that the setup based on the ensemble learning
is extremely valuable for the detection of AD, as the results of
multiple models enhanced positive prediction and diminished the
numbers of false-positives. Thus, basing on these achievements,
the development of our proposed model is intended to fill the gap
in the identified scientific studies and integrate the advantages of
ResNet-50 and EfficientNet-B3, including their residual learning
ability and computational efficiency. Furthermore, the given work
uses techniques like data augmentation and employs adaptive
learning to deal with issues that are hard to solve for, including
overfitting and imbalance, in order to have a high model accuracy
on various MRI datasets (7). The reason as to which ResNet-50 and
EfficientNet-B3 were selected for the experiment is because these
two architectures have demonstrated good performance across
multiple tasks and are robust combinations of feature extraction
and classification (8). Based on its deep residual connections which
allow the model to learn complex features, ResNet-50 is well-suited
to this task, whereas EfficientNet-B3 which incorporates optimized
scaling for efficient computations is equally efficient and accurate
for the task at hand. This combination is specifically advantageous
for medical imaging applications where the minor differences have
to be identified between the structures of normal brains and that
of the AD patients (6). Moreover, ensemble learning is beneficial in
increasing the generalizability of the model, since the combination
of more predictions means decreasing the model bias and variance
and thus, increasing the diagnostic reliability (7). Finally, this paper
intends to make a positive contribution to the available body of
knowledge on Alzheimer’s disease by proposing a new, yet highly
effective, deep learning structure that encompasses the best facets
of the ensemble learning technique to deliver the highest possible
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diagnostic accuracy. Of critical value and practical applicability,
the proposed model can help clinicians make quick and precise
diagnosis decisions, which will lead to earlier diagnosis, target
treatment plans, and enhanced patient care (2, 8).

In this context, this study contributes to fill the gap of
the current diagnostic techniques in Alzheimer’s disease and
to establish the base for future studies that will promote the
creation of new, available and reliable tools with deep learning
for Alzheimer’s disease diagnosis in magnetic resonance images.
This work couples two important elements for the construction
of an effective diagnostic test for Alzheimer’s disease based on
high classification accuracy and explainability. Section 2 gives an
extensive literature review of the existing diagnostic conventional
approaches, deep learning in neuroimaging. Next, in Section
3, the method is described, more specifically, details about the
dataset, the preprocessing of MRI scans, the architecture of the
proposed ensemble model based on ResNet-50 and Efficient
Net B3. In Section 4, the authors report the findings analyzing
the effectiveness of the ensemble model and taking them up
against the other classification models. Section 5 contains a
discussion of the study’s results and their potential, possible
clinical uses of the proposed model, its weaknesses, and potential
improvements for future work. Also in Section 6, the conclusion
of the paper points to the contributions of the study and the
implication of applying the proposed approach to timely diagnosis
of Alzheimer’s disease.

2 Literature review

Alzheimer’s disease (AD) classification has received a
considerable amount of focus in the medical research sector mainly
due to the development of new approaches such as deep learning,
which have indicated that they can outperform conventional
diagnostic approaches. The two best performing deep learners
in this study are the Convolutional Neural Networks (CNNs),
specifically ResNet-50 and EfficientNet-B3 reveal promising
features for efficient AD diagnosis from brain MRI scans. The
subjects of Raza et al’s (11) study involved segmentation and
classification of MRI images of Alzheimer’s disease employing
transfer learning (TL) and proposed particular CNNs. The
approach works on images that segment objects as divided by
the brain’s Gray Matter. Rather than training from the ground
up, there existed a pre-trained deep learning model, to which the
process proceeded as transfer learning. The model was compared
at 10, 25, and 50 epochs and the mean accuracy was found to be
97.84%. Ironically, transfer learning and segmentation techniques
stand as prominent methodologies in a comprehensive framework
of medical imaging analysis in diagnosing Alzheimer’s disease
this study shows the enhancement of accuracy (11). Sharma et al.
presents a machine learning model based on transfer learning (TL)
and permutation-based voting classifiers for Alzheimer’s detection
from MRI images. DenseNet-121 and DenseNet-201 extract
features in phase one and phase two has classifiers such as support
vector machine, Naive Bayes and XGBoost to classify. Therefore,
in the voting mechanism the final predictions are improved with
accuracy of 91.75%, specificity of 96.5% and F1-score of 90.25. The
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model was trained from scratch using a Kaggle data set consisting
of 6,200 images in four dementia classes. Mentioned results are
completely compatible with the statements and show the higher
effectiveness of the offered model compared with state-of-the-art
methods; thus, there is perspective to consider the proposed
model for usage in clinician applications for Alzheimer’s disease
identification (12). The authors Zhang, Zhang, Du, and Wang
(13) in their study proposed an enhanced neural network known
as ADNet from the VGG-16 model for detection of Alzheimer’s
diseases applying 2D MRI slices. Those modifications consist
of depthwise separable convolution to decrease the number of
parameters; however, the model uses ELU activation to avoid the
problem of exploding gradients; the model also incorporated an
SE module for effective feature recalibration. Similarly, training
is combined with auxiliary tasks: regression of clinical dementia
and mental state score. Experimental results proved that the
proposed approach gives 4.18% higher accuracy of AD compared
with cognitively normal (CN) and 6% of MCI accuracy compared
with CN than the VGG16 model. These outcomes indicate that
multitask learning solutions and better architecture for the neural
network may help ADNet to support early Alzheimer’s detection.
Solano et al. (14) uses a three dimensional DenseNet model for
the detection of Alzheimer’s disease using Magnetic Resonance
Imaging (MRI). Using the proposed deep neural network classifier,
an overall accuracy of 0.86, sensitivity of 0.86, specificity of
0.85, and the area under the ROC curve (micro-average) of
0.91 for five disease stages. Focusing on the ability to produce
replicable results, the approach uses only the tools available
freely online, which means it should be more easily implemented
in poorer countries as well. This approach helps to show that
deep learning is useful in medical diagnosis and the equitable
distribution of technology for installation and use. Carcagni
et al. (15) investigate the performance of CNNs and the adaptive
self-attention mechanism for identifying Alzheimer’s using brain
MRI data. In particular, the study utilizes deep learning methods
in improving the detection accuracy and speed of Alzheimer’s
disease, through exploiting the features of CNN, through a feature
extraction step and exploiting self-attention to learn the long-range
dependencies. In addition, proofs reveal a vast scope for the use
of some automated diagnostic tools to have a high sensitivity
and specificity compared with conventional practices. The work
focuses on the implementation of the new AI models in the early
diagnosis and effective individualized approach to the disease,
providing a solid base for non-invasive and horizontally scalable
dementia diagnostics (16). In recent years, deep learning proved
to be a valuable approach in analyzing genomes, responding
to the large and dependent features’ patterns and correlations.
The recent innovations include variation in model structures,
paradigms of model establishment, and techniques of model
decoding all focused on the prophetic models of genetic variants
and their influence on the disease causation. In such context,
this review addresses how genomic deep learning techniques
remain rather flexible for disease-oriented investigations with
reference to neurodegenerative disorders including Alzheimer. It
uses primarily the articles on Alzheimer’s disease and considers
more general methods, explaining the potential value of these
approaches. To the best of our knowledge, the review conducted
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by Jo et al. aimed at reviewing future research directions at the
crossroads of neurodegeneration, genomics, and deep learning
(16). Deep learning has emerged as an essential element of genomic
analysis because of its capability to handle large genomic data
by identifying the diverse relationships between them. Progress
includes the following new trends in models: model architecture,
model development philosophies, and model interpretation
techniques for estimating the effects of genetic variants on disease
progression. This review shows how to incorporate genomic
deep learning methods into disease-specific models with an
emphasis on neurodegenerative diseases such as Alzheimer’s. It
focuses on Alzheimer’s literature and where it identifies more
general methodological approaches, it explores their suitability.
In addition, Qui et al. have discussed directions for future work
involving neurodegeneration genomics, and deep learning (17).
Hazarika et al. compares different deep learning (DL) models in
AD classification using brain Magnetic Resonance (MR) images
collected from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset. However, the DenseNet-121 model showed the
highest accuracy of 88.78%, a bit slower than the others because
of the extensive convolutions. Thus, to overcome this kind of
limitation, the authors suggested a new DenseNet-121 structure,
where instead of the conventional convolutional layers, the depth-
wise convolutional layers should be used. These optimizations
improved computational and accuracy rates making the average
accuracy to be 90.22%. The results discussed above imply future
possibilities of depth-wise convolution in enhancing the DL-based
AD classification models (18). In their paper, Helaly et al. describes
a system for early detection of Alzheimer’s disease (AD) and
multi-stage classification with the help of convolutional neural
networks (CNNs). Two methods are explored: specifically, the
use of 2D and 3D CNN:is for structural images, and apply transfer
learning with VGG19 to improve the classification performance.
Therefore, based on the ADNI dataset, the highest precision
rate established was 93.61% in 2D; 95.17% in 3D, and 97% in
VGG19. A web application helps in diagnosing and staging AD
remotely, and improving health care access during COVID-19.
The approach is simple and less computationally demanding,
and the method’s performance is stable and suitable for medical
applications based on its evaluation on nine criteria (19). Jo et al.
employed the 3D convolutional neural networks (CNN) and
layer-wise relevance propagation designed to diagnose AD using
tau PET scans. MCI using the proposed model he has come up with
a result of 90.8% accuracy by using AD and cognitively normal
(CN) subjects. Using information from voxel-wise analysis the key
regions identified were hippocampus, thalamus, and entorhinal
cortex. Probability of AD, calculated from cognitive measures, was
associated with medial temporal tau deposition in MCI, proving
useful in detection at this stage (20). Table 1 below shows the state
of art comparison.

3 Proposed methodology

On the same note the proposed methodology outlines a
comprehensive framework of Alzheimer’s disease diagnosis. First,
a clear overview of the dataset is provided, including its
characteristics, which is diverse, clean and has high quality
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ground truth labels to enable accurate training and testing.
Normalization, rescaling, center cropping, and elimination of
noisy regions also prepares the data to be in the right standard.
Each of these transformations enhances model robustness and,
at the same time, can help increase its ability to generalize.
The diagnostic framework involves an ensemble model of
ResNet-50 and EfficientNet-B3 networks which are the best
for the feature extraction and the classification, respectively.
Moreover, evaluation criteria by accuracy, precision, recall, F1-
score, and area under the ROC curve are used to provide more
detailed analysis of the performance of the model. A general
idea of the proposed methodology flowchart is presented in
Figure 1 below.

3.1 Dataset description

The dataset used in this study is a publicly available MRI
dataset sourced from Kaggle, titled the “Augmented Alzheimer
MRI Dataset” (22). It comprises a total of 33,984 2D T1-weighted
MRI slice images, not full 3D volumes, evenly divided among four
diagnostic categories: Mild Demented, Moderate Demented, Non-
Demented, and Very Mild Demented as shown in the Figure 2,
the images are saved in JPEG format and have undergone data
augmentation and applied solely to the training set to enhance
diversity and prevent overfitting. The validation and test sets were
left unaltered to ensure unbiased evaluation and preprocessing by
the original dataset providers and represent 2D slices extracted
from volumetric MRI scans. The dataset does not contain subject-
level metadata such as age, gender, imaging protocol, or acquisition
parameters. Due to the absence of subject identifiers, the dataset
was split at the image level rather than the patient level. As a result,
adjacent slices from the same volume may exist across training,
validation, and test sets, potentially introducing correlation-based
bias. The images were divided into training (80%), validation
(10%), and testing (10%) subsets, corresponding to 27,188, 3,397,
and 3,399 images, respectively. Due to the absence of patient
identifiers, the split was performed at the image level, and this
limitation is acknowledged as a potential source of correlation
bias (23). It is important to note that this dataset includes
images that were augmented by the dataset provider prior to
release. Therefore, it is most appropriate for use in training and
internal evaluation. The lack of access to original, non-augmented
scans limits the datasets suitability for external validation or
generalization studies.

The original dataset does not include metadata regarding
MRI acquisition protocols, sequence parameters, scanner types, or
image reconstruction software, and thus, such details could not
be reported in this study. It is important to note that this dataset
includes images that were augmented by the dataset provider prior
to release. Therefore, it is most appropriate for use in training and
internal evaluation. The lack of access to original, non-augmented
scans limits the datasets suitability for external validation or
generalization studies. Further, no documentation regarding ethics
approval, patient consent, or institutional data sourcing is available
for this dataset, and its origin cannot be independently verified. The
distribution of the classes is tabulated as follows in Table 2.
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TABLE 1 Comparison with state of art.

Reference Technique used

Sharma et al. (2022) (12) Hybrid artificial system (HTLML) for

Alzheimer’s disease diagnosis

Advantages

Finally, the use of multiple Artificial
Intelligence techniques for a better result

10.3389/fmed.2025.1619228

Disadvantages

They proposed that complexity
manifested in hybrid models could
result in longer time taken during
training and high computational costs

Qiu et al. (2020) (17) A clear and understandable deep

learning structure

Used for explaining model adult human
decision making

Jo et al. (2020) (20) Using residual deep learning on tau PET

imaging

Concentrates in the identification of tau
protein images in Alzheimer’s

May be tuned to small fluctuations in
MRI data

Solano-Rojas and Villalén-Fonseca
(2021) (14)

A DenseNet neural network for early
identification of Alzheimer’s disease

A less expensive method with
reasonable efficiency for early detection

Lacks capability of real time and high
processing speed for 3D data

Jo et al. (2022) (16) Application of deep learning for the

analysis of genetic variants

It allows the analysis of massive genetic
data to classify Alzheimer’s

Is highly dependent on the availability of
large high quality genotype data for use
in training

Hazarika et al. (2022) (21) Different Deep Learning Architectures

for Alzheimer’s Classification

Compared and contrasted several
models, toward the decision-making
process of selecting the right approach

Some of these techniques may
compromise the model’s accuracy or,
sometimes, make it less complex

Helaly et al. (2022) (18) Al based early diagnosis of Alzheimer’s

disease

Another stamina is early identification
abilities since the program detects
omissions at the beginning

Mixed evidence provided by models;
models need to be chosen more carefully

Raza et al. (2023) (11) Preprocessing and feature selection in

Alzheimer’s disease identification

Utilizes pre-trained models that mostly
help to decrease the time and amount of
training data needed

Some of native to the domain features
might not be recognized by the
pre-trained models

Carcagni et al. (2023) (15) CNN and self-attention learners

Proper to extract features from the brain
MRI images

Self-attention mechanism may be costly

Zhang et al. (2024) (13) This proposal addresses multi-task
learning with an enhanced or modified

version of a neural network

Multi-talented and able to work on a
number of projects at once, hence
increasing productivity

Complexity in models often leads to
over fitting and these models will need
large data sets

3.2 Preprocessing

In this paper, data preprocessing is found to be a fundamental
step in enhancing the machine learning outcomes especially in
classifying Alzheimer diseases using MRI scans. Because of the
variations witnessed in the quality of images and the small
differences in the brain boundaries some preprocessing techniques
are very essential to improve the input images (24). First, a process
of image normalization is conducted so that the pixel values
range from 0 to 1 to reduce possible deviations due to image
sizes. Although no explicit denoising or contrast enhancement
was applied, several data augmentation techniques were used to
enhance the training data and improve model robustness. These
included random rotations, zooming, flipping, and brightness
variation. All images were resized to 224 x 224 pixels and
normalized to a pixel intensity range of [0, 1] before being fed
into the models. This makes the model generalized better and also
relieves it from overfitting (25). All these preprocessing steps serve
to enhance the quality of data put into the ensemble model for the
correct identification of Alzheimer’s stages (26).

a.) Normalization: normalization is the task of adjusting the range
of pixel intensities of an image to a standard range, often
the interval [0:1]. The most common method is min-max
normalization, which can be expressed mathematically as given
in the Equation 1 below:

Xnorm = X — X, . X Xmin (1)
*= Xmin

Frontiersin Medicine

where X0 is the normalized portion of the pixel value, x is

the actual pixel value, and xi, is the minimum value of the

pixel in the picture, Xy is the maximum value of the pixel in

the picture.
b.)

Resizing: resizing is the process of moving each pixel of an

image to a new location in relation to desired width and height
of the targeted image. If (Wj,,, H;,) is the width and height of
the original image and (W, Hou) is the width and height of

the resized image. While maintaining the spatial relationships.
If (Wiu, Hin) be the width and height of the original image
and (Wou, Hout) be the width and height of the resized image.
To standardize input dimensions for model training, each

2D MRI slice was resized to 224 x 224 pixels using bilinear

interpolation. This resizing adjusted the number of image

pixels but did not account for physical voxel dimensions, which

could not be preserved due to the absence of spatial resolution

metadata in the JPEG-formatted dataset. So, the scaling factors

for width and height are computed as in Equation 2 below:

Sy =

c.)

Wout
Win

Hout

,, 2

> S =

Data augmentation: data augmentation involves applying

various operations on the existing dataset in order to create an

enlarged and diversified set in order to improve generalization.

It features different augmentations like rotation, scaling,

shifting, flipping among others as shown in Figure 3. Rotating

an image by angle 6 is given by the formula as shown in the

05
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(b)

FIGURE 2

Dataset classes: (a) Mild Demented (b) Moderate Demented (c) Non-Demented (d) Very Mild Demented.

(d)

TABLE 2 Class wise dataset distribution.

Dataset No. of images in ‘Mild No. of images in No. of images in No. of images in Total
Demented’ class ‘Moderate ‘Non-Demented’ class ‘Very Mild’ class images
Demented'’ class
Training 6,797 6,797 6,797 6,797 27,188
Validation 850 850 850 850 3,400
Testing 850 850 850 850 3,400
Total 8,497 8,497 8,497 8,497 33,988
Equation 3 below. 3.3.1 ResNet-50
, ResNet-50 consists of 50 layers, including convolutional layers,
/ . .
[x J ] = [cosO — sind sinbeosd] [x y | 3) pooling layers, batch normalization (BN), and fully connected

where, the coordinate position of the original raster image
pixel is designated by (x, y) and that of the new position
is by (x, y) and the angle of rotation is 6 in radians.
Horizontal flipping reflects an image across the vertical axis.
This transformation can be mathematically represented by
reversing the x-coordinate of each pixel as in Equation 4:

X=-x y =y (4)

This augmentation is particularly useful in medical imaging
to introduce left-right symmetry, thereby improving the model’s
robustness to orientation variance.

Vertical flipping reflects the image across the horizontal axis
and is represented as in Equation 5 below:

X¥=x y=-y (5)

This operation helps simulate top-bottom inversion, further
enhancing the model’s ability to learn invariant spatial features,
especially when orientation does not impact diagnostic relevance.

3.3 Model building

Two architectures of deep learning models, the ResNet50 and
EfficientNet-B7 that form the basis of the ensemble model are
generated by this method. Each model is established meticulously
to construct components of MRI images essential for satisfying
classification exclusively.
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layers, as illustrated in Figure 4a. ResNet' s principal invention
is the residual block; this essential function is a “shortcut” or
direct pathway that sends the input to the layer through to
the output. This allows the model they base to skip certain
layers and decrease the gradient disappearance problem in very
deep networks (27). These shortcut connections help the network
retain accuracies of deeper models possible without crossing the
degradation issue by “jumping” other layers. The recognized blocks
of architecture include the pooling layers, batch normalization,
ReLU activation functions, and convolutional layers in sequence is
given mathematically by Equation 6.

y=F@{wi}) +x (6)

Here x is the input to the residual block, y is the output,
F(x{w;}) is the function that is applied on the input x. The last
layer of classification produces output zyes,es as described below in
Equation 7 after passing through the network.

Yresnet = Softmax (Wresnet X Yglabal + bresnet) (7)

Here, Wyesner and byesner are the weights and biases of the dense
layer, and Ygopq; is the output from the global average pooling layer.

The convolutional block from ResNet-50 as illustrated in the
Figure 4b, is a deep convolutional neural network that aids in
the vanishing gradient problem through the element of residual
learning. This block was implemented with the intent of being used
to extract features while still allowing deeper networks to learn. The
convolutional block includes three types of convolutional layers
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Data augmentation techniques

implemented in a sequence. The first layer isa 1 x 1 convolution
that decreases the dimension of the input feature maps in order
to lessen computational cost Stage 3: technology 3. The second
one is another convolution layer with size 3 x 3 to cover spatial
connections and explicit features. The third layer is another 1 x 1
convolution to get back to the original dimensions of the feature
maps. After each convolution there is normalization to make the
training process faster and more stable, as well as using activation
function (ReLU). The feature that is unique to the convolutional
block is the projection shortcut connection, which uses 1 x 1
convolution to bring the dimensions of the input to match that
of the processed features. This makes some sense as it actually
establishes compatibility for the element-wise addition on the
shortcut and the convoluted feature maps. Then a feedback layer
addition is applied, and finally has the activation function to get the
output. This design makes it possible for ResNet-50 to learn initially
both low level and high-level features in deep networks.

In addition, an identity block in ResNet-50 as depicted in
Figure 4c is an essential building block aimed at transferring
features well through deep architectures. As it will be seen, the
identity block retains the input dimensions since it uses a skip
connection that feeds the input directly to the output without
any change of dimension. This helps in making the model fast
and stable while processing in the later stage of the training.
The identity block contains three layers of convolution. The first
is a1 x 11 times one convolution layer that is aimed at the
dimensionality of the input feature maps. This is succeeded by
a 3 x 33 times three convolution which extracts spatial features
and patterns, and one more 1 x 11 times one convolution which
brings back dimensionality. Each convolutional layer is associated
with batch normalization to update the activation for acceleration
of convergence as well as activation function like ReLU. The key
feature of the identity block is that the input directly connects to
the output without passing through the convolutional layers by
adding the input feature maps with the corresponding feature maps
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after passing through the network. After this addition there is an
activation function to produce the output. The added identity block
makes ResNet-50 deepen this network while allowing it to maintain
the hoisting of features and avoid the vanishing gradient issue,
making it a great architecture for acquiring features.

3.3.2 Efficient Net

Based on a compound scaling coefficient, Efficient Net aims
to optimize at the same time depth, width and the resolution
according to a parameter @ that represents a family of models.
EfficientNet-B3 is one particular network in the Efficient Net series
of models and, as with all models in this series, this network
enforces a balance between these three aspects to yield decent
compromise between model complexity, model accuracy, and
compute requirements (26). The scaling is governed by Equation 8:

d=ao®w=p>r=y* (8)

where d, w, and r are the network’s depth, width, and resolution,
respectively and where «, §, and y are parameters. The output
of EfficientNet-B7, after global average pooling, is shown in
Equation 9:

Vefficientnet = Soﬁmax (Wejﬁcientnet X]fglobal + beﬁcientnet) )

where feopar is the feature vector, and Wegicientet> befficientner are
the weights and the biases of the dense layer. The architecture of
EfficientNet-B7 demands for many important components: from
original input, features are extracted by convolutional layers to
improve gradient flow and achieve batch normalization and the
Swish activation function. The Figure 5 shows the architecture of
Efficient Net B3.
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3.3.3 Ensemble model architecture

In the proposed ensemble model, ResNet-50 and EfficientNet-
B3 were trained independently using the same training dataset to
classify MRI slices into four Alzheimer’s disease stages. During
inference, both models generate probability scores for each class
through softmax layers, and these outputs are combined using a soft
voting approach by simply averaging the predictions. This fusion
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allows the ensemble to benefit from the complementary strengths
of both networks: EfficientNet-B3 offers high efficiency with fewer
parameters, while ResNet-50 contributes deep hierarchical feature
extraction through residual learning. To stabilize training and
reduce internal covariate shift, batch normalization is applied to
the fused features, followed by a dense layer with 256 neurons
and ReLU activation for non-linearity. Regularization techniques,
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FIGURE 5
Efficient Net B3 architecture.

including both L1 and L2 penalties, are applied to prevent
overfitting, and a dropout layer is used to further improve
generalization. The final classification is performed through a
fully connected layer that maps the processed features to class
probabilities. The model is trained using categorical cross-entropy
loss, which evaluates the difference between predicted and true
class labels. Overall, this ensemble design enhances diagnostic
performance by combining the robustness of two diverse deep
learning architectures as in the Figure 6. Rather than assigning
weighted average or performing any other operation, the outputs
from both the models are then simply averaged as they have been
observed to complement each other. EfficientNet-B3 gives state
of the art efficient feature representation using fewer number of
parameters compared to ResNet-50 which offers strong hierarchical
feature representation due to its residual learning (11). The
combined output fusion is computed as shown in Equation 10
where ygger is the final prediction of Efficient B3 and ypesner is the
final prediction of Resnet 50.

1
YFusion = E-(}’EﬁN@t + )’ResNet) (10)

This particular fusion strategy also ensures that both models
contribute equally enough to the ensemble so that generalization
over the various patterns across images will be well-captured.

Batch normalization (BN) is then employed on the fused
features to stabilize and enhance the speed of the whole training
process by normalizing the outcomes. The normalized feature
vector y is computed as in Equation 11:

YFusion—
Vo? +e

where p and o2 are the estimate of average of the batch, and

j= (11)

variance of the batch respectively and € is a small constant value
so as to avoid division by zero. Trainable scaling () and shifting
(B) parameters further refine the normalized features by using
the Equation 12:

Y=vy +8 (12)

This step reduces the covariate shift problem within the
organization’s internal environment, meaning that there is a more
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stable distribution of the particular features through the layers. The
features being batch normalized are then fed through a dense layer
with 256 output neurons. This layer applies a linear transformation
followed by a ReLU activation for non-linearity as shown in
Equation 13:

z = ReLUW.y +b) (13)

where, W is Weight matrix, b is Biase vector and ReLU(a) = max (0,
a) To prevent overfitting, L1 and L2 regularization terms are added
to the loss function, penalizing large weights as in Equation 14:

Regularization Loss = A1 || W||; + A2 W||% (14)

Also, Dropout layer which drops out neurons with the
probability p is implemented to increase the ability of generalization
of the model. The last fully connected layer adopts the SoftMax
function in order to convert the distilled features to probabilistic
outcomes reflecting the number of categories of the output. For
each class k, the output probability y; is given by Equation 15:

exp exp (zx)

Y=o — (15)
Yit1 = explz)

where C represents the number of classes, while z is the logit for
class k. The model is trained using categorical cross-entropy loss,
minimizing the divergence between true labels y;; and predicted
probabilities y (; ) as in Equation 16

1 N

) (16)

,le Yik log(ix )

All the enhancement methods used in the proposed ensemble
model, namely, feature fusion, normalization, dense layers, and
regularization, make it highly capable to perform well in the
classification of Alzheimer’s disease. Using EfficientNet-B3 and
ResNet-50, this approach offers significant capabilities for the
early diagnosis, which further outperform the outcomes of
separate models with higher accuracy and their generality. A
dropout layer is applied after the ReLU-activated dense layer
and before the final classification layer to reduce overfitting and
improve generalization.
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Ensemble model architecture. The framework consists of: (1) Input brain MRl image; (2) Feature extraction using ResNet-50 and EfficientNet-B3; (3)
Ensemble model fusion, where outputs of ResNet-50 and EfficientNet-B3 are combined; (4) Classification head composed of Batch Normalization,
Dense Layer (256 neurons), ReLU, Activation Layer, Dropout Layer, and Fully Connected Layer; and (5) Final classification into four categories: (a) Mild
Demented, (b) Moderate Demented, (c) Non-Demented, and (d) Very Mild Demented.
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TABLE 3 Training hyperparameters.

Hyperparameter details Value/description

Optimizer Adam

Learning rate 0.0001

Loss function Categorical cross entropy

Batch size 32
Number of epochs 10
Input image size 224 x 224 x 3
Dropout rate 0.5

Data split ratio 80% Training 10% Validation 10%

Testing

Data augmentation Rotation, Zooming

Framework used Python 3.8, TensorFlow 2.9, Keras,

OpenCV, NumPy, Matplotlib

3.3.4 Hyperparameter details

To ensure optimal model performance and training stability,
a carefully selected and tuned range of hyperparameters for both
ResNet-50 and EfficientNet-B3 models used in the ensemble
(11). These parameters were chosen based on preliminary
experimentation and established best practices in deep learning
for medical imaging. Key hyperparameters include the choice of
optimizer, learning rate, batch size, number of training epochs.
A detailed summary of the hyperparameters used in this study
is provided in Table 3. These settings were consistent across both
models to ensure fairness and effective ensemble integration. The
models were developed using Python 3.8 with the TensorFlow 2.9
and Keras libraries. Additional preprocessing and evaluation were
performed using NumPy, OpenCYV, scikit-learn, and Matplotlib.

4 Results

This section presents the experimental results obtained
from evaluating the proposed ensemble model comprising
ResNet-50 and EfficientNet-B3 on the MRI
classification task. The models performance was assessed

Alzheimer’s

using standard evaluation metrics, including accuracy, precision,
recall, and Fl-score across four Alzheimer’s disease stages:
Non-Demented, Very Mild Demented, Mild Demented, and
Moderate Demented. The results demonstrate that the ensemble
approach outperforms individual models in terms of both
classification accuracy and generalization capability. Detailed
tables
are provided to illustrate the effectiveness of the proposed

comparisons, confusion matrices, and performance

method and support its potential for clinical deployment in
diagnostic workflows.
4.1 Evaluation parameters

An evaluation parameter is a measure by which the
performance, efficiency or effectiveness of a model, process,
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or system can be judged. Such parameters are commonly applied
in different areas including machine learning, statistics, finance
and engineering.

a) Accuracy: accuracy in multi-class classification is defined
as the ratio of correctly predicted samples to the total number
of samples across all classes. It measures the overall effectiveness
of the model in assigning the correct label to each input as in
Equation 17 below:

No. of correct predictions  }_ i = 1CTPi

= 17
Total No. of predictions N (17)

Accuracy =

Where TPi = True Positives for class i, C = Total number of
classes, N = Total number of samples, where i can be any class out
of four classes of Alzheimer.

b) Precision: precision measures the proportion of correct
positive predictions for each class out of all predictions made
for that class. It indicates how many of the predicted instances
for a specific class are actually correct. Precision is presented
by the formula of precision expressed in Equation 18 below:

TPi

— (18)
TPi+ FPi

Precision; =

c) Recall: recall, also known as sensitivity, measures the

proportion of actual positives that were correctly identified for each

class. It shows how well the model captures the true instances

of each class. The formula of precision is expressed below in
Equation 19 below:

TPi

ReCalli = ——0
TPi + FNi

(19)

Where FN; is false negative for class i.

d) F1-Score: the Fl-score is the harmonic mean of precision
and recall for each class. It balances the trade-off between precision
and recall, especially useful when classes are imbalanced. The
F1-score is calculated as shown in Equation 20:

(Precision; x Recall;)

F1; — Score =2 x —
(Precision; + Recall;)

(20)

4.2 Training and validation results

Comparative analysis of performance was conducted between
ResNet-50 and EfficientNet-B3 during their training and
validation stages. Two different computational frameworks
trained against a predefined dataset to evaluate their performance
by calculating their accuracy and precision during validation
with recall and Fl-score metrics achieved alongside AUC-
ROC value evaluations. The feature extraction abilities of
ResNet-50 were excellent but required precision adjustments
through fine-tuning to reach its best levels of operation. The
efficient scaling of EfficientNet-B3 produced superior accuracy
results while maintaining better generalization capabilities. The
validation results showed that EfficientNet-B3 demonstrated
better performance than ResNet-50 models primarily because
of its superior structural design. Background inference speed
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retained similarity between ResNet-50 and other comparison
models. A decision between the two systems depends on
whether applications prioritize accuracy or computational
speed. The model was evaluated using multi-class performance
recall, and
of the

four classes individually and macro-averaged to provide an

metrics, including overall accuracy, precision,

Fl-score. These metrics were calculated for each

overall assessment.

4.2.1 Training and validation results of efficient
net B3

Performance trends from the EfficientNetB3 based Alzheimer’s
disease detection model can be found in the depicted accuracy
and loss data plots. The deployment of 10 epochs throughout
training yielded positive results which appeared in both training
and validation metrics. Both training and validation data show
continuous performance improvements throughout the epochs
according to the accuracy plot displayed on the left. The initial
training accuracy level was ~65% before reaching near 95%
stability. The generalization capacity becomes evident through
the validation accuracy which shows a start value higher than
training accuracy and converges to 95%. The models training
and validation accuracy graphs remain close together which
means the model avoids major overfitting problems. Training
along with validation loss shows continuous reduction throughout
the overall training process according to the loss plot. Training
losses initiate at 0.7 but continuously decrease and settle near
0.1 by the end of training (28). The validation loss chain
shows a downward movement which starts underneath the
training loss mark then reaches similar value terminals at epoch
completion. The model’s robust structure receives additional
confirmation through the parallel changes observed in validation
and training loss metrics. Effective learning and generalization
abilities stand out in the EfficientNetB3 architecture when
used for Alzheimer’s disease detection based on its metric
convergence performance. The balanced performance of training
and validation curves demonstrates that the model effectively
extracts significant data features while avoiding overfitting which
demonstrates its practical utility in clinical diagnostics settings. All
performance metrics are displayed through the graphs presented in
Figure 7.

4.2.2 Training and validation results of ResNet 50
Multiple plots show the performance metrics between training
data accuracy and validation data accuracy alongside training data
loss and validation data loss when using ResNet-50 for Alzheimer’s
disease prediction. The training process required 10 epochs
toward model evolution yet the performance metrics showed
some separateness between training and validation results. The
accuracy graph (left) demonstrates that model training accuracy
gradually improved from 60% to a nearly 95% level throughout
ten epochs. Initially the validation accuracy started at ~70%
then climbed to reach nearly 87% values. Beyond the fifth epoch
the validation accuracy demonstrates unstable patterns which
could be explained by overfitting and changes found within the
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validation dataset. The decreasing trend on loss data demonstrates
successful learning between training data along with validation
data. Training loss begins at 0.9 before reaching 0.2 only after
completing the training period. From its starting point at 0.8 the
validation loss gradually lowers until reaching a minimum of 0.4
at epoch five. Beyond epoch 5 the validation loss exhibits a tiny
upward trend because the model effectively performs on training
data however, it misses essential patterns needed for unseen
input recognition (29). Throughout the later part of training the
separation between validation and training performance metrics
demonstrates that ResNet-50 successfully grasps patterns from
the data although it needs further development for generalized
results. Early stopping alongside data augmentation and standard
techniques for regularization offer potential solutions to reduce
overfitting. The ResNet-50 model shows promise for Alzheimer’s
disease detection capabilities through its excellent training accuracy
results and fair validation performance potential that creates
opportunities for future clinical diagnostic applications. All
performance metrics have their graphical representations displayed
in Figure 8.

4.2.3 Training and validation results of proposed
ensemble model

These graphic displays show how an ensemble with ResNet-50
and EfficientNetB3 models detects Alzheimer’s disease throughout
10 training cycles. The left graph shows accuracy performance
which demonstrates exceptional model behavior through rapid
improvement of training and validation accuracy toward perfect
scores. The model establishes an initial training accuracy baseline
at 70% which evolves into 100% accuracy during the fourth epoch
then maintains peak performance for the remaining epochs. The
baseline validation accuracy sits at 85% during the initial stage
after which it establishes perfect synchronization with training
accuracy throughout subsequent epochs. The coaches’ curves align
perfectly which demonstrates the model will generalize successfully
and avoids excessive overfitting behavior. A loss plot analysis
reveals that both training and validation loss decrease sharply
in initial epochs to stabilize at low levels. Training loss displays
initial values of about 3.5 that diminish rapidly to less than
one unit during epoch 5 then settles down at that minimum
value point. Validation loss displays a parallel reduction pattern
which starts near 2.5 before decreasing under 0.5 during epoch
4 while training loss tracks closely in subsequent epochs (30).
The parallel development of accurate results and low loss data
points demonstrates the sturdy characteristics of the ensemble
model system. The ensemble methodology uses ResNet-50 and
EfficientNetBO to extract complementary functionality which
delivers outstanding results for Alzheimer’s disease diagnosis. The
model demonstrates accurate pattern recognition in the data
through quick criterion alignment and data metric convergence
without producing overfitting issues. The ensemble approach
demonstrates potential utility as a dependable medical diagnostic
instrument since it delivers accurate results alongside sharp dataset
generalization abilities. All performance metrics are displayed
graphically in Figure 9.
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4.2.4 Comparison results of ensemble model,
EfficientNet-B3 and ResNet50

The performance metrics for multiple deep learning models
across ten epochs are shown in Table 4 where training accuracy
and validation accuracy and validation Fl-score are evaluated.
Scientists apply equivalent deep learning technologies from this
domain to detect Alzheimer’s disease through MRI medical
imaging. The progressive neurodegenerative psychiatric condition
Alzheimer’s disease leads to cognitive decline so it requires
early diagnosis to deliver effective therapeutic measures. The
diagnostic systems built with CAD capabilities utilize EfficientNet-
B3 along with ResNet50 and ensemble models as they demonstrate
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exceptional accuracy in image recognition tasks. The training
and validation accuracy of both EfficientNet-B3 and ResNet50
increase through epochs and the ensemble model exceeds the
performance of each model individually. All performance metrics,
including accuracy, precision, recall, and F1-score, were calculated
in a multi-class setting across four classes. Per-class metrics
were computed and macro-averaged to summarize overall model
performance. Ensemble learning proves beneficial because diverse
model combinations increase generalization ability which then
produces superior diagnostic results. Deep learning models
trained with Alzheimer’s Disease Neuroimaging Initiative (ADNI)
medical images demonstrate potential for Alzheimers disease
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detection applications. The EfficientNet-B3 model demonstrates
top capability in extracting MRI scan features followed by ResNet50
which automatically adjusts training depths to overcome vanishing-
gradient difficulties by using its residual learning method. The
ensemble model’s high performing results indicate that using
multiple architectures enhances detection accuracy for early-stage
Alzheimer’s disease. The Fl-score acts as a vital tool for medical
researchers because it evaluates model performance specifically
during assessment of diagnosis systems which operate on
imbalanced datasets primarily featuring underrepresented early-
stage and mild Alzheimer’s cases. Analysis of the F1-score values
shows that the ensemble model maintains its superior performance
throughout all epochs while achieving optimal precision and
recall ratings. Morocco’s scientific research benefits from F1-
score accuracy which strives to improve disease detection at both
non-diseased and diseased case levels thereby supporting clinical
tools development. Model learning effectiveness and generalization
ability increase concurrently with validation accuracy across epochs
which proves fundamental when applying medical approaches
to real-world situations. Deep learning algorithms with similar
models from the table enable researchers to create dependable CAD
systems which benefit neurologists through improved Alzheimer’s
disease diagnosis accuracy. The diagnostic accuracy can be
improved by two techniques: domain-specific transfer learning
fine-tuning and additional multimodal data analysis. Deep learning
demonstrates its critical role in disease detection through the data
trends presented in the table. Researchers implementing these
technologies in Alzheimer’s detection will achieve early diagnosis
while enabling faster interventions that ultimately lead to better
patient results. The Table 4 below shows the comparison of Resnet
50, Efficient Net B3, and ensemble model.
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4.3 Testing results

Real-world testing of ResNet-50 and EfficientNet-B3 produced
evaluation results. The superior generalization capabilities of
EfficientNet-B3 became evident through improved accuracy and
precision together with enhanced recall. The model was superior
to ResNet-50 in recognizing minimal patterns while producing
fewer mistakes. The real-time applications could benefit from
the ResNet-50 model because it delivers inference operations at
a faster pace. The scoring system emphasized EfficientNet-B3
as the best model in discrimination capability assessment. The
efficiency of ResNet-50 did not reduce its competitive strength
unless optimum hyperparameters were used. Two efficient network
choices exist: EfficientNet-B3 provides enhanced accuracy while
ResNet-50 delivers crucial speed performance for applications.
Additional adjustments to model parameters combined with better
data preparation will help increase test results from both systems.

4.3.1 Classification results of EcientNet-B3,
ResNet50, and ensemble model

The classification report in Table 5 provides a comprehensive
breakdown on testing models across four categories by showing
accuracy data as well as recall metrics alongside Fl-score
percentages and class support counts. Our results show the
ensemble model based on ResNet50 plus EfficientNet-B3 delivers
advanced detection of Alzheimer’s disease across all four disease
classification levels. The ensemble model executed with ResNet50
and EfficientNet-B3 demonstrated absolute classification precision
and recall and Fl-score values of 1.00 for detecting Mild
Demented, Moderate Demented and Non-Demented cases. The
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TABLE 4 Comparison of ResNet-50, EfficientNet-B3, and Ensemble model.

‘Epoch Model Training accuracy

10.3389/fmed.2025.1619228

Validation accuracy Validation F1-score ‘

1 EfficientNet-B3 0.6261 0.7473 0.5482
ResNet50 0.608 0.687 0.686
Ensemble model 0.6707 0.822 0.8365
2 EfficientNet-B3 0.7489 0.8037 0.6947
ResNet50 0.7184 0.7608 0.758
Ensemble model 0.8709 0.9294 0.9355
3 EfficientNet-B3 0.8083 0.8458 0.7797
ResNet50 0.7754 0.7846 0.784
Ensemble model 0.9519 0.9794 0.9809
4 EfficientNet-B3 0.8425 0.8726 0.8349
ResNet50 0.8138 0.7985 0.798
Ensemble model 0.9733 0.9841 0.9854
5 EfficientNet-B3 0.8748 0.8977 0.8889
ResNet50 0.8479 0.8249 0.824
Ensemble model 0.9819 0.9929 0.9935
6 EfficientNet-B3 0.8951 0.9148 0.9124
ResNet50 0.8744 0.8505 0.85
Ensemble model 0.9862 0.9915 0.9922
7 EfficientNet-B3 0.9137 0.9233 0.9201
ResNet50 0.8942 0.8591 0.859
Ensemble model 0.9904 0.9947 0.9951
8 EfficientNet-B3 0.9283 0.934 0.9311
ResNet50 0.9116 0.8626 0.862
Ensemble model 0.9919 0.9953 0.9957
9 EfficientNet-B3 0.9355 0.9487 0.946
ResNet50 0.925 0.8553 0.855
Ensemble model 0.9936 0.9882 0.9891
10 EfficientNet-B3 0.9446 0.9528 0.9504
ResNet50 0.9363 0.8676 0.868
Ensemble model 0.9943 0.9915 0.9922

model maintains a precision rate of 0.98 and recall rate of 1.00 when
classifying Very Mild Demented images. This produces an FI-
score of 0.99. Evaluation shows that when measuring performance
separately, the EfficientNet-B3 model produces superior results
than ResNet50 because it achieves 0.95 precision compared to
0.87 precision together with 0.95 recall compared to 0.87 recall
which generates a superior overall Fl-score. The Fl-score of
EfficientNet-B3 achieves 1.00 in detecting Moderate Demented
cases in particular together with strong performance in all
present classes. ResNet50 demonstrates reduced performance in
identifying Very Mild Demented cases and achieves recall levels
of 0.76 thereby affecting its overall classification precision. The
coordinating method capitalizes on the individual capabilities of
both systems thereby enhancing overall classification performance.
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The ensemble model demonstrates reliable performance with an
overall accuracy rating of 0.9932 which confirms its potential use
for automated Alzheimer’s disease detection.

4.3.2 Confusion matrix of EfficientNet-B3

A confusion matrix serves as a performance evaluation tool
which enables researchers to evaluate how machine learning
models classify different data points. A basic mathematical
unit that displays the real classification output with the model
prediction output during model analysis. The rows display
real-world labeling and the columns deliver model prediction
classes. The research invests in studying the confusion matrices
obtained from the Ensemble Model alongside ResNet50 and
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TABLE 5 Comparison of various parameters under different models.

10.3389/fmed.2025.1619228

Class Model Precision Recall F1-score Support
Mild Demented Ensemble model 1 1 1 896
Moderate Demented 1 1 1 647
Non-Demented 1 1 0.99 960
Very Mild Demented 0.98 1 0.99 896
Mild Demented ResNet50 0.82 0.92 0.87 896
Moderate Demented 0.99 0.98 0.98 927
Non-Demented 0.84 0.85 0.84 927
Very Mild Demented 0.86 0.76 0.81 907
Mild Demented Efficient net B3 0.96 0.98 0.97 932
Moderate Demented 0.99 1 1 602
Non-Demented 0.93 0.94 0.94 979
Very Mild Demented 0.94 0.91 0.93 886
Overall accuracy Ensemble model 0.99 0.99 0.99 3,399
ResNet50 0.87 0.87 0.87 3,399
Efficient Net B3 0.95 0.95 0.95 3,399

EfficientNet-B3. The confusion matrix in Figure 10 evaluates the
EfficientNet-B3 model’s performance in classifying Alzheimer’s
disease stages: Mild, Moderate, Non, and Very. The model
demonstrates impressive accuracy by accurately identifying Mild
(915 correct) and Moderate (602 correct) cases paired with sparse
misdiagnosis occurrences. The identification of non-Alzheimer’s
international cases proves reliable at 928 while showing some
wrong assignments of very severity. Severe cases (805 correct)
show occasional confusion with Non-cases (56 misclassified). The
successful early and moderate stage differentiation by EfficientNet-
B3 needs improvements for better discrimination between severe
disease presentations and non-diseased conditions to create
accurate tools for clinical diagnosis.

4.3.3 Confusion matrix of ResNet 50

The Resnet 50 model delivers excellent diagnostic accuracy
when distinguishing between Mild Demented and Non-Demented
groups since it makes 823 and 784 correct determinations at
once. The evaluation shows certain classification errors occur
most frequently between Very Mild Demented and Non-Demented
categories. Habitat Resnet 50 demonstrates accurate performance
detecting Moderate Demented stages because it delivers 653 precise
identification results while minimally misclassifying any samples.
A significant number of Very Mild Demented cases get assigned
to the Mild Demented group in addition to the 111 diagnoses
which the classifier labels as non-demented based on Figure 11.
Distinguishing dementia at early stages from healthy individuals
remains a challenge for early intervention because both cases
present similar symptoms.

4.3.4 Confusion matrix of ensemble model
Each category shows robust performance in classification
based on the ensemble model where most instances fall within
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correct interpretations. Our analysis showed the model correctly
identified 896 cases of Mild Demented and 647 cases of
Moderate Demented along with 938 non-demented cases and
895 Very Mild Demented patients. The classification method
shows minimal mistakes because occasional Very Mild Demented
cases accidentally overlapped with non-demented cases (19
images) while other classification results were unaffected (31).
The integrated ResNet50 and EfficientNet-B3 model successfully
identifies different dementia stages because of its powerful
feature extraction strengths. Both ResNet50 and EfficientNet-B3
contribute remarkable capabilities to classification accuracy by
demonstrating strong combinations of deep learning methodology
and parameter optimization capabilities. The ensemble model
proves highly suitable for early-stage Alzheimer’s detection through
its minimal misidentification errors in identifying groups of
Moderate Demented patients along with Mild Demented patients
as shown in Figure 12. The ensemble model demonstrates high
diagnostic accuracy which makes it suitable for automated
Alzheimer’s disease detection systems that would help doctors
intervene early and make better medical choices. The ensemble
model demonstrates superior performance by attaining maximum
accuracy while making the fewest classification errors especially
in subjects with Mild and Moderate Demented diagnosis. The
EfficientNet-B3 performs exceptionally well in mild and moderate
case identification although it displays challenges when trying to
identify severe cases. The ResNet50 Model demonstrates successful
operation however, its efficiency decreases when attempting to
distinguish very mild Dementia from persons who do not
have dementia.

5 External validation

To evaluate the generalization ability of the proposed
ensemble model, an external validation was performed using
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a separate dataset comprising 6,400 MRI images representing  confirm the robustness and accuracy of the model beyond the
four stages of Alzheimer’s disease: Non-Demented, Very Mild  training data, demonstrating its potential for real-world clinical
Demented, Mild Demented, and Moderate Demented. The results  application (32).
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Confusion matrix of ensemble model.

The model achieved an overall accuracy of 97%, with
consistently high precision, recall, and F1-scores across all classes.
Specifically, the Non-Demented class yielded a precision of 0.96
and a recall of 0.94, resulting in an Fl-score of 0.95. The Very
Mild Demented class, which represents early-stage Alzheimer’s
detection, achieved perfect scores—precision, recall, and F1-score
all at 1.00—though this result should be interpreted with caution
due to the relatively small sample size (n = 10). The model also
performed well on the Mild Demented and Moderate Demented
categories, achieving Fl-scores of 0.97 and 0.96, respectively as
depicted in the Table 6 below.

Macro and weighted averages for all metrics were uniformly
0.97, indicating that the model maintains consistent performance
across both balanced and imbalanced class distributions. These
results suggest that the ensemble model, which combines ResNet-
50 and EfficientNet-B3, is capable of accurately distinguishing
between Alzheimer’s disease stages even when evaluated on data
not seen during training.

The results are promising, but the limited number of
samples in some classes—especially Very Mild Demented—
warrants further validation using larger, clinically diverse
datasets. Future work will focus on subject-level validation
using datasets with patient identifiers, clinical metadata, and
imaging protocols to assess the model’s robustness in practical
diagnostic environments.
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TABLE 6 Performance metrics on external validation dataset.

Class Precision Recall Fl-score Support
Mild Demented 0.96 0.94 0.95 145
Moderate Demented 1.00 1.00 1.00 10
Non-Demented 0.97 0.98 0.97 513
Very Mild Demented 0.96 0.96 0.96 356
Accuracy 0.97 1,024
Macro Avg 0.97 0.97 0.97 1,024
Weighted Avg 0.97 0.97 0.97 1,024

6 Comparison with state-of-the-art

This research demonstrates how recent developments improve
disease detection models and dataset capabilities and classification
metrics when compared to current field-leading detection
approaches. Research using deep learning algorithms ResNet50,
EfficientNet, VGG16, and DenseNet has evaluated Alzheimer’s
disease classification from MRI scans with different degrees of
achievement. The application of CAM-CNN on MRI scans with
VGG19 and ResNetl01 network models produced a 98.85%
accuracy outcome where ResNet101 provided better performance
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TABLE 7 Comparison on the basis of aspects.

10.3389/fmed.2025.1619228

Ref No Year Technique used Number of classes = Name of classes Accuracy
(4) 2024 VGG19 and RESNET 101 4 o Non-Dementia 98.85%
with CAM-CNN e Without Dementia
e Very Mild Dementia
e Mild Dementia
e Moderate Dementia
(7) 2023 Ensemble of EfficientNet-B2 4 e Mild Demented 97.35%
and VGG-16 e Moderate Demented
e Non-Demented
e Very Mild Demented
9) 2024 Using various architectures 5 e Binswanger Dementia 84.67%
like VGG 16, VGG 19, e Hemorrhagic Dementia
Dense Net 121 e Multi-infarct dementia
e Strategical dementia
subcortical dementia
(10) 2024 Using deep learning 4 e Mild Demented 80.14%
techniques e Moderate Demented
e Non-Demented
e Very Mild Demented
(15) 2024 Using ResNet, Dense Net, 4 e Mild Demented 75.06%
and Efficient Net e Moderate Demented
e Non-Demented
e Very Mild Demented
Proposed model Ensemble Model of Resnet 4 e Mild Demented 99.32%
50 and Efficient Net-B3 e Moderate Demented
e Non-Demented
e Very Mild Demented

than VGG19. The combination of EfficientNet-B2 with VGG16
allowed researchers to produce a model that reached 97.35%
accuracy through transfer learning applications. Individual use
of ResNet50 in previous research reached an accuracy of 80.14%
yet displayed spaces where its classification accuracy might be
enhanced. Research results using multiple models including
VGG16 and DenseNetl21 with ResNet50 demonstrated an
accuracy level of 84.67 percent which indicates the requirement
for better ensemble strategies. The research introduces an
ensemble model that joins ResNet50 with EfficientNet-B3 to
improve classification outcomes in a major way. The proposed
model delivers 99% overall performance accuracy because Mild
Demented, Moderate Demented, and Non-Demented classes
achieve precision, recall and Fl-score values of 1.00. Feature
extraction capabilities of EfficientNet-B3 reveal its superiority over
ResNet50 since individual assessments show precision at 0.95 vs.
0.87 and an Fl-score of 0.99. To surpass benchmarked models
this research generated an ensemble method that brings together
beneficial characteristics from EfficientNet-B3 and ResNet50
including their optimized architecture and deep feature learning
ability. Its high classification accuracy makes this approach a
promising option for automated Alzheimer’s detection while
enabling better medical decision support particularly during early
diagnosis. A summary of these two methods appears in Table 7.
Several recent studies have contributed valuable insights into
the development of intelligent diagnostic systems, which support
the objective of this research. For instance, Zhang et al. (33)
demonstrated the clinical benefits of precision imaging techniques
in neurosurgical applications, highlighting the importance of
targeted image-guided interventions in neurological disorders, a
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concept that aligns with the need for accurate neuroimaging
analysis in Alzheimer’s disease. Yin et al. (34) proposed an EEG-
based emotion recognition system using autoencoder feature
fusion and MSC-TimesNet, which exemplifies the utility of
deep learning in neurocognitive data interpretation. Similarly,
Tian et al. (35) introduced a novel self-supervised learning
model for binocular disparity estimation, indicating the growing
potential of self-supervised frameworks that could be extended to
medical imaging applications such as Alzheimer’s classification.
Furthermore, Xiao et al. (36) presented a large-scale machine
learning-based dementia risk model tailored to elderly populations
with depression, providing a strong clinical basis for integrating
predictive analytics in Alzheimer’s risk assessment. Zhu (37)
explored memory impairment detection through computational
intelligence in substance abuse patients, reinforcing the relevance
of machine learning in cognitive disorder diagnostics. Zhan
et al. (38) investigated brain strain analysis using in-vivo and
simulation data, underlining the value of biomechanical modeling
in neurodegenerative research. Li et al. (39) applied machine
learning to diagnose sarcopenia using sSEMG signals, showing
the adaptability of ML in aging-related disease detection. Lastly,
Xiang et al. (40) employed a systems biology approach to
explore potential therapeutic mechanisms in Alzheimer’s, offering
complementary biological insights that support a multimodal
understanding of the disease. Together, these works underscore
the feasibility and importance of leveraging advanced machine
learning, neuroimaging, and multimodal integration strategies—
paralleling the aims of our ensemble learning-based framework
using ResNet-50 and EfficientNet-B3 for Alzheimer’s diagnosis and
disability assessment.
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7 Discussion

Research development centers on building an ensemble
model for Alzheimers disease detection while showcasing its
value for clinical assessments. The proposed model extends
clinical abilities of neurologists and radiologists through its
accuracy enhancement and robustness while facilitating timely
precise diagnostic procedures that minimize human error and
enhance early treatment strategies. The absence of patient-
level demographic data, including age and gender, limits the
model’s ability to analyze performance variations across different
population subgroups. Future work will utilize clinically annotated
datasets to enhance interpretability and fairness and use datasets
that allow patient-wise splitting to ensure proper generalization.
The lack of patient identifiers prevented subject-level data splitting.
Consequently, the model may have been exposed to highly
correlated adjacent slices across training and test sets, increasing
the risk of overfitting and overestimating performance. Although
augmentation and splitting were carefully performed, the absence
of subject identifiers may result in correlated slices from the
same subject appearing in different data subsets, potentially
impacting generalization. Through implementation in hospital
imaging platforms the ensemble model functions as a medical
decision tool which enables specialists to detect Alzheimer’s disease
manifestations at different stages confidently. Due to the absence
of raw volumetric MRI files and acquisition metadata, advanced
corrections such as N4 bias field correction could not be applied,
which may affect intensity uniformity across slices. Since the
dataset was pre-augmented and lacks original raw scans, it may
not be suitable for standalone testing or external benchmarking.
This restricts our ability to fully assess generalization and may
introduce bias if augmentation artifacts influenced the model.
Deep learning methods showcase their potential to outperform
conventional diagnostic methods through the successful ensemble
architecture which unites ResNet50 and EfficientNet-B3 networks.
A key limitation of this work is the absence of imaging acquisition
metadata, such as sequence types and scanner specifications, as the
dataset was sourced from a publicly available platform (Kaggle)
that did not include these details. This limits our ability to assess
the model’s robustness across different clinical imaging conditions.
The enhanced accuracy of combined model identifications results
in increased abilities to distinguish dementia’s early stages from
standard brain abnormalities thereby enabling prompt medical
care. The improved diagnosis system reliability comes from better
misclassification control which decreases false-positive and false-
negative outcomes leading to incorrect diagnosis. Medical imaging
is undergoing significant change through artificial intelligence as
studies demonstrate the practical benefits of automatic Alzheimer’s
disease detection on a wide scale basis. Due to the lack of publicly
available documentation the possibility of synthetic or unverified
image generation cannot be ruled out, and this represents a
significant limitation in terms of compliance and reproducibility.
To ensure broader applicability and robustness, future work will
involve validating the model on external datasets Deep learning-
based models demonstrate clinically appropriate applications in
patient workflows for early detection and personalized treatment
development which leads to better neurodegenerative disease
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outcomes. Further, the proposed ensemble model can serve as an
assistive tool for radiologists by providing automated classification
of Alzheimer’s disease stages from MRI scans. This can help
flag early-stage or high-risk patients for further investigation.
However, it should not replace expert interpretation. The model
may produce false positives or false negatives, especially in
very mild or atypical cases. Therefore, recommendation in its
integration with standard clinical workflows, cognitive scoring
systems, and physician review to ensure accurate diagnosis
and decision-making.

8 Conclusion

Using MRI high-resolution scans, the research team developed
an ensemble deep learning diagnostic system which performed
with 99% accuracy in detecting Alzheimer’s disease. The model
utilized ResNet-50 to extract efficient features and EfficientNet-
B3 to classify robustly while remaining effective against challenges
in medical imaging applications. Precise model training and
evaluation became possible through the reliable annotations
and diverse high-quality image dataset which contained 33,984
images. Preprocessing methods performed through normalization,
rescaling, and noise removal improved the model quality
for enhanced robustness. The model demonstrated superior
performance as shown through precision and recall scores together
with Fl-score and area under the ROC curve metrics during
comprehensive evaluations across all stages of Alzheimer’s disease.
Our model achieved consistent training and validation accuracy
improvements which converged at 99.32% with minimal overfitting
observed in loss plots thus, proving its strong generalization
potential. Analysis of the confusion matrix demonstrated that the
model produced accurate results for both Mild and Moderate
cases along with non-demented cases and achieved commendable
accuracy when identifying Very Mild Demented cases. The
research data shows that the ensemble model delivers strong
diagnostic capabilities for Alzheimer’s detection across severe
disease manifestations. High-quality data alongside deep learning
produces better diagnostic accuracy according to the research
findings. Its performance quality makes the model suitable for
clinical use because it provides essential medical decisions to
doctors for early disease detection and ongoing care regulation.
Further studies must evaluate both model optimization and
implementation across multiple clinical settings as part of broader
application validation.
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