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Neurodegenerative disorder Alzheimer’s disease (AD) has progressive 
characteristics and leads to severe cognitive impairment that reduces life 
quality. Disease management along with effective intervention depends on 
the detailed diagnosis conducted early. The proposed framework builds an 
ensemble system from ResNet-50 and EfficientNet-B3 to conduct automated 
AD diagnostics by processing high-resolution Magnetic Resonance Imaging 
(MRI) images. The proposed model uses ResNet-50 to extract features coupled 
with EfficientNet-B3 as its robust classifier which achieves high accuracy 
alongside generalization performance. A large, high-quality dataset comprising 
33,984 MRI images was used, ensuring diverse representation of different disease 
stages: the study included participants with four dementia stages organized 
as Mild, Moderate, Non-demented, and Very Mild Demented. The research 
applied several comprehensive data preprocessing methods combining 
normalization steps with rescaling algorithms alongside noise elimination 
techniques to achieve enhanced performance. Performance tests on the model 
required examination of accuracy along with precision and recall metrics and 
F1-score and ROC curve area measurements. The ensemble model delivered 
remarkable overall accuracy reaching 99.32% while surpassing separate deep 
learning architectures. The confusion matrix evaluation results showed superb 
classification results for Mild and Moderate stages along with non-dementia 
cases while maintaining minimal Wrong choices in Very Mild Demented cases. 
Experimental findings demonstrate the strength of deep learning algorithms to 
detect AD disease stages accurately. The robust and accurate performance of 
the proposed model indicates it has potential for use in medical environments 
to support radiologists in their work of early-stage AD screening and treatment 
development. Additional research in diverse clinical environments will strive 
to optimize and validate the model so it can meet real-world diagnostic 
requirements for medical use. 
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1 Introduction 

Alzheimer’s disease (AD) is a primary neurodegenerative 
disease that is responsible for 60%−70% of all dementia cases 
across the globe, it results in progressive impairment of cognitive 
and memory function, and overall physical disability mainly in 
old age. The disease is defined clinically by the deposit of amyloid 
plaques and neurofibrillary tangles in the brains, leading to the 
gradual decline in brain volume, and resulting in confusion, 
poor judgement, language disorder, personality changes, and the 
inability to carry out activities of daily living (1). To date, aging is 
still the biggest risk factor for developing AD, but there are also 
genetic factors, unhealthy life styles, cardiovascular diseases and 
physical environments that affect the development as well as the 
progress of AD (2). To date, there is no known cure for Alzheimer’s 
disease but major advancements in medical research have provided 
methods of managing the disease, these include; cholinesterase 
inhibitors, memantine, health and safety promotion through 
changes in diets and coming up with strict exercise regimes that 
can reduce deterioration of the patient’s condition (3). Prior to the 
publication of DSM IV-Tre quantitative diagnosis of Alzheimer’s 
disease primarily depended on clinical assessment, patient history, 
and neuropsychological assessment that even though still today 
have their utility, were reported to provide low sensitivity in early 
diagnosis of Alzheimer’s disease as well as being time consuming 
and labor intensive. Also, Magnetic Resonance Imaging (MRI) 
and PET scans have been used to detect abnormalities in the 
brains of mentally ill patients, although these approaches lack 
high accuracy when no computational tools are applied (4). Over 
the last few years, the incorporation of deep learning methods in 
medical imaging has definitely advanced diagnosis, particularly for 
Alzheimer’s disease as a more precise, fast, and less error-prone 
approach (5). 

Among these, Convolutional Neural Networks (CNNs) have 
shown exceptional performance in efforts to diagnose MRI patterns 
that point toward AD, all while surpassing conventional machine 
learning models by learning features from raw image data. In 
the context of Alzheimer’s disease, the required diagnostic tools 
are significantly more diverse and refined; this is why ensemble 
deep learning models have recently become popular as they unite 
the results of several architectures in one model (6). As for the 
CNN model selection, two advanced structures including ResNet-
50 and EfficientNet-B3 have become the most popular pro forma 
architectures in recent years due to the higher image classification 
performance. The vanishing gradient problem is solved through 
using the ResNet architecture of a deep residual network of 50 
layers; deeper networks converge well while capturing details of the 
images at the same time (7, 8). On the other hand, EfficientNet-
B3 uses compound scaling method to control the network depth, 
width, and so on, making it highly efficient and accurate to 
extract features with little computational need. Thus, the ensemble 
of ResNet-50 and EfficientNet-B3 models, where the weaknesses 
of each of them are masked, and the strengths are combined, 
contributes to increasing the efficiency of diagnostics compared 
to using only such architectures and increases the robustness 
when detecting subtle abnormalities in MRI scans. The main 
goal of this research is to enhance a deep learning model for 

distinguishing between the Alzheimer’s disease and the Normal 
Cognitive status by integrating ResNet-50 and EfficientNet-B3 
models for MRI data. This approach operates in an attempt to 
overcome the recognized deficiencies of conventional diagnostic 
check techniques for AD through the development of an efficient 
diagnosis system that would be automated, accurate, and fairly easy 
to implement in the different human populations at the various 
stages of the disease development (9). In addition, the problem 
statement focuses on the requirement of an accurate diagnostic 
tool to differentiate between distinct phases of Alzheimer’s disease 
with robust performance, despite data imbalance, MRI scan noise, 
and variation (10). Therefore, the major contributions of this 
study are the development of an ensemble model that comprises 
ResNet-50 and EfficientNet-B3, an assessment of the performance 
of the proposed ensemble model against existing deep learning 
architectures, and a proof of the usefulness of the suggested 
model in enhancing the diagnostic accuracy of Alzheimer’s disease 
classification. Several works have been extensively conducted on 
AD detection using standalone CNNs, CNNs with Attention 
Mechanisms, Ensemble of CNNs and the hybrid of them; their 
performance is sometimes constrained by a limited number of 
available diagnostic samples, non-normative database information, 
and high computational costs (4, 8). For example, Ajagbe et al. 
(3) and Shirbandi et al. (6) pointed out that applying CNN-based 
models in MRI-based classification is promising; however, that 
architectures should be improved to learn deeper and abstract 
features. Finally, the studies by Sorour et al. (8) and Mujahid 
et al. (7) showed that the setup based on the ensemble learning 
is extremely valuable for the detection of AD, as the results of 
multiple models enhanced positive prediction and diminished the 
numbers of false-positives. Thus, basing on these achievements, 
the development of our proposed model is intended to fill the gap 
in the identified scientific studies and integrate the advantages of 
ResNet-50 and EfficientNet-B3, including their residual learning 
ability and computational efficiency. Furthermore, the given work 
uses techniques like data augmentation and employs adaptive 
learning to deal with issues that are hard to solve for, including 
overfitting and imbalance, in order to have a high model accuracy 
on various MRI datasets (7). The reason as to which ResNet-50 and 
EfficientNet-B3 were selected for the experiment is because these 
two architectures have demonstrated good performance across 
multiple tasks and are robust combinations of feature extraction 
and classification (8). Based on its deep residual connections which 
allow the model to learn complex features, ResNet-50 is well-suited 
to this task, whereas EfficientNet-B3 which incorporates optimized 
scaling for efficient computations is equally efficient and accurate 
for the task at hand. This combination is specifically advantageous 
for medical imaging applications where the minor differences have 
to be identified between the structures of normal brains and that 
of the AD patients (6). Moreover, ensemble learning is beneficial in 
increasing the generalizability of the model, since the combination 
of more predictions means decreasing the model bias and variance 
and thus, increasing the diagnostic reliability (7). Finally, this paper 
intends to make a positive contribution to the available body of 
knowledge on Alzheimer’s disease by proposing a new, yet highly 
effective, deep learning structure that encompasses the best facets 
of the ensemble learning technique to deliver the highest possible 
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diagnostic accuracy. Of critical value and practical applicability, 
the proposed model can help clinicians make quick and precise 
diagnosis decisions, which will lead to earlier diagnosis, target 
treatment plans, and enhanced patient care (2, 8). 

In this context, this study contributes to fill the gap of 
the current diagnostic techniques in Alzheimer’s disease and 
to establish the base for future studies that will promote the 
creation of new, available and reliable tools with deep learning 
for Alzheimer’s disease diagnosis in magnetic resonance images. 
This work couples two important elements for the construction 
of an effective diagnostic test for Alzheimer’s disease based on 
high classification accuracy and explainability. Section 2 gives an 
extensive literature review of the existing diagnostic conventional 
approaches, deep learning in neuroimaging. Next, in Section 
3, the method is described, more specifically, details about the 
dataset, the preprocessing of MRI scans, the architecture of the 
proposed ensemble model based on ResNet-50 and Efficient 
Net B3. In Section 4, the authors report the findings analyzing 
the effectiveness of the ensemble model and taking them up 
against the other classification models. Section 5 contains a 
discussion of the study’s results and their potential, possible 
clinical uses of the proposed model, its weaknesses, and potential 
improvements for future work. Also in Section 6, the conclusion 
of the paper points to the contributions of the study and the 
implication of applying the proposed approach to timely diagnosis 
of Alzheimer’s disease. 

2 Literature review 

Alzheimer’s disease (AD) classification has received a 
considerable amount of focus in the medical research sector mainly 
due to the development of new approaches such as deep learning, 
which have indicated that they can outperform conventional 
diagnostic approaches. The two best performing deep learners 
in this study are the Convolutional Neural Networks (CNNs), 
specifically ResNet-50 and EfficientNet-B3 reveal promising 
features for efficient AD diagnosis from brain MRI scans. The 
subjects of Raza et al.’s (11) study involved segmentation and 
classification of MRI images of Alzheimer’s disease employing 
transfer learning (TL) and proposed particular CNNs. The 
approach works on images that segment objects as divided by 
the brain’s Gray Matter. Rather than training from the ground 
up, there existed a pre-trained deep learning model, to which the 
process proceeded as transfer learning. The model was compared 
at 10, 25, and 50 epochs and the mean accuracy was found to be 
97.84%. Ironically, transfer learning and segmentation techniques 
stand as prominent methodologies in a comprehensive framework 
of medical imaging analysis in diagnosing Alzheimer’s disease 
this study shows the enhancement of accuracy (11). Sharma et al. 
presents a machine learning model based on transfer learning (TL) 
and permutation-based voting classifiers for Alzheimer’s detection 
from MRI images. DenseNet-121 and DenseNet-201 extract 
features in phase one and phase two has classifiers such as support 
vector machine, Naïve Bayes and XGBoost to classify. Therefore, 
in the voting mechanism the final predictions are improved with 
accuracy of 91.75%, specificity of 96.5% and F1-score of 90.25. The 

model was trained from scratch using a Kaggle data set consisting 
of 6,200 images in four dementia classes. Mentioned results are 
completely compatible with the statements and show the higher 
effectiveness of the offered model compared with state-of-the-art 
methods; thus, there is perspective to consider the proposed 
model for usage in clinician applications for Alzheimer’s disease 
identification (12). The authors Zhang, Zhang, Du, and Wang 
(13) in their study proposed an enhanced neural network known 
as ADNet from the VGG-16 model for detection of Alzheimer’s 
diseases applying 2D MRI slices. Those modifications consist 
of depthwise separable convolution to decrease the number of 
parameters; however, the model uses ELU activation to avoid the 
problem of exploding gradients; the model also incorporated an 
SE module for effective feature recalibration. Similarly, training 
is combined with auxiliary tasks: regression of clinical dementia 
and mental state score. Experimental results proved that the 
proposed approach gives 4.18% higher accuracy of AD compared 
with cognitively normal (CN) and 6% of MCI accuracy compared 
with CN than the VGG16 model. These outcomes indicate that 
multitask learning solutions and better architecture for the neural 
network may help ADNet to support early Alzheimer’s detection. 
Solano et al. (14) uses a three dimensional DenseNet model for 
the detection of Alzheimer’s disease using Magnetic Resonance 
Imaging (MRI). Using the proposed deep neural network classifier, 
an overall accuracy of 0.86, sensitivity of 0.86, specificity of 
0.85, and the area under the ROC curve (micro-average) of 
0.91 for five disease stages. Focusing on the ability to produce 
replicable results, the approach uses only the tools available 
freely online, which means it should be more easily implemented 
in poorer countries as well. This approach helps to show that 
deep learning is useful in medical diagnosis and the equitable 
distribution of technology for installation and use. Carcagnì 
et al. (15) investigate the performance of CNNs and the adaptive 
self-attention mechanism for identifying Alzheimer’s using brain 
MRI data. In particular, the study utilizes deep learning methods 
in improving the detection accuracy and speed of Alzheimer’s 
disease, through exploiting the features of CNN, through a feature 
extraction step and exploiting self-attention to learn the long-range 
dependencies. In addition, proofs reveal a vast scope for the use 
of some automated diagnostic tools to have a high sensitivity 
and specificity compared with conventional practices. The work 
focuses on the implementation of the new AI models in the early 
diagnosis and effective individualized approach to the disease, 
providing a solid base for non-invasive and horizontally scalable 
dementia diagnostics (16). In recent years, deep learning proved 
to be a valuable approach in analyzing genomes, responding 
to the large and dependent features’ patterns and correlations. 
The recent innovations include variation in model structures, 
paradigms of model establishment, and techniques of model 
decoding all focused on the prophetic models of genetic variants 
and their influence on the disease causation. In such context, 
this review addresses how genomic deep learning techniques 
remain rather flexible for disease-oriented investigations with 
reference to neurodegenerative disorders including Alzheimer. It 
uses primarily the articles on Alzheimer’s disease and considers 
more general methods, explaining the potential value of these 
approaches. To the best of our knowledge, the review conducted 
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by Jo et al. aimed at reviewing future research directions at the 
crossroads of neurodegeneration, genomics, and deep learning 
(16). Deep learning has emerged as an essential element of genomic 
analysis because of its capability to handle large genomic data 
by identifying the diverse relationships between them. Progress 
includes the following new trends in models: model architecture, 
model development philosophies, and model interpretation 
techniques for estimating the effects of genetic variants on disease 
progression. This review shows how to incorporate genomic 
deep learning methods into disease-specific models with an 
emphasis on neurodegenerative diseases such as Alzheimer’s. It 
focuses on Alzheimer’s literature and where it identifies more 
general methodological approaches, it explores their suitability. 
In addition, Qui et al. have discussed directions for future work 
involving neurodegeneration genomics, and deep learning (17). 
Hazarika et al. compares different deep learning (DL) models in 
AD classification using brain Magnetic Resonance (MR) images 
collected from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) dataset. However, the DenseNet-121 model showed the 
highest accuracy of 88.78%, a bit slower than the others because 
of the extensive convolutions. Thus, to overcome this kind of 
limitation, the authors suggested a new DenseNet-121 structure, 
where instead of the conventional convolutional layers, the depth-
wise convolutional layers should be used. These optimizations 
improved computational and accuracy rates making the average 
accuracy to be 90.22%. The results discussed above imply future 
possibilities of depth-wise convolution in enhancing the DL-based 
AD classification models (18). In their paper, Helaly et al. describes 
a system for early detection of Alzheimer’s disease (AD) and 
multi-stage classification with the help of convolutional neural 
networks (CNNs). Two methods are explored: specifically, the 
use of 2D and 3D CNNs for structural images, and apply transfer 
learning with VGG19 to improve the classification performance. 
Therefore, based on the ADNI dataset, the highest precision 
rate established was 93.61% in 2D; 95.17% in 3D, and 97% in 
VGG19. A web application helps in diagnosing and staging AD 
remotely, and improving health care access during COVID-19. 
The approach is simple and less computationally demanding, 
and the method’s performance is stable and suitable for medical 
applications based on its evaluation on nine criteria (19). Jo et al. 
employed the 3D convolutional neural networks (CNN) and 
layer-wise relevance propagation designed to diagnose AD using 
tau PET scans. MCI using the proposed model he has come up with 
a result of 90.8% accuracy by using AD and cognitively normal 
(CN) subjects. Using information from voxel-wise analysis the key 
regions identified were hippocampus, thalamus, and entorhinal 
cortex. Probability of AD, calculated from cognitive measures, was 
associated with medial temporal tau deposition in MCI, proving 
useful in detection at this stage (20). Table 1 below shows the state 
of art comparison. 

3 Proposed methodology 

On the same note the proposed methodology outlines a 
comprehensive framework of Alzheimer’s disease diagnosis. First, 
a clear overview of the dataset is provided, including its 
characteristics, which is diverse, clean and has high quality 

ground truth labels to enable accurate training and testing. 
Normalization, rescaling, center cropping, and elimination of 
noisy regions also prepares the data to be in the right standard. 
Each of these transformations enhances model robustness and, 
at the same time, can help increase its ability to generalize. 
The diagnostic framework involves an ensemble model of 
ResNet-50 and EfficientNet-B3 networks which are the best 
for the feature extraction and the classification, respectively. 
Moreover, evaluation criteria by accuracy, precision, recall, F1-
score, and area under the ROC curve are used to provide more 
detailed analysis of the performance of the model. A general 
idea of the proposed methodology flowchart is presented in 
Figure 1 below. 

3.1 Dataset description 

The dataset used in this study is a publicly available MRI 
dataset sourced from Kaggle, titled the “Augmented Alzheimer 
MRI Dataset” (22). It comprises a total of 33,984 2D T1-weighted 
MRI slice images, not full 3D volumes, evenly divided among four 
diagnostic categories: Mild Demented, Moderate Demented, Non-
Demented, and Very Mild Demented as shown in the Figure 2, 
the images are saved in JPEG format and have undergone data 
augmentation and applied solely to the training set to enhance 
diversity and prevent overfitting. The validation and test sets were 
left unaltered to ensure unbiased evaluation and preprocessing by 
the original dataset providers and represent 2D slices extracted 
from volumetric MRI scans. The dataset does not contain subject-
level metadata such as age, gender, imaging protocol, or acquisition 
parameters. Due to the absence of subject identifiers, the dataset 
was split at the image level rather than the patient level. As a result, 
adjacent slices from the same volume may exist across training, 
validation, and test sets, potentially introducing correlation-based 
bias. The images were divided into training (80%), validation 
(10%), and testing (10%) subsets, corresponding to 27,188, 3,397, 
and 3,399 images, respectively. Due to the absence of patient 
identifiers, the split was performed at the image level, and this 
limitation is acknowledged as a potential source of correlation 
bias (23). It is important to note that this dataset includes 
images that were augmented by the dataset provider prior to 
release. Therefore, it is most appropriate for use in training and 
internal evaluation. The lack of access to original, non-augmented 
scans limits the dataset’s suitability for external validation or 
generalization studies. 

The original dataset does not include metadata regarding 
MRI acquisition protocols, sequence parameters, scanner types, or 
image reconstruction software, and thus, such details could not 
be reported in this study. It is important to note that this dataset 
includes images that were augmented by the dataset provider prior 
to release. Therefore, it is most appropriate for use in training and 
internal evaluation. The lack of access to original, non-augmented 
scans limits the dataset’s suitability for external validation or 
generalization studies. Further, no documentation regarding ethics 
approval, patient consent, or institutional data sourcing is available 
for this dataset, and its origin cannot be independently verified. The 
distribution of the classes is tabulated as follows in Table 2. 
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TABLE 1 Comparison with state of art. 

Reference Technique used Advantages Disadvantages 

Sharma et al. (2022) (12) Hybrid artificial system (HTLML) for 
Alzheimer’s disease diagnosis 

Finally, the use of multiple Artificial 
Intelligence techniques for a better result 

They proposed that complexity 
manifested in hybrid models could 
result in longer time taken during 
training and high computational costs 

Qiu et al. (2020) (17) A clear and understandable deep 
learning structure 

Used for explaining model adult human 
decision making 

Jo et al. (2020) (20) Using residual deep learning on tau PET 
imaging 

Concentrates in the identification of tau 
protein images in Alzheimer’s 

May be tuned to small fluctuations in 
MRI data 

Solano-Rojas and Villalón-Fonseca 
(2021) (14) 

A DenseNet neural network for early 
identification of Alzheimer’s disease 

A less expensive method with 
reasonable efficiency for early detection 

Lacks capability of real time and high 
processing speed for 3D data 

Jo et al. (2022) (16) Application of deep learning for the 
analysis of genetic variants 

It allows the analysis of massive genetic 
data to classify Alzheimer’s 

Is highly dependent on the availability of 
large high quality genotype data for use 
in training 

Hazarika et al. (2022) (21) Different Deep Learning Architectures 
for Alzheimer’s Classification 

Compared and contrasted several 
models, toward the decision-making 
process of selecting the right approach 

Some of these techniques may 
compromise the model’s accuracy or, 
sometimes, make it less complex 

Helaly et al. (2022) (18) AI based early diagnosis of Alzheimer’s 
disease 

Another stamina is early identification 
abilities since the program detects 
omissions at the beginning 

Mixed evidence provided by models; 
models need to be chosen more carefully 

Raza et al. (2023) (11) Preprocessing and feature selection in 
Alzheimer’s disease identification 

Utilizes pre-trained models that mostly 
help to decrease the time and amount of 
training data needed 

Some of native to the domain features 
might not be recognized by the 
pre-trained models 

Carcagnì et al. (2023) (15) CNN and self-attention learners Proper to extract features from the brain 
MRI images 

Self-attention mechanism may be costly 

Zhang et al. (2024) (13) This proposal addresses multi-task 
learning with an enhanced or modified 
version of a neural network 

Multi-talented and able to work on a 
number of projects at once, hence 
increasing productivity 

Complexity in models often leads to 
over fitting and these models will need 
large data sets 

3.2 Preprocessing 

In this paper, data preprocessing is found to be a fundamental 
step in enhancing the machine learning outcomes especially in 
classifying Alzheimer diseases using MRI scans. Because of the 
variations witnessed in the quality of images and the small 
differences in the brain boundaries some preprocessing techniques 
are very essential to improve the input images (24). First, a process 
of image normalization is conducted so that the pixel values 
range from 0 to 1 to reduce possible deviations due to image 
sizes. Although no explicit denoising or contrast enhancement 
was applied, several data augmentation techniques were used to 
enhance the training data and improve model robustness. These 
included random rotations, zooming, flipping, and brightness 
variation. All images were resized to 224 × 224 pixels and 
normalized to a pixel intensity range of [0, 1] before being fed 
into the models. This makes the model generalized better and also 
relieves it from overfitting (25). All these preprocessing steps serve 
to enhance the quality of data put into the ensemble model for the 
correct identification of Alzheimer’s stages (26). 

a.) Normalization: normalization is the task of adjusting the range 
of pixel intensities of an image to a standard range, often 
the interval [0:1]. The most common method is min-max 
normalization, which can be expressed mathematically as given 
in the Equation 1 below: 

xnorm = x− x min x−xmin 
x− xmin 

(1) 

where xnorm is the normalized portion of the pixel value, x is 
the actual pixel value, and xmin is the minimum value of the 
pixel in the picture, xmax is the maximum value of the pixel in 
the picture. 

b.) Resizing: resizing is the process of moving each pixel of an 
image to a new location in relation to desired width and height 
of the targeted image. If (Win, Hin) is the width and height of 
the original image and (Wout , Hout) is the width and height of 
the resized image. While maintaining the spatial relationships. 
If (Win, Hin) be the width and height of the original image 
and (Wout , Hout) be the width and height of the resized image. 
To standardize input dimensions for model training, each 
2D MRI slice was resized to 224 × 224 pixels using bilinear 
interpolation. This resizing adjusted the number of image 
pixels but did not account for physical voxel dimensions, which 
could not be preserved due to the absence of spatial resolution 
metadata in the JPEG-formatted dataset. So, the scaling factors 
for width and height are computed as in Equation 2 below: 

sw = 
Wout 

Win 
, sh = 

Hout 

Hin 
(2) 

c.) Data augmentation: data augmentation involves applying 
various operations on the existing dataset in order to create an 
enlarged and diversified set in order to improve generalization. 
It features different augmentations like rotation, scaling, 
shifting, flipping among others as shown in Figure 3. Rotating 
an image by angle θ is given by the formula as shown in the 
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FIGURE 1 

The framework of proposed methodology. 
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FIGURE 2 

Dataset classes: (a) Mild Demented (b) Moderate Demented (c) Non-Demented (d) Very Mild Demented. 

TABLE 2 Class wise dataset distribution. 

Dataset No. of images in ‘Mild 
Demented’ class 

No. of images in 
‘Moderate 

Demented’ class 

No. of images in 
‘Non-Demented’ class 

No. of images in 
‘Very Mild’ class 

Total 
images 

Training 6,797 6,797 6,797 6,797 27,188 

Validation 850 850 850 850 3,400 

Testing 850 850 850 850 3,400 

Total 8,497 8,497 8,497 8,497 33,988 

Equation 3 below. 
 
x y 

  
= [cosθ − sinθ sinθcosθ] 

 
x y  

 
(3) 

where, the coordinate position of the original raster image 
pixel is designated by (x, y) and that of the new position 
is by (x , y ) and the angle of rotation is θ in radians. 
Horizontal flipping reflects an image across the vertical axis. 
This transformation can be mathematically represented by 
reversing the x-coordinate of each pixel as in Equation 4: 

x  = −x, y  = y (4) 

This augmentation is particularly useful in medical imaging 
to introduce left–right symmetry, thereby improving the model’s 
robustness to orientation variance. 

Vertical flipping reflects the image across the horizontal axis 
and is represented as in Equation 5 below: 

x  = x, y  = −y (5) 

This operation helps simulate top–bottom inversion, further 
enhancing the model’s ability to learn invariant spatial features, 
especially when orientation does not impact diagnostic relevance. 

3.3 Model building 

Two architectures of deep learning models, the ResNet50 and 
EfficientNet-B7 that form the basis of the ensemble model are 
generated by this method. Each model is established meticulously 
to construct components of MRI images essential for satisfying 
classification exclusively. 

3.3.1 ResNet-50 
ResNet-50 consists of 50 layers, including convolutional layers, 

pooling layers, batch normalization (BN), and fully connected 
layers, as illustrated in Figure 4a. ResNet’ s principal invention 
is the residual block; this essential function is a “shortcut” or 
direct pathway that sends the input to the layer through to 
the output. This allows the model they base to skip certain 
layers and decrease the gradient disappearance problem in very 
deep networks (27). These shortcut connections help the network 
retain accuracies of deeper models possible without crossing the 
degradation issue by “jumping” other layers. The recognized blocks 
of architecture include the pooling layers, batch normalization, 
ReLU activation functions, and convolutional layers in sequence is 
given mathematically by Equation 6. 

y = F (x, {wi }) + x (6) 

Here x is the input to the residual block, y is the output, 
F(x{wi}) is the function that is applied on the input x. The last 
layer of classification produces output zresnet as described below in 
Equation 7 after passing through the network. 

yresnet = softmax 
 
Wresnet × Yglobal + bresnet 

 
(7) 

Here, Wresnet and bresnet are the weights and biases of the dense 
layer, and Yglobal is the output from the global average pooling layer. 

The convolutional block from ResNet-50 as illustrated in the 
Figure 4b, is a deep convolutional neural network that aids in 
the vanishing gradient problem through the element of residual 
learning. This block was implemented with the intent of being used 
to extract features while still allowing deeper networks to learn. The 
convolutional block includes three types of convolutional layers 
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FIGURE 3 

Data augmentation techniques. 

implemented in a sequence. The first layer is a 1 × 1 convolution 
that decreases the dimension of the input feature maps in order 
to lessen computational cost Stage 3: technology 3. The second 
one is another convolution layer with size 3 × 3 to cover spatial 
connections and explicit features. The third layer is another 1 × 1 
convolution to get back to the original dimensions of the feature 
maps. After each convolution there is normalization to make the 
training process faster and more stable, as well as using activation 
function (ReLU). The feature that is unique to the convolutional 
block is the projection shortcut connection, which uses 1 × 1 
convolution to bring the dimensions of the input to match that 
of the processed features. This makes some sense as it actually 
establishes compatibility for the element-wise addition on the 
shortcut and the convoluted feature maps. Then a feedback layer 
addition is applied, and finally has the activation function to get the 
output. This design makes it possible for ResNet-50 to learn initially 
both low level and high-level features in deep networks. 

In addition, an identity block in ResNet-50 as depicted in 
Figure 4c is an essential building block aimed at transferring 
features well through deep architectures. As it will be seen, the 
identity block retains the input dimensions since it uses a skip 
connection that feeds the input directly to the output without 
any change of dimension. This helps in making the model fast 
and stable while processing in the later stage of the training. 
The identity block contains three layers of convolution. The first 
is a 1 × 11 times one convolution layer that is aimed at the 
dimensionality of the input feature maps. This is succeeded by 
a 3  × 33 times three convolution which extracts spatial features 
and patterns, and one more 1 × 11 times one convolution which 
brings back dimensionality. Each convolutional layer is associated 
with batch normalization to update the activation for acceleration 
of convergence as well as activation function like ReLU. The key 
feature of the identity block is that the input directly connects to 
the output without passing through the convolutional layers by 
adding the input feature maps with the corresponding feature maps 

after passing through the network. After this addition there is an 
activation function to produce the output. The added identity block 
makes ResNet-50 deepen this network while allowing it to maintain 
the hoisting of features and avoid the vanishing gradient issue, 
making it a great architecture for acquiring features. 

3.3.2 Efficient Net 
Based on a compound scaling coefficient, Efficient Net aims 

to optimize at the same time depth, width and the resolution 
according to a parameter Ø that represents a family of models. 
EfficientNet-B3 is one particular network in the Efficient Net series 
of models and, as with all models in this series, this network 
enforces a balance between these three aspects to yield decent 
compromise between model complexity, model accuracy, and 
compute requirements (26). The scaling is governed by Equation 8: 

d = α φ ,w = β φ , r = γ φ (8) 

where d, w, and r are the network’s depth, width, and resolution, 
respectively and where α, β , and γ are parameters. The output 
of EfficientNet-B7, after global average pooling, is shown in 
Equation 9: 

yefficientnet = softmax 
 
Wefficientnet × fglobal + befficientnet 

 
(9) 

where fglobal is the feature vector, and Wefficientnet , befficientnet are 
the weights and the biases of the dense layer. The architecture of 
EfficientNet-B7 demands for many important components: from 
original input, features are extracted by convolutional layers to 
improve gradient flow and achieve batch normalization and the 
Swish activation function. The Figure 5 shows the architecture of 
Efficient Net B3. 
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FIGURE 4 

Resnet 50 (a) Resnet 50 architecture (b) Convolutional block (c) Identity block. 

3.3.3 Ensemble model architecture 
In the proposed ensemble model, ResNet-50 and EfficientNet-

B3 were trained independently using the same training dataset to 
classify MRI slices into four Alzheimer’s disease stages. During 
inference, both models generate probability scores for each class 
through softmax layers, and these outputs are combined using a soft 
voting approach by simply averaging the predictions. This fusion 

allows the ensemble to benefit from the complementary strengths 
of both networks: EfficientNet-B3 offers high efficiency with fewer 
parameters, while ResNet-50 contributes deep hierarchical feature 
extraction through residual learning. To stabilize training and 
reduce internal covariate shift, batch normalization is applied to 
the fused features, followed by a dense layer with 256 neurons 
and ReLU activation for non-linearity. Regularization techniques, 
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FIGURE 5 

Efficient Net B3 architecture. 

including both L1 and L2 penalties, are applied to prevent 
overfitting, and a dropout layer is used to further improve 
generalization. The final classification is performed through a 
fully connected layer that maps the processed features to class 
probabilities. The model is trained using categorical cross-entropy 
loss, which evaluates the difference between predicted and true 
class labels. Overall, this ensemble design enhances diagnostic 
performance by combining the robustness of two diverse deep 
learning architectures as in the Figure 6. Rather than assigning 
weighted average or performing any other operation, the outputs 
from both the models are then simply averaged as they have been 
observed to complement each other. EfficientNet-B3 gives state 
of the art efficient feature representation using fewer number of 
parameters compared to ResNet-50 which offers strong hierarchical 
feature representation due to its residual learning (11). The 
combined output fusion is computed as shown in Equation 10 
where yEffNet is the final prediction of Efficient B3 and yResNet is the 
final prediction of Resnet 50. 

yFusion = 
1 

2 
.(yEffNet + yResNet) (10) 

This particular fusion strategy also ensures that both models 
contribute equally enough to the ensemble so that generalization 
over the various patterns across images will be well-captured. 

Batch normalization (BN) is then employed on the fused 
features to stabilize and enhance the speed of the whole training 
process by normalizing the outcomes. The normalized feature 
vector ˆ y is computed as in Equation 11: 

ŷ = 
yFusion− μ √ 

σ 2 +  
(11) 

where μ and σ 2 are the estimate of average of the batch, and 
variance of the batch respectively and  is a small constant value 
so as to avoid division by zero. Trainable scaling (γ ) and shifting 
(β) parameters further refine the normalized features by using 
the Equation 12: 

y  = γ .y ̂ + β (12) 

This step reduces the covariate shift problem within the 
organization’s internal environment, meaning that there is a more 

stable distribution of the particular features through the layers. The 
features being batch normalized are then fed through a dense layer 
with 256 output neurons. This layer applies a linear transformation 
followed by a ReLU activation for non-linearity as shown in 
Equation 13: 

z = ReLU(W. y  + b) (13) 

where, W is Weight matrix, b is Biase vector and ReLU(a) = max (0, 
a) To prevent overfitting, L1 and L2 regularization terms are added 
to the loss function, penalizing large weights as in Equation 14: 

Regularization Loss = λ1.|| W||1 + λ2.|| W|| 2 
2 (14) 

Also, Dropout layer which drops out neurons with the 
probability p is implemented to increase the ability of generalization 
of the model. The last fully connected layer adopts the SoftMax 
function in order to convert the distilled features to probabilistic 
outcomes reflecting the number of categories of the output. For 
each class k, the output probability yk is given by Equation 15: 

yk = 
exp exp (zk) C 
j=1 = exp(zj) 

(15) 

where C represents the number of classes, while zk is the logit for 
class k. The model is trained using categorical cross-entropy loss, 
minimizing the divergence between true labels yi,k and predicted 
probabilities y (i,k) as in Equation 16 

L = −  
1 

N 

N 

i=1 

C 

k=1 
yi,k log(ŷi,k ) (16) 

All the enhancement methods used in the proposed ensemble 
model, namely, feature fusion, normalization, dense layers, and 
regularization, make it highly capable to perform well in the 
classification of Alzheimer’s disease. Using EfficientNet-B3 and 
ResNet-50, this approach offers significant capabilities for the 
early diagnosis, which further outperform the outcomes of 
separate models with higher accuracy and their generality. A 
dropout layer is applied after the ReLU-activated dense layer 
and before the final classification layer to reduce overfitting and 
improve generalization. 
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FIGURE 6 

Ensemble model architecture. The framework consists of: (1) Input brain MRI image; (2) Feature extraction using ResNet-50 and EfficientNet-B3; (3) 
Ensemble model fusion, where outputs of ResNet-50 and EfficientNet-B3 are combined; (4) Classification head composed of Batch Normalization, 
Dense Layer (256 neurons), ReLU, Activation Layer, Dropout Layer, and Fully Connected Layer; and (5) Final classification into four categories: (a) Mild 
Demented, (b) Moderate Demented, (c) Non-Demented, and (d) Very Mild Demented. 
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TABLE 3 Training hyperparameters. 

Hyperparameter details Value/description 

Optimizer Adam 

Learning rate 0.0001 

Loss function Categorical cross entropy 

Batch size 32 

Number of epochs 10 

Input image size 224 × 224 × 3 

Dropout rate 0.5 

Data split ratio 80% Training 10% Validation 10% 
Testing 

Data augmentation Rotation, Zooming 

Framework used Python 3.8, TensorFlow 2.9, Keras, 
OpenCV, NumPy, Matplotlib 

3.3.4 Hyperparameter details 
To ensure optimal model performance and training stability, 

a carefully selected and tuned range of hyperparameters for both 
ResNet-50 and EfficientNet-B3 models used in the ensemble 
(11). These parameters were chosen based on preliminary 
experimentation and established best practices in deep learning 
for medical imaging. Key hyperparameters include the choice of 
optimizer, learning rate, batch size, number of training epochs. 
A detailed summary of the hyperparameters used in this study 
is provided in Table 3. These settings were consistent across both 
models to ensure fairness and effective ensemble integration. The 
models were developed using Python 3.8 with the TensorFlow 2.9 
and Keras libraries. Additional preprocessing and evaluation were 
performed using NumPy, OpenCV, scikit-learn, and Matplotlib. 

4 Results 

This section presents the experimental results obtained 
from evaluating the proposed ensemble model comprising 
ResNet-50 and EfficientNet-B3 on the Alzheimer’s MRI 
classification task. The model’s performance was assessed 
using standard evaluation metrics, including accuracy, precision, 
recall, and F1-score across four Alzheimer’s disease stages: 
Non-Demented, Very Mild Demented, Mild Demented, and 
Moderate Demented. The results demonstrate that the ensemble 
approach outperforms individual models in terms of both 
classification accuracy and generalization capability. Detailed 
comparisons, confusion matrices, and performance tables 
are provided to illustrate the effectiveness of the proposed 
method and support its potential for clinical deployment in 
diagnostic workflows. 

4.1 Evaluation parameters 

An evaluation parameter is a measure by which the 
performance, efficiency or effectiveness of a model, process, 

or system can be judged. Such parameters are commonly applied 
in different areas including machine learning, statistics, finance 
and engineering. 

a) Accuracy: accuracy in multi-class classification is defined 
as the ratio of correctly predicted samples to the total number 
of samples across all classes. It measures the overall effectiveness 
of the model in assigning the correct label to each input as in 
Equation 17 below: 

Accuracy = 
No. of correct predictions 
Total No. of predictions 

= 

 
i = 1CTPi 

N 
(17) 

Where TPi = True Positives for class i, C = Total number of 
classes, N = Total number of samples, where i can be any class out 
of four classes of Alzheimer. 

b) Precision: precision measures the proportion of correct 
positive predictions for each class out of all predictions made 
for that class. It indicates how many of the predicted instances 
for a specific class are actually correct. Precision is presented 
by the formula of precision expressed in Equation 18 below: 

Precisioni = 
TPi 

TPi+ FPi 
(18) 

c) Recall: recall, also known as sensitivity, measures the 
proportion of actual positives that were correctly identified for each 
class. It shows how well the model captures the true instances 
of each class. The formula of precision is expressed below in 
Equation 19 below: 

Recalli = 
TPi 

TPi + FNi 
(19) 

Where FNi is false negative for class i. 
d) F1-Score: the F1-score is the harmonic mean of precision 

and recall for each class. It balances the trade-off between precision 
and recall, especially useful when classes are imbalanced. The 
F1-score is calculated as shown in Equation 20: 

F1i − Score = 2 × 
(Precisioni × Recalli) 
(Precisioni + Recalli) 

(20) 

4.2 Training and validation results 

Comparative analysis of performance was conducted between 
ResNet-50 and EfficientNet-B3 during their training and 
validation stages. Two different computational frameworks 
trained against a predefined dataset to evaluate their performance 
by calculating their accuracy and precision during validation 
with recall and F1-score metrics achieved alongside AUC-
ROC value evaluations. The feature extraction abilities of 
ResNet-50 were excellent but required precision adjustments 
through fine-tuning to reach its best levels of operation. The 
efficient scaling of EfficientNet-B3 produced superior accuracy 
results while maintaining better generalization capabilities. The 
validation results showed that EfficientNet-B3 demonstrated 
better performance than ResNet-50 models primarily because 
of its superior structural design. Background inference speed 
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retained similarity between ResNet-50 and other comparison 
models. A decision between the two systems depends on 
whether applications prioritize accuracy or computational 
speed. The model was evaluated using multi-class performance 
metrics, including overall accuracy, precision, recall, and 
F1-score. These metrics were calculated for each of the 
four classes individually and macro-averaged to provide an 
overall assessment. 

4.2.1 Training and validation results of efficient 
net B3 

Performance trends from the EfficientNetB3 based Alzheimer’s 
disease detection model can be found in the depicted accuracy 
and loss data plots. The deployment of 10 epochs throughout 
training yielded positive results which appeared in both training 
and validation metrics. Both training and validation data show 
continuous performance improvements throughout the epochs 
according to the accuracy plot displayed on the left. The initial 
training accuracy level was ∼65% before reaching near 95% 
stability. The generalization capacity becomes evident through 
the validation accuracy which shows a start value higher than 
training accuracy and converges to 95%. The models training 
and validation accuracy graphs remain close together which 
means the model avoids major overfitting problems. Training 
along with validation loss shows continuous reduction throughout 
the overall training process according to the loss plot. Training 
losses initiate at 0.7 but continuously decrease and settle near 
0.1 by the end of training (28). The validation loss chain 
shows a downward movement which starts underneath the 
training loss mark then reaches similar value terminals at epoch 
completion. The model’s robust structure receives additional 
confirmation through the parallel changes observed in validation 
and training loss metrics. Effective learning and generalization 
abilities stand out in the EfficientNetB3 architecture when 
used for Alzheimer’s disease detection based on its metric 
convergence performance. The balanced performance of training 
and validation curves demonstrates that the model effectively 
extracts significant data features while avoiding overfitting which 
demonstrates its practical utility in clinical diagnostics settings. All 
performance metrics are displayed through the graphs presented in 
Figure 7. 

4.2.2 Training and validation results of ResNet 50 
Multiple plots show the performance metrics between training 

data accuracy and validation data accuracy alongside training data 
loss and validation data loss when using ResNet-50 for Alzheimer’s 
disease prediction. The training process required 10 epochs 
toward model evolution yet the performance metrics showed 
some separateness between training and validation results. The 
accuracy graph (left) demonstrates that model training accuracy 
gradually improved from 60% to a nearly 95% level throughout 
ten epochs. Initially the validation accuracy started at ∼70% 
then climbed to reach nearly 87% values. Beyond the fifth epoch 
the validation accuracy demonstrates unstable patterns which 
could be explained by overfitting and changes found within the 

validation dataset. The decreasing trend on loss data demonstrates 
successful learning between training data along with validation 
data. Training loss begins at 0.9 before reaching 0.2 only after 
completing the training period. From its starting point at 0.8 the 
validation loss gradually lowers until reaching a minimum of 0.4 
at epoch five. Beyond epoch 5 the validation loss exhibits a tiny 
upward trend because the model effectively performs on training 
data however, it misses essential patterns needed for unseen 
input recognition (29). Throughout the later part of training the 
separation between validation and training performance metrics 
demonstrates that ResNet-50 successfully grasps patterns from 
the data although it needs further development for generalized 
results. Early stopping alongside data augmentation and standard 
techniques for regularization offer potential solutions to reduce 
overfitting. The ResNet-50 model shows promise for Alzheimer’s 
disease detection capabilities through its excellent training accuracy 
results and fair validation performance potential that creates 
opportunities for future clinical diagnostic applications. All 
performance metrics have their graphical representations displayed 
in Figure 8. 

4.2.3 Training and validation results of proposed 
ensemble model 

These graphic displays show how an ensemble with ResNet-50 
and EfficientNetB3 models detects Alzheimer’s disease throughout 
10 training cycles. The left graph shows accuracy performance 
which demonstrates exceptional model behavior through rapid 
improvement of training and validation accuracy toward perfect 
scores. The model establishes an initial training accuracy baseline 
at 70% which evolves into 100% accuracy during the fourth epoch 
then maintains peak performance for the remaining epochs. The 
baseline validation accuracy sits at 85% during the initial stage 
after which it establishes perfect synchronization with training 
accuracy throughout subsequent epochs. The coaches’ curves align 
perfectly which demonstrates the model will generalize successfully 
and avoids excessive overfitting behavior. A loss plot analysis 
reveals that both training and validation loss decrease sharply 
in initial epochs to stabilize at low levels. Training loss displays 
initial values of about 3.5 that diminish rapidly to less than 
one unit during epoch 5 then settles down at that minimum 
value point. Validation loss displays a parallel reduction pattern 
which starts near 2.5 before decreasing under 0.5 during epoch 
4 while training loss tracks closely in subsequent epochs (30). 
The parallel development of accurate results and low loss data 
points demonstrates the sturdy characteristics of the ensemble 
model system. The ensemble methodology uses ResNet-50 and 
EfficientNetB0 to extract complementary functionality which 
delivers outstanding results for Alzheimer’s disease diagnosis. The 
model demonstrates accurate pattern recognition in the data 
through quick criterion alignment and data metric convergence 
without producing overfitting issues. The ensemble approach 
demonstrates potential utility as a dependable medical diagnostic 
instrument since it delivers accurate results alongside sharp dataset 
generalization abilities. All performance metrics are displayed 
graphically in Figure 9. 
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FIGURE 7 

(a) Model accuracy (b) model loss of efficient net B3. 

FIGURE 8 

(a) Model accuracy (b) model loss of Resnet 50. 

4.2.4 Comparison results of ensemble model, 
EfficientNet-B3 and ResNet50 

The performance metrics for multiple deep learning models 
across ten epochs are shown in Table 4 where training accuracy 
and validation accuracy and validation F1-score are evaluated. 
Scientists apply equivalent deep learning technologies from this 
domain to detect Alzheimer’s disease through MRI medical 
imaging. The progressive neurodegenerative psychiatric condition 
Alzheimer’s disease leads to cognitive decline so it requires 
early diagnosis to deliver effective therapeutic measures. The 
diagnostic systems built with CAD capabilities utilize EfficientNet-
B3 along with ResNet50 and ensemble models as they demonstrate 

exceptional accuracy in image recognition tasks. The training 
and validation accuracy of both EfficientNet-B3 and ResNet50 
increase through epochs and the ensemble model exceeds the 
performance of each model individually. All performance metrics, 
including accuracy, precision, recall, and F1-score, were calculated 
in a multi-class setting across four classes. Per-class metrics 
were computed and macro-averaged to summarize overall model 
performance. Ensemble learning proves beneficial because diverse 
model combinations increase generalization ability which then 
produces superior diagnostic results. Deep learning models 
trained with Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
medical images demonstrate potential for Alzheimer’s disease 
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FIGURE 9 

(a) Model accuracy (b) model loss of ensemble model. 

detection applications. The EfficientNet-B3 model demonstrates 
top capability in extracting MRI scan features followed by ResNet50 
which automatically adjusts training depths to overcome vanishing-
gradient difficulties by using its residual learning method. The 
ensemble model’s high performing results indicate that using 
multiple architectures enhances detection accuracy for early-stage 
Alzheimer’s disease. The F1-score acts as a vital tool for medical 
researchers because it evaluates model performance specifically 
during assessment of diagnosis systems which operate on 
imbalanced datasets primarily featuring underrepresented early-
stage and mild Alzheimer’s cases. Analysis of the F1-score values 
shows that the ensemble model maintains its superior performance 
throughout all epochs while achieving optimal precision and 
recall ratings. Morocco’s scientific research benefits from F1-
score accuracy which strives to improve disease detection at both 
non-diseased and diseased case levels thereby supporting clinical 
tools development. Model learning effectiveness and generalization 
ability increase concurrently with validation accuracy across epochs 
which proves fundamental when applying medical approaches 
to real-world situations. Deep learning algorithms with similar 
models from the table enable researchers to create dependable CAD 
systems which benefit neurologists through improved Alzheimer’s 
disease diagnosis accuracy. The diagnostic accuracy can be 
improved by two techniques: domain-specific transfer learning 
fine-tuning and additional multimodal data analysis. Deep learning 
demonstrates its critical role in disease detection through the data 
trends presented in the table. Researchers implementing these 
technologies in Alzheimer’s detection will achieve early diagnosis 
while enabling faster interventions that ultimately lead to better 
patient results. The Table 4 below shows the comparison of Resnet 
50, Efficient Net B3, and ensemble model. 

4.3 Testing results 

Real-world testing of ResNet-50 and EfficientNet-B3 produced 
evaluation results. The superior generalization capabilities of 
EfficientNet-B3 became evident through improved accuracy and 
precision together with enhanced recall. The model was superior 
to ResNet-50 in recognizing minimal patterns while producing 
fewer mistakes. The real-time applications could benefit from 
the ResNet-50 model because it delivers inference operations at 
a faster pace. The scoring system emphasized EfficientNet-B3 
as the best model in discrimination capability assessment. The 
efficiency of ResNet-50 did not reduce its competitive strength 
unless optimum hyperparameters were used. Two efficient network 
choices exist: EfficientNet-B3 provides enhanced accuracy while 
ResNet-50 delivers crucial speed performance for applications. 
Additional adjustments to model parameters combined with better 
data preparation will help increase test results from both systems. 

4.3.1 Classification results of EcientNet-B3, 
ResNet50, and ensemble model 

The classification report in Table 5 provides a comprehensive 
breakdown on testing models across four categories by showing 
accuracy data as well as recall metrics alongside F1-score 
percentages and class support counts. Our results show the 
ensemble model based on ResNet50 plus EfficientNet-B3 delivers 
advanced detection of Alzheimer’s disease across all four disease 
classification levels. The ensemble model executed with ResNet50 
and EfficientNet-B3 demonstrated absolute classification precision 
and recall and F1-score values of 1.00 for detecting Mild 
Demented, Moderate Demented and Non-Demented cases. The 
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TABLE 4 Comparison of ResNet-50, EfficientNet-B3, and Ensemble model. 

Epoch Model Training accuracy Validation accuracy Validation F1-score 

1 EfficientNet-B3 0.6261 0.7473 0.5482 

ResNet50 0.608 0.687 0.686 

Ensemble model 0.6707 0.822 0.8365 

2 EfficientNet-B3 0.7489 0.8037 0.6947 

ResNet50 0.7184 0.7608 0.758 

Ensemble model 0.8709 0.9294 0.9355 

3 EfficientNet-B3 0.8083 0.8458 0.7797 

ResNet50 0.7754 0.7846 0.784 

Ensemble model 0.9519 0.9794 0.9809 

4 EfficientNet-B3 0.8425 0.8726 0.8349 

ResNet50 0.8138 0.7985 0.798 

Ensemble model 0.9733 0.9841 0.9854 

5 EfficientNet-B3 0.8748 0.8977 0.8889 

ResNet50 0.8479 0.8249 0.824 

Ensemble model 0.9819 0.9929 0.9935 

6 EfficientNet-B3 0.8951 0.9148 0.9124 

ResNet50 0.8744 0.8505 0.85 

Ensemble model 0.9862 0.9915 0.9922 

7 EfficientNet-B3 0.9137 0.9233 0.9201 

ResNet50 0.8942 0.8591 0.859 

Ensemble model 0.9904 0.9947 0.9951 

8 EfficientNet-B3 0.9283 0.934 0.9311 

ResNet50 0.9116 0.8626 0.862 

Ensemble model 0.9919 0.9953 0.9957 

9 EfficientNet-B3 0.9355 0.9487 0.946 

ResNet50 0.925 0.8553 0.855 

Ensemble model 0.9936 0.9882 0.9891 

10 EfficientNet-B3 0.9446 0.9528 0.9504 

ResNet50 0.9363 0.8676 0.868 

Ensemble model 0.9943 0.9915 0.9922 

model maintains a precision rate of 0.98 and recall rate of 1.00 when 
classifying Very Mild Demented images. This produces an F1-
score of 0.99. Evaluation shows that when measuring performance 
separately, the EfficientNet-B3 model produces superior results 
than ResNet50 because it achieves 0.95 precision compared to 
0.87 precision together with 0.95 recall compared to 0.87 recall 
which generates a superior overall F1-score. The F1-score of 
EfficientNet-B3 achieves 1.00 in detecting Moderate Demented 
cases in particular together with strong performance in all 
present classes. ResNet50 demonstrates reduced performance in 
identifying Very Mild Demented cases and achieves recall levels 
of 0.76 thereby affecting its overall classification precision. The 
coordinating method capitalizes on the individual capabilities of 
both systems thereby enhancing overall classification performance. 

The ensemble model demonstrates reliable performance with an 
overall accuracy rating of 0.9932 which confirms its potential use 
for automated Alzheimer’s disease detection. 

4.3.2 Confusion matrix of EfficientNet-B3 
A confusion matrix serves as a performance evaluation tool 

which enables researchers to evaluate how machine learning 
models classify different data points. A basic mathematical 
unit that displays the real classification output with the model 
prediction output during model analysis. The rows display 
real-world labeling and the columns deliver model prediction 
classes. The research invests in studying the confusion matrices 
obtained from the Ensemble Model alongside ResNet50 and 
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TABLE 5 Comparison of various parameters under different models. 

Class Model Precision Recall F1-score Support 

Mild Demented Ensemble model 1 1 1 896 

Moderate Demented 1 1 1 647 

Non-Demented 1 1 0.99 960 

Very Mild Demented 0.98 1 0.99 896 

Mild Demented ResNet50 0.82 0.92 0.87 896 

Moderate Demented 0.99 0.98 0.98 927 

Non-Demented 0.84 0.85 0.84 927 

Very Mild Demented 0.86 0.76 0.81 907 

Mild Demented Efficient net B3 0.96 0.98 0.97 932 

Moderate Demented 0.99 1 1 602 

Non-Demented 0.93 0.94 0.94 979 

Very Mild Demented 0.94 0.91 0.93 886 

Overall accuracy Ensemble model 0.99 0.99 0.99 3,399 

ResNet50 0.87 0.87 0.87 3,399 

Efficient Net B3 0.95 0.95 0.95 3,399 

EfficientNet-B3. The confusion matrix in Figure 10 evaluates the 
EfficientNet-B3 model’s performance in classifying Alzheimer’s 
disease stages: Mild, Moderate, Non, and Very. The model 
demonstrates impressive accuracy by accurately identifying Mild 
(915 correct) and Moderate (602 correct) cases paired with sparse 
misdiagnosis occurrences. The identification of non-Alzheimer’s 
international cases proves reliable at 928 while showing some 
wrong assignments of very severity. Severe cases (805 correct) 
show occasional confusion with Non-cases (56 misclassified). The 
successful early and moderate stage differentiation by EfficientNet-
B3 needs improvements for better discrimination between severe 
disease presentations and non-diseased conditions to create 
accurate tools for clinical diagnosis. 

4.3.3 Confusion matrix of ResNet 50 
The Resnet 50 model delivers excellent diagnostic accuracy 

when distinguishing between Mild Demented and Non-Demented 
groups since it makes 823 and 784 correct determinations at 
once. The evaluation shows certain classification errors occur 
most frequently between Very Mild Demented and Non-Demented 
categories. Habitat Resnet 50 demonstrates accurate performance 
detecting Moderate Demented stages because it delivers 653 precise 
identification results while minimally misclassifying any samples. 
A significant number of Very Mild Demented cases get assigned 
to the Mild Demented group in addition to the 111 diagnoses 
which the classifier labels as non-demented based on Figure 11. 
Distinguishing dementia at early stages from healthy individuals 
remains a challenge for early intervention because both cases 
present similar symptoms. 

4.3.4 Confusion matrix of ensemble model 
Each category shows robust performance in classification 

based on the ensemble model where most instances fall within 

correct interpretations. Our analysis showed the model correctly 
identified 896 cases of Mild Demented and 647 cases of 
Moderate Demented along with 938 non-demented cases and 
895 Very Mild Demented patients. The classification method 
shows minimal mistakes because occasional Very Mild Demented 
cases accidentally overlapped with non-demented cases (19 
images) while other classification results were unaffected (31). 
The integrated ResNet50 and EfficientNet-B3 model successfully 
identifies different dementia stages because of its powerful 
feature extraction strengths. Both ResNet50 and EfficientNet-B3 
contribute remarkable capabilities to classification accuracy by 
demonstrating strong combinations of deep learning methodology 
and parameter optimization capabilities. The ensemble model 
proves highly suitable for early-stage Alzheimer’s detection through 
its minimal misidentification errors in identifying groups of 
Moderate Demented patients along with Mild Demented patients 
as shown in Figure 12. The ensemble model demonstrates high 
diagnostic accuracy which makes it suitable for automated 
Alzheimer’s disease detection systems that would help doctors 
intervene early and make better medical choices. The ensemble 
model demonstrates superior performance by attaining maximum 
accuracy while making the fewest classification errors especially 
in subjects with Mild and Moderate Demented diagnosis. The 
EfficientNet-B3 performs exceptionally well in mild and moderate 
case identification although it displays challenges when trying to 
identify severe cases. The ResNet50 Model demonstrates successful 
operation however, its efficiency decreases when attempting to 
distinguish very mild Dementia from persons who do not 
have dementia. 

5 External validation 

To evaluate the generalization ability of the proposed 
ensemble model, an external validation was performed using 
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FIGURE 10 

Confusion matrix of Efficient Net B3. 

FIGURE 11 

Confusion matrix of ResNet 50. 

a separate dataset comprising 6,400 MRI images representing 
four stages of Alzheimer’s disease: Non-Demented, Very Mild 
Demented, Mild Demented, and Moderate Demented. The results 

confirm the robustness and accuracy of the model beyond the 
training data, demonstrating its potential for real-world clinical 
application (32). 
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FIGURE 12 

Confusion matrix of ensemble model. 

The model achieved an overall accuracy of 97%, with 
consistently high precision, recall, and F1-scores across all classes. 
Specifically, the Non-Demented class yielded a precision of 0.96 
and a recall of 0.94, resulting in an F1-score of 0.95. The Very 
Mild Demented class, which represents early-stage Alzheimer’s 
detection, achieved perfect scores—precision, recall, and F1-score 
all at 1.00—though this result should be interpreted with caution 
due to the relatively small sample size (n = 10). The model also 
performed well on the Mild Demented and Moderate Demented 
categories, achieving F1-scores of 0.97 and 0.96, respectively as 
depicted in the Table 6 below. 

Macro and weighted averages for all metrics were uniformly 
0.97, indicating that the model maintains consistent performance 
across both balanced and imbalanced class distributions. These 
results suggest that the ensemble model, which combines ResNet-
50 and EfficientNet-B3, is capable of accurately distinguishing 
between Alzheimer’s disease stages even when evaluated on data 
not seen during training. 

The results are promising, but the limited number of 
samples in some classes—especially Very Mild Demented— 
warrants further validation using larger, clinically diverse 
datasets. Future work will focus on subject-level validation 
using datasets with patient identifiers, clinical metadata, and 
imaging protocols to assess the model’s robustness in practical 
diagnostic environments. 

TABLE 6 Performance metrics on external validation dataset. 

Class Precision Recall F1-score Support 

Mild Demented 0.96 0.94 0.95 145 

Moderate Demented 1.00 1.00 1.00 10 

Non-Demented 0.97 0.98 0.97 513 

Very Mild Demented 0.96 0.96 0.96 356 

Accuracy 0.97 1,024 

Macro Avg 0.97 0.97 0.97 1,024 

Weighted Avg 0.97 0.97 0.97 1,024 

6 Comparison with state-of-the-art 

This research demonstrates how recent developments improve 
disease detection models and dataset capabilities and classification 
metrics when compared to current field-leading detection 
approaches. Research using deep learning algorithms ResNet50, 
EfficientNet, VGG16, and DenseNet has evaluated Alzheimer’s 
disease classification from MRI scans with different degrees of 
achievement. The application of CAM-CNN on MRI scans with 
VGG19 and ResNet101 network models produced a 98.85% 
accuracy outcome where ResNet101 provided better performance 
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TABLE 7 Comparison on the basis of aspects. 

Ref No Year Technique used Number of classes Name of classes Accuracy 

(4) 2024 VGG19 and RESNET 101 
with CAM-CNN 

4 • Non-Dementia 
• Without Dementia 
• Very Mild Dementia 
• Mild Dementia 
• Moderate Dementia 

98.85% 

(7) 2023 Ensemble of EfficientNet-B2 
and VGG-16 

4 • Mild Demented 
• Moderate Demented 
• Non-Demented 
• Very Mild Demented 

97.35% 

(9) 2024 Using various architectures 
like VGG 16, VGG 19, 
Dense Net 121 

5 • Binswanger Dementia 
• Hemorrhagic Dementia 
• Multi-infarct dementia 
• Strategical dementia 
subcortical dementia 

84.67% 

(10) 2024 Using deep learning 
techniques 

4 • Mild Demented 
• Moderate Demented 
• Non-Demented 
• Very Mild Demented 

80.14% 

(15) 2024 Using ResNet, Dense Net, 
and Efficient Net 

4 • Mild Demented 
• Moderate Demented 
• Non-Demented 
• Very Mild Demented 

75.06% 

Proposed model Ensemble Model of Resnet 
50 and Efficient Net-B3 

4 • Mild Demented 
• Moderate Demented 
• Non-Demented 
• Very Mild Demented 

99.32% 

than VGG19. The combination of EfficientNet-B2 with VGG16 
allowed researchers to produce a model that reached 97.35% 
accuracy through transfer learning applications. Individual use 
of ResNet50 in previous research reached an accuracy of 80.14% 
yet displayed spaces where its classification accuracy might be 
enhanced. Research results using multiple models including 
VGG16 and DenseNet121 with ResNet50 demonstrated an 
accuracy level of 84.67 percent which indicates the requirement 
for better ensemble strategies. The research introduces an 
ensemble model that joins ResNet50 with EfficientNet-B3 to 
improve classification outcomes in a major way. The proposed 
model delivers 99% overall performance accuracy because Mild 
Demented, Moderate Demented, and Non-Demented classes 
achieve precision, recall and F1-score values of 1.00. Feature 
extraction capabilities of EfficientNet-B3 reveal its superiority over 
ResNet50 since individual assessments show precision at 0.95 vs. 
0.87 and an F1-score of 0.99. To surpass benchmarked models 
this research generated an ensemble method that brings together 
beneficial characteristics from EfficientNet-B3 and ResNet50 
including their optimized architecture and deep feature learning 
ability. Its high classification accuracy makes this approach a 
promising option for automated Alzheimer’s detection while 
enabling better medical decision support particularly during early 
diagnosis. A summary of these two methods appears in Table 7. 

Several recent studies have contributed valuable insights into 
the development of intelligent diagnostic systems, which support 
the objective of this research. For instance, Zhang et al. (33) 
demonstrated the clinical benefits of precision imaging techniques 
in neurosurgical applications, highlighting the importance of 
targeted image-guided interventions in neurological disorders, a 

concept that aligns with the need for accurate neuroimaging 
analysis in Alzheimer’s disease. Yin et al. (34) proposed an EEG-
based emotion recognition system using autoencoder feature 
fusion and MSC-TimesNet, which exemplifies the utility of 
deep learning in neurocognitive data interpretation. Similarly, 
Tian et al. (35) introduced a novel self-supervised learning 
model for binocular disparity estimation, indicating the growing 
potential of self-supervised frameworks that could be extended to 
medical imaging applications such as Alzheimer’s classification. 
Furthermore, Xiao et al. (36) presented a large-scale machine 
learning-based dementia risk model tailored to elderly populations 
with depression, providing a strong clinical basis for integrating 
predictive analytics in Alzheimer’s risk assessment. Zhu (37) 
explored memory impairment detection through computational 
intelligence in substance abuse patients, reinforcing the relevance 
of machine learning in cognitive disorder diagnostics. Zhan 
et al. (38) investigated brain strain analysis using in-vivo and 
simulation data, underlining the value of biomechanical modeling 
in neurodegenerative research. Li et al. (39) applied machine 
learning to diagnose sarcopenia using sEMG signals, showing 
the adaptability of ML in aging-related disease detection. Lastly, 
Xiang et al. (40) employed a systems biology approach to 
explore potential therapeutic mechanisms in Alzheimer’s, offering 
complementary biological insights that support a multimodal 
understanding of the disease. Together, these works underscore 
the feasibility and importance of leveraging advanced machine 
learning, neuroimaging, and multimodal integration strategies— 
paralleling the aims of our ensemble learning-based framework 
using ResNet-50 and EfficientNet-B3 for Alzheimer’s diagnosis and 
disability assessment. 
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7 Discussion 

Research development centers on building an ensemble 
model for Alzheimer’s disease detection while showcasing its 
value for clinical assessments. The proposed model extends 
clinical abilities of neurologists and radiologists through its 
accuracy enhancement and robustness while facilitating timely 
precise diagnostic procedures that minimize human error and 
enhance early treatment strategies. The absence of patient-
level demographic data, including age and gender, limits the 
model’s ability to analyze performance variations across different 
population subgroups. Future work will utilize clinically annotated 
datasets to enhance interpretability and fairness and use datasets 
that allow patient-wise splitting to ensure proper generalization. 
The lack of patient identifiers prevented subject-level data splitting. 
Consequently, the model may have been exposed to highly 
correlated adjacent slices across training and test sets, increasing 
the risk of overfitting and overestimating performance. Although 
augmentation and splitting were carefully performed, the absence 
of subject identifiers may result in correlated slices from the 
same subject appearing in different data subsets, potentially 
impacting generalization. Through implementation in hospital 
imaging platforms the ensemble model functions as a medical 
decision tool which enables specialists to detect Alzheimer’s disease 
manifestations at different stages confidently. Due to the absence 
of raw volumetric MRI files and acquisition metadata, advanced 
corrections such as N4 bias field correction could not be applied, 
which may affect intensity uniformity across slices. Since the 
dataset was pre-augmented and lacks original raw scans, it may 
not be suitable for standalone testing or external benchmarking. 
This restricts our ability to fully assess generalization and may 
introduce bias if augmentation artifacts influenced the model. 
Deep learning methods showcase their potential to outperform 
conventional diagnostic methods through the successful ensemble 
architecture which unites ResNet50 and EfficientNet-B3 networks. 
A key limitation of this work is the absence of imaging acquisition 
metadata, such as sequence types and scanner specifications, as the 
dataset was sourced from a publicly available platform (Kaggle) 
that did not include these details. This limits our ability to assess 
the model’s robustness across different clinical imaging conditions. 
The enhanced accuracy of combined model identifications results 
in increased abilities to distinguish dementia’s early stages from 
standard brain abnormalities thereby enabling prompt medical 
care. The improved diagnosis system reliability comes from better 
misclassification control which decreases false-positive and false-
negative outcomes leading to incorrect diagnosis. Medical imaging 
is undergoing significant change through artificial intelligence as 
studies demonstrate the practical benefits of automatic Alzheimer’s 
disease detection on a wide scale basis. Due to the lack of publicly 
available documentation the possibility of synthetic or unverified 
image generation cannot be ruled out, and this represents a 
significant limitation in terms of compliance and reproducibility. 
To ensure broader applicability and robustness, future work will 
involve validating the model on external datasets Deep learning-
based models demonstrate clinically appropriate applications in 
patient workflows for early detection and personalized treatment 
development which leads to better neurodegenerative disease 

outcomes. Further, the proposed ensemble model can serve as an 
assistive tool for radiologists by providing automated classification 
of Alzheimer’s disease stages from MRI scans. This can help 
flag early-stage or high-risk patients for further investigation. 
However, it should not replace expert interpretation. The model 
may produce false positives or false negatives, especially in 
very mild or atypical cases. Therefore, recommendation in its 
integration with standard clinical workflows, cognitive scoring 
systems, and physician review to ensure accurate diagnosis 
and decision-making. 

8 Conclusion  

Using MRI high-resolution scans, the research team developed 
an ensemble deep learning diagnostic system which performed 
with 99% accuracy in detecting Alzheimer’s disease. The model 
utilized ResNet-50 to extract efficient features and EfficientNet-
B3 to classify robustly while remaining effective against challenges 
in medical imaging applications. Precise model training and 
evaluation became possible through the reliable annotations 
and diverse high-quality image dataset which contained 33,984 
images. Preprocessing methods performed through normalization, 
rescaling, and noise removal improved the model quality 
for enhanced robustness. The model demonstrated superior 
performance as shown through precision and recall scores together 
with F1-score and area under the ROC curve metrics during 
comprehensive evaluations across all stages of Alzheimer’s disease. 
Our model achieved consistent training and validation accuracy 
improvements which converged at 99.32% with minimal overfitting 
observed in loss plots thus, proving its strong generalization 
potential. Analysis of the confusion matrix demonstrated that the 
model produced accurate results for both Mild and Moderate 
cases along with non-demented cases and achieved commendable 
accuracy when identifying Very Mild Demented cases. The 
research data shows that the ensemble model delivers strong 
diagnostic capabilities for Alzheimer’s detection across severe 
disease manifestations. High-quality data alongside deep learning 
produces better diagnostic accuracy according to the research 
findings. Its performance quality makes the model suitable for 
clinical use because it provides essential medical decisions to 
doctors for early disease detection and ongoing care regulation. 
Further studies must evaluate both model optimization and 
implementation across multiple clinical settings as part of broader 
application validation. 
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