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Image steganalysis using LSTM 
fused convolutional neural 
networks for secure telemedicine 

Doaa Shehab* and Mohmmed Alhaddad 

Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia 

Deep learning-based image steganalysis has progressed in recent times, with 
efforts more concerted toward prioritizing detection accuracy over lightweight 
frameworks. In the context of AI-driven health solutions, ensuring the security 
and integrity of medical images is imperative. This study introduces a novel 
approach that leverages the correlation between local image features using 
a CNN fused Long Short-Term Memory (LSTM) model for enhanced feature 
extraction. By replacing the fully connected layers of conventional CNN 
architectures with LSTM, our proposed method prioritizes high-relevance 
features, making it a viable choice for detecting hidden data within medical and 
sensitive imaging datasets. The LSTM layers in our hybrid model demonstrate 
better sensitivity characteristics for ensuring privacy in AI-driven diagnostics 
and telemedicine. Experiments were conducted on Break Our Steganographic 
System (BOSS Base 1.01) and Break Our Watermarking System (BOWS) datasets, 
followed by validation on the ALASKA2 Image Steganalysis dataset. The results 
confirm that our approach generalizes effectively and would serve as impetus to 
ensure security and privacy for digital healthcare solutions. 
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1 Introduction 

AI-based digital healthcare solutions require security and data privacy while handling 
sensitive medical images; therefore, robust techniques are essential to maintain data 
integrity (1, 2). Particularly, the medical images contain embedded metadata and 
annotations that may compromise patient privacy (3). Image steganalysis helps in 
preserving sensitive medical records (4) and by leveraging artificial intelligence (AI) 
techniques, healthcare professionals can identify potential threats posed by steganographic 
attacks (5, 6). Beyond privacy concerns, the integrity of medical data is another essential 
dimension for AI diagnostic systems (7, 8). Malicious actors could use steganography 
to manipulate images, alter tumor regions, or embed misleading data without detection 
(1). Advanced steganalysis techniques and emerging telemedicine issues necessitate the 
integration of robust AI-driven steganalysis tools to improve the security of sensitive health 
data (2). 

Recent image steganalysis techniques exploited the traditional machine learning 
to extract meaningful features, but human dependencies limited their scope in image 
steganalysis (9). Low embedding capacity and poor image retrieval rates necessitated the 
deployment of deep learning assisted steganalysis algorithms. Detailed reviews regarding 
the recent deep learning strategies and network developments are included elsewhere 
(10, 11). In this connection, numerous deep learning algorithms were reported for 
rapid detection of steganographic payloads with reasonable accuracies (12–15). Key 
modifications include enhancing filters and different activation operators (16), high-order 
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FIGURE 1 

Schematic illustration of a generalized convolution neural network. 

co-occurrence matrices to capture sensitivity (17, 18), periodic 
weight capture (19), dimensionality reduction schemes (20), and 
covariance pooling techniques (16, 21–24). 

Moreover, various DL-based models such as Qian et al. (25), 
Yedroudj et al. (18), Boroumand et al. (19), Deng et al. (16), Zhang 
et al. (26), Reinel et al. (22), Öztürk ¸ S and Özkaya (27), and Ozdemir 
et al. (28) tried to improvise on the stego image feature extraction. 
In this regard, You et al. (29) exploited EfficientNet, MixNet, and 
ResNet by removing pooling and stride operations in the first layers. 
Similarly, (24) applied floating-point quantization to XuNet (24). 
Recently, LSTM was reported to capture data correlation for image 
classification tasks (21, 30–32). 

In this study, we propose a CNN architecture fused with LSTM 
by replacing the fully connected layers of the CNN. Our proposed 
model leverages LSTM to optimize weight matrices and bias 
vector parameters, ensuring effective training at each time step. In 
addition, LSTM nodes extract essential contextual features, which 
is vital for detecting hidden threats within medical images. This 
research contributes to the field by demonstrating the effectiveness 
of LSTM fused CNNs in medical image steganalysis by offering 
a robust security framework to protect sensitive patient data. 
Furthermore, we compare our proposed architecture with state-of-
the-art deep learning models in terms of computational efficiency. 
By significantly reducing the number of trainable parameters, our 
model offers a resource efficient and scalable solution for secure 
medical image transmission and integrity in telemedicine. 

The remaining of this work is organized as follows: Explain 
the Architecture of CNN and LSTM in Section 2. The materials 
and methods are presented in Section 3. The results discussion is 
detailed in Section 4. Section 5 concludes the study. 

2 A brief on CNN and LSTM 
architecture 

The encoder in any CNN-based steganography scheme 
employs binary inputs: one for the cover image and the other 

for secret image to foster a stego image. It includes pre-
processing, feature extraction, and classification stage as illustrated 
in Figure 1. In the feature extraction phase, convolution is 
performed multiple times to ameliorate the signal-to-noise ratio 
of the image and to characterize local features, whereas in 
classification, the extracted local features are average-pooled 
and concatenated to yield final feature maps. These feature 
maps were then classified in terms of class probabilities using 
SoftMax function. 

Though LSTM networks improve the functioning of recurrent 
neural networks (RNNs) in terms of vanishing gradient, LSTM 
contains three gates which are an input gate, a forget gate, and an 
output gate, where xt , Ct , and Ct−1 represent the current input, 
new, and previous cell states, respectively. ht and ht−1 refer to the 
current and previous outputs, respectively. A non-linear function 
is used to activate these three gates, which makes LSTM a dynamic 
model with changing contexts (33). The internal architecture of an 
LSTM cell is shown in Figure 2. 

Within an LSTM cell, forget gate controls the contribution 
of the previous state Ct−1 to the current state by using sigmoid 
function σ and is responsible for LSTM cell memory as given by 
the expression in Equation 1. 

ft = σ (Wf · [ht−1, xt] + bf ) (1) 

where ft is the forget vector, and xt and ht−1 are the current 
input and previous output. As given in Equation 1, xt and ht−1 

are multiplied by the trained weights matrix Wf with offset bf . 
Due to sigmoid function, the input vector ranges between 0 and 
1, indicating the degree to which values are to be remembered or 
forgotten. ht−1 and xt are passed via input updated gate to append 
the relevant information and is governed by Equation 2. Thereafter, 

new information is obtained as 
∼ 
Ct from Equation 3 after passing 

ht−1 and xt via tanh function. Finally, the candidate of the cell 
state Ct for the next time step is generated by combining current 

moment information 
∼ 
Ct and long-term memory information Ct−1 
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FIGURE 2 

Internal architecture of a single LSTM cell. 

as shown in Equation 4. 

it = σ (Wi · [ht−1, xt] + bi) (2) 
∼ 
Ct = tanh(Wi · [ht−1, xt] + bi) (3) 

Ct = ftCt−1 + it 
∼ 
Ct (4) 

Here, Wi denotes weight matrices that are produced from 
sigmoid function, and bi denotes the input gate bias. The output 
gate controls the require output Ot using the expression in 
Equations 5, 6. 

ht = Ot tanh (Ct) (5) 

Ot = σ (Wo · [ht−1, xt] + bo) (6) 

Where Wo and bo are the weighted matrices of the output gate 
and LSTM bias, respectively. 

3 Materials and methods 

With the rapid adoption of remote healthcare services, the 
risk of cyberattacks and data tampering has increased significantly. 
The main endeavor of this research is to detect and analyze 
hidden embeddings in medical images for secure medical data 
transmission. By continuously analyzing incoming medical images 
using AI-driven image steganalysis, data security and privacy risks 
can be minimized. In our proposed architecture, LSTMs were fused 
within the CNN by replacing the fully connected layers. The idea 
was to capture and rank the correlation between different stego-
noises and to reduce the number of trainable parameters for time 
efficient classification. 

3.1 Pre-processing BOSSBase 1.01 and 
BOWS 2 databases 

For the experiments, Break Our Steganographic System 
(BOSSBase 1.01) (34) and Break Our Watermarking System 
(BOWS 2) (35) databases were used. Each database has 10,000 
cover images in a Portable Gray Map (PGM) format. The data 
were prepared by resizing all images to 256 × 256 pixels (36). 
Then, a corresponding steganographic image for each cover image 
was generated using with payloads of 0.4 bits per pixel (bpp). In 
the next stage, the data were partitioned to training, validation, 
and testing sets. 4,000 images were used pairs for training, 1,000 
for validation, and 5,000 for testing purposes. Both datasets were 
merged to generate a database of 20,000 images in which split 
14,000 images were used for training (10,000 BOWS 2 + 4,000 
BOSSBase 1.01), 1,000 pairs for validation (BOSSBase 1.01), and 
5,000 for testing (BOSSBase 1.01).

3.2 Pre-processing ALASKA2 image 
steganalysis database 

ALASKA2 dataset was chosen due to its massive size and 
heterogeneous nature for an in-depth validation of our proposed 
steganalysis algorithm. In this dataset, steganography algorithms 
transform data with an unknown payload. All the images 
were resized to 256×256 pixels and compressed with JPEG 
quality factors of 95, 90, and 75. This database is available on 
Kaggle platform (37). ALASKA2 database includes 7,500 pairs of 
images in JPEG format (cover and stego) which were randomly 
shuffled before partition. We prepared the ALASKA2 database 
by portioning split 6,000 pairs for training, 1500 pairs for 
validation, and 7,500 pairs were randomly chosen testing purposes. 
Furthermore, we prepared another ALASKA2 dataset by using 
all images via three steganographic algorithms. This database was 
partitioned in which 9,000 pairs were used for training, 2,250 pairs 
for validation, and 11,250 pairs for validations. 
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FIGURE 3 

Schematic illustration of LSTM for feature representations and classification. 

FIGURE 4 

Proposed LSTM fused Xu-Net neural network architecture for secured telemedicine. 

3.3 Proposed LSTM fused CNN 
architecture 

Initially, we establish the effectiveness of LSTM for steganalysis 
in securing telemedicine communications and then integrate it 
into a CNN architecture to enhance both detection accuracy and 
processing efficiency. Given the critical need for real-time threat 
detection in remote healthcare, we provide a detailed analysis and 
comparison with state-of-the-art architectures to assess our model’s 
capability. To simulate real-world security threats in telemedicine, 
we embedded noise in cover images using five steganographic 

algorithms. Two of them are spatial steganographic algorithms: 
S-UNIWARD (38) and WOW (39) with 0.4 bpp payloads. The 
other three are transform steganographic algorithms: JMiPOD (40), 
JUNIWARD (38), and UERD (41). Our implementation ensures 
robust steganalysis for secure medical image transmission. 

Our initial approach investigates the applicability of LSTM in 
image steganalysis and is presented in Figure 3. It starts with an 
input image, which is first passed through a preprocessing layer 
using a convolutional neural network (CNN) filter of dimensions 
(5 × 5 × 30), indicating the use of 30 SRM (Spatial Rich Model) 
filters for extracting high-frequency residuals. This is followed by 
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FIGURE 5 

Set of 30 SRM Filters per category which are used in the first convolution, or preprocessing stage. Taken from Reinel et al. (22). 

FIGURE 6 

Training plots in terms of accuracy for Yedroudj-Net Model using LSTM as a classifier with BOSSBase 1.01 WOW 0.4 bpp. 
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FIGURE 7 

Training curves in terms of learning loss for the first method, when using stacked LSTM and FC layers in the classification stage, respectively. With 
BOSSBase 1.01 S-UNWARD 0.4 bpp. 

TABLE 1 Accuracy percentage and number of trainable parameters of the 
fist method model, when using FC layer and LSTM layer for the 
S-UNWARD steganographic algorithm with payload 0.4 bpp using 
BOSSBase 1.01 database. 

Scenario with LSTM with FC 

Training Acc. 75% 85% 

Validation Acc. 76% 75% 

Test Acc. 67% 67% 

# Trainable parameters 433,592 434,522 

The best performances are shown in bold for each scenario. 

batch normalization (BN) to stabilize and accelerate training. Next, 
average pooling with a 3×3 kernel is applied to reduce spatial 
dimensions while preserving critical features. This is then reshaped 
into a sequence format (65×30), which is suitable for temporal 
modeling via LSTM. After reshaping, the feature map is fed into 
an LSTM layer with 30 units as illustrated in Figure 3. The output 
of LSTM is passed through a ReLU activation to introduce non-
linearity, followed by another batch normalization to standardize 
feature distributions. A dropout layer with a rate of 0.5 is included 
to prevent overfitting by randomly deactivating neurons during the 
training. The resulting features are flattened into a one-dimensional 
vector and are further passed through a Softmax classifier. This 
architecture combines the spatial feature extraction capability of 
CNNs with the sequential modeling strength of LSTMs, making 
it particularly robust for detecting subtle patterns in stego and 
manipulated images. 

After the initial proof of concept regarding LSTM architecture 
for steganalysis, we fused LSTM as a classifier into the CNN 
architecture by replacing its three fully connected layers which 
is presented in Figure 4. The model begins with a convolutional 
preprocessing layer using fixed SRM filters, which are effective 
in extracting the noise residuals from the images. These initial 
outputs are passed through several convolutional blocks, each 

TABLE 2 Accuracy percentage and loss value of the fist method model, 
when using FC layer and LSTM layer for ALASKA2 database. 

Scenario with LSTM with FC 

Database Acc. Loss Acc. loss 

JMiPOD 62% .99 65% 1.45 

JUNIWARD 60% 1.00 62% 1.00 

UERD 61% 0.90 63% 0.94 

ALASKA2_All 49% 1.00 46% 1.7 

The best performances are shown in bold for each scenario. 

containing Conv2D layers, batch normalization, and spatial 
dropout. It is further followed by average pooling to reduce 
spatial dimensions while maintaining the important feature 
structures. The model uses concatenation operations to merge 
different channels for a multi-level residual learning. After the 
hierarchical CNN feature extraction, the architecture transitions 
into a temporal modeling phase using LSTM layers. Before entering 
the LSTM block, features are reshaped and passed through an 
average pooling 2D layer. The sequence of two LSTM layers 
allows the model to capture long-range dependencies across 
spatially transformed image features. The final output from the 
LSTM is flattened and passed into a dense layer with two 
neurons, corresponding to a binary classification: Stego and 
Cover. A softmax layer provides probabilistic outputs for the final 
decision. This hybrid CNN-LSTM design, coupled with residual 
modeling, makes the architecture well-suited for subtle signal 
detection tasks. 

For this experiment, four famous and recent CNNs for image 
steganalysis were used, which include Xu-Net (24), Ye-Net (15), 
Yedroudj-Net (18), and Zhu-Net (26). SRM filters were used to 
improve the ratio of stego- to image-noise signal. Since the stego 
signal is always embedded in the high-frequency part of an image, 
we utilized these filters to initialize the kernels of a convolutional 
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TABLE 3 Accuracy percentage of the second method models for the S-UNWARD steganographic algorithm with payload 0.4 bpp. 

Dataset BOSSBase 1.01 BOSSBase 1.01+ BOWS 

results Original Strategy With LSTM Original Strategy With LSTM 

Xu-Net 73% 78% 76% – 82% 81% 

Ye-Net 68% 81% 80% – 83% 81% 

Yedroudj-Net 77% 79% 79% – 84% 82% 

Zhu-Net 84.5% 78.6% 80.7% – 86% 81.3% 

TABLE 4 Accuracy percentage of the second method models for the WOW steganographic algorithm with payload 0.4 bpp. 

Dataset BOSSBase 1.01 BOSSBase 1.01+ BOWS 

Results Original Strategy With LSTM Original Strategy With LSTM 

Xu-Net 79% 82% 81% – 85% 83% 

Ye-Net 75% 84% 83% – 86% 85% 

Yedroudj-Net 84% 85% 83% – 86% 85% 

Zhu-Net 88.1% 82.9% 83.5% – 75% 83.5% 

layer. A bulk of 30 high-pass filters from the SRM are used in the 
pre-processing block prior to feature extraction phase as indicated 
in Figure 5. 

Experimental implementations used Python 3.8.1 and 
TensorFlow 2.2.0. In our model using LSTM only, network 
was trained for 100 epochs using S-UNWARD steganography 
with payload 0.4 bpp (BOSSBase 1.01 dataset). The LSTM fused 
CNN implementations presented in Figure 4 used the Google 
Colaboratory platform on Tesla P100 PCIe (16 GB) having CUDA 
Version 10.1 with 32 GB RAM to speed up simulations. 

4 Results and discussion 

4.1 Validation of LSTM classifier on 
BOSSBase 1.01, BOWS 2, and ALASKA2 
dataset 

To ensure reliable telemedicine, the LSTM classifier was trained 
for 100 epochs on the BOSSBase 1.01 and BOWS 2 databases and 
50 epochs on the ALASKA2 database. A batch size of 64 images 
was used, with the Stochastic Gradient Descent (SGD) optimizer 
set at a momentum of 0.95 and an initial learning rate of 0.005. 
The training curves, illustrating accuracy and learning loss, are 
presented in Figure 6. Our model incorporates gating mechanisms 
to regulate gradients, enabling the architecture to retain critical 
information necessary for detecting hidden threats in transmitted 
medical images. This ability to learn and preserve information 
over extended sequences enhances the reliability of telemedicine via 
secure data transmission. 

Figure 7 reflects the loss function which is binary cross entropy. 
The results indicate that LSTM model reaches saturation in a 
time-efficient manner very as the training data hyperparameters 
were tuned quickly. The gap between validation loss and the 
training loss using LSTM model is indicative of the fact that LSTM 

have the ability to adapt to diverse datasets and can generalize 
to new data. Moreover, the loss value of LSTM model is small 
and less than that of FC model. The classification accuracy and 
number of trainable parameters are reported in Table 1 with a fully 
connected layer and hybrid LSTM for S-UNWARD steganographic 
algorithm. As presented in Table 1, the fully connected model 
achieves higher training accuracy (85%) as compared to the LSTM-
based model (75%), which suggests that the FC model is better at 
fitting the training data. However, the similarity in test accuracy 
between both models indicates that the FC model suffers from 
overfitting. This is due to specific patterns in the training set 
that do not generalize well to the unseen data. In contrast, the 
LSTM model with its inherent regularization via likely promotes 
better generalization despite its lower training accuracy. This 
behavior is consistent with the hypothesis that the FC model’s 
capacity to memorize leads to overfitting, while the LSTM model 
trades some training performance for improved robustness to the 
unseen data. 

Table 2 provides the accuracy and loss results of the CNNs 
when using either of fully connected (FC) layer or LSTM layer for 
ALASKA2 databases. Similarly, LSTM classifier outperforms FC on 
ALASKA2 dataset. 

4.2 Validation of LSTM fused CNN 
architecture against BOSSBase 1.01, BOWS 
2, and ALASKA2 dataset 

In our proposed model for secure telemedicine, the training 
batch size was set to 64 images for Xu-Net, Ye-Net, and Yedroudj-
Net, while Zhu-Net utilized a batch size of 32. These mini-batches 
optimize computational efficiency, ensuring rapid and scalable 
analysis of medical images in remote healthcare environments. To 
enhance model stability and accuracy in detecting hidden threats 
in transmitted medical data, we trained Xu-Net, Ye-Net, and 
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FIGURE 8 

Training curves, (A–C) reflect the accuracy, and (D–F) reflect the learning loss for Xu-Net based on LSTM, Ye-Net based on LSTM, and Yedroudj-Net 
based on LSTM, respectively, with BOSSBase 1.01 WOW 0.4 bpp. 
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FIGURE 9 

Training curves, (A, B) reflect the accuracy, and (C, D) reflect the learning loss for Xu-Net based on LSTM, and Yedroudj-Net based on LSTM, 
respectively, with BOSSBase 1.01 + BOWS 2 S-UNWARD 0.4 bpp. 

Yedroudj-Net for 150 epochs, while Zhu-Net was trained for 70 
epochs. A spatial dropout rate of 0.1 was applied across all layers to 
prevent overfitting, and batch normalization was configured with a 
momentum of 0.2, epsilon of 0.001, and renorm momentum of 0.4. 
The Adam optimizer, with a learning rate of 0.001, beta 1 of 0.9, 
beta 2 of 0.999, and an epsilon value of 1e − 08, was employed to 
ensure efficient convergence. To reinforce security in telemedicine 
image transmission, all layers were regularized for weights and 
bias, enabling the model to detect anomalies and steganographic 
threats in real-time. The accuracy results for both the S-UNWARD 
and WOW steganographic algorithms, which assess the model’s 
ability to identify hidden data in medical images, are presented in 
Tables 3, 4. 

Tables 3, 4 provide an inter-comparison between the accuracy 
of our proposed LSTM fused CNN architecture with the reported 
results (36). We achieved a high agreement between strategy 
and our model in terms of accuracy. The results highlighted in 
Tables 3, 4 are extracted from Figures 8, 9. 

Trainable parameters refer to those parameters which can be 
learned and updated during the training cycle and has direct 
relationship with the computation time. Table 5 presents the 
number of trainable parameters for each model when applying the 
strategy reported in Tabares-Soto et al. (36) and when we used our 
proposed hybrid LSTM model. 

The results presented in Table 5 confirm that our proposed 
model significantly decreased the number of trainable parameters 
as compared to leading available models and hence the 
computational effort required. 

TABLE 5 Number of trainable parameters for state-of-the-arts 
architectures.

Results Based on FC Based on LSTM 

#Trainable 
parameters 

Total Classification 
stage 

Total Classification 
stage 

Xu-Net 86,554 59,616 39,418 0 

Ye-Net 87,562 22,752 118,570 0 

Yedroudj-Net 251,110 59,616 203,974 0 

Zhu-Net 275,684 59,616 265,156 0 

The best results are shown in bold for each scenario. 

5 Conclusion  

Our proposed architecture proves to be highly effective in 
capturing complex interrelations among different features, making 
it a viable choice for steganalysis in telemedicine. Experiments 
conducted on BOSSBase 1.01, BOWS, and ALASKA2 datasets 
validate that our model demonstrates strong adaptability and 
generalization capabilities, which are essential for detecting hidden 
manipulations in telemedicine imaging systems. The achieved 
validation loss characteristics further reinforce the robustness of 
our approach in identifying steganographic threats in medical data 
transmission. A comparative analysis with leading architectures 
highlights that our model achieves significant dimensionality 
reduction in terms of training parameters, making it more efficient 
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without compromising accuracy. This efficiency is critical for real-
time telemedicine applications. 

However, we acknowledge that the current study does not 
include validation on real-world clinical datasets or standard 
medical image formats such as DICOM. Addressing this 
limitation forms a key part of our future work, where we 
aim to evaluate the model’s performance on actual clinical 
imaging data to strengthen its practical applicability in 
telemedicine settings. By continuing to refine and expand 
our approach, we can contribute to a more secure and reliable 
telemedicine ecosystem. 
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