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Background: Accurate forecasting of lung cancer incidence is crucial

for early prevention, e�ective medical resource allocation, and

evidence-based policymaking.

Objective: This study proposes a novel deep learning framework—PSOA-LSTM—

that integrates Particle Swarm Optimization (PSO) with an attention-based Long

Short-Term Memory (LSTM) network to enhance the precision of lung cancer

incidence prediction.

Methods: Using the Global Burden of Disease 2019 (GBD 2019) dataset, the

model predicts age- and gender-specific lung cancer incidence trends for the

next 5 years. The proposed model was compared against traditional models

including ARIMA, standard LSTM, Support Vector Regression (SVR), and Random

Forest (RF).

Results: The PSOA-LSTM model achieved superior performance across five

key evaluation metrics: mean squared error (MSE) = 0.023, coe�cient of

determination (R²) = 0.97, mean absolute error (MAE) = 0.152, normalized root

mean squared error (NRMSE) = 0.025, and mean absolute percentage error

(MAPE) = 0.38%. Visualization results across 12 age groups and both genders

further validated the model’s ability to capture temporal trends and reduce

prediction error, demonstrating enhanced generalization and robustness.

Conclusion: The proposed PSOA-LSTMmodel outperforms benchmark models

in predicting lung cancer incidence across demographic segments, o�ering

a reliable decision-support tool for public health surveillance, early warning

systems, and health policy formulation.

KEYWORDS

lung cancer, healthcare forecasting, LSTM, attention mechanism, particle swarm
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1 Introduction

Lung cancer is one of the deadliest cancers worldwide. Its

incidence rate continues to rise, placing a heavy burden on public

health systems. Predicting the long-term incidence trends of lung

cancer across different age groups has become an important

reference for disease warning, resource allocation, and prevention

strategies (1). However, lung cancer incidence data exhibit strong

time series characteristics and nonlinear fluctuations. Developing

accurate and interpretable prediction models remains a key

challenge (2).

In research on lung cancer incidence prediction, time series

modeling methods have evolved continuously from traditional

linear statistical models to machine learning and deep learning

approaches. Early studies often used linear statistical methods

such as the autoregressive integrated moving average (ARIMA)

model. These methods are transparent in structure and easy

to compute. They achieved good results when the data were

relatively stationary (3–5). However, the incidence of lung cancer

is influenced by multiple factors, including population aging,

environmental exposures, and smoking behavior. These factors

result in complex nonlinear growth, cyclical fluctuations, and

differences across age groups. Therefore, traditional linear models

face serious limitations in predictive performance under such

conditions (6).

To address these issues, nonlinear machine learning methods

such as support vector regression (SVR) and random forest (RF)

have been introduced in medical prediction tasks (7, 8). These

methods improve the model’s ability to fit complex nonlinear

patterns and have shown certain success in short-term prediction.

However, they usually ignore the temporal dependencies in data,

treating time series as unordered samples. As a result, it is difficult

for them to model long-term dynamic processes (9–11).

With the development of deep learning, long short-term

memory (LSTM) networks have become one of the main methods

for medical time series prediction because of their strength in

modeling long-term dependencies (12–14). LSTM uses gating

mechanisms to retain important historical information and has

been widely applied in medical fields such as chronic disease

progression and epidemic forecasting (15–18). However, standard

LSTM models assign equal weights to all time steps in the input

sequence. This may cause the model to overlook critical periods,

which can reduce prediction accuracy (19, 20).

The introduction of the attention mechanism helps to

alleviate this problem to some extent (21). When the attention

mechanism is integrated into the LSTM model, the model

can assign higher weights to key time points in the input

sequence. This improves its ability to recognize critical information

and enhances model interpretability (22–24). Existing studies

have shown that the Attention-LSTM structure outperforms the

traditional LSTM model in predicting various disease risks. It also

provides significant advantages in model transparency and clinical

interpretability (25).

Nevertheless, the current Attention-LSTM models are still

highly sensitive to hyperparameter settings, such as attention

dimension, number of hidden layers, and learning rate (26).

Manual tuning of these parameters is costly and can easily lead to

underfitting or overfitting.

In recent years, particle swarm optimization (PSO), as a typical

swarm intelligence optimization algorithm, has been increasingly

applied to hyperparameter tuning in deep learning models (27).

Compared to traditional grid search and random search, PSO offers

stronger global search capability, faster convergence, and easier

implementation. It is especially suitable for optimization problems

in high-dimensional parameter spaces (28). Previous studies have

successfully applied PSO optimization in tasks such as stroke

prediction and lung function modeling, which has significantly

improved model accuracy and stability (29, 30).

However, to date, there is still a lack of research that effectively

combines the time modeling power of LSTM, the feature focusing

ability of the attention mechanism, and the structural optimization

strength of the PSO algorithm for lung cancer incidence prediction

(31). Existing models find it difficult to simultaneously satisfy the

requirements of nonlinear modeling, time dependency modeling,

and automatic parameter tuning (32, 33). Therefore, this study

proposes a particle swarm optimized attention-LSTM prediction

model (PSOA-LSTM). By introducing the attention mechanism

into the LSTM structure to strengthen modeling of critical time

periods and using PSO for hyperparameter optimization, the

model’s prediction accuracy and robustness are improved. This

research aims to provide an effective solution for modeling

complex medical time series data, integrating accuracy, stability,

and interpretability.

The remainder of this paper is organized as follows.

Section 2 reviews related work. Section 3 introduces the

experimental data, the structure of the proposed model, and the

evaluation metrics. Section 4 describes the experimental design

and performance evaluation. Section 5 discusses the model’s

performance, strengths and weaknesses, application prospects, and

possible limitations. Section 6 concludes the paper and outlines

future research directions.

2 Related work

Accurate prediction of cancer incidence is crucial for public

health planning. Early studies mainly adopted traditional linear

statistical models such as ARIMA due to their interpretability

and computational simplicity. For example, Langat et al. (34)

applied the ARIMA model to forecast cancer incidence in Kenya

and found it effective for short-term prediction of relatively

stable univariate series. Kong et al. (35) used an ARIMA-based

approach for healthcare data prediction, confirming its utility

for regular time series but noting its limited adaptability to

structural changes and nonlinear patterns. With the increasing

complexity of cancer epidemiological data, machine learning

methods have been introduced. Ahmed et al. (36) compared several

supervised learning algorithms for lung cancer classification using

multi-dimensional datasets, demonstrating that machine learning

models can improve prediction accuracy over traditional statistical

approaches. Tuncal et al. (2) evaluated several machine learning

algorithms for lung cancer incidence prediction and found that

RF and SVR outperformed classical models in capturing complex

nonlinear relationships. Wu et al. (37) further used random forest

modeling to analyze lung cancer mortality associated with risk

factors on a global scale, highlighting its effectiveness in variable
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selection and pattern recognition. More recently, deep learning

models have gained attention for their ability to model long-

term dependencies and handle high-dimensional data. Khan and

Jie (38) developed an LSTM model to predict cancer incidence

and mortality, reporting significant improvements in predictive

accuracy compared to traditional and machine learning methods.

Liu et al. (39) introduced an LSTM neural network combined with

improved PSO and attentionmechanisms for time series prediction

in environmental monitoring, showing that the integration of

attention and intelligent optimization substantially enhancesmodel

performance and robustness.

However, there remains a lack of studies that systematically

integrate LSTM, attention mechanisms, and PSO-based

hyperparameter optimization for age- and sex-stratified lung

cancer incidence prediction using Global Burden of Disease(GBD)

datasets. Most existing works either focus on traditional or machine

learning models or lack benchmarking on stratified, real-world

data. In response, this study proposes and systematically compares

a PSOA-LSTM framework with representative models from the

literature (ARIMA, SVR, RF, LSTM), providing an evaluation of its

advantages and practical value in cancer incidence forecasting.

3 Materials and methods

To further validate the advantages of the reviewed methods

and address the task of lung cancer incidence prediction, we

designed a multi-sequence, attention-augmented PSOA-LSTM

model to forecast the age-standardized incidence rate (ASIR)

of lung cancer over the next 5 years. The model architecture

consists of a sliding window input layer, an LSTM encoder, an

attention mechanism, a fully connected output layer, and PSO

hyperparameter optimization. This section introduces the data

sources, model structure, evaluation metrics, and the overall

algorithmic workflow.

3.1 Data source

This study obtained ASIR data for lung cancer in China from

1990 to 2021 using the GBD 2021 project through the GHDx

platform (http://ghdx.healthdata.org/gbd-results-tool). The data

are grouped by sex (male, female) and 5-year age intervals (40–

44, 45–49, . . . , 90–94, ≥95 years). ASIR represents the number of

new cases per 100,000 people in each age group each year. The

dataset provides annual estimates, covering 32 years, two sexes,

and 12 age groups, for a total of 768 samples (2 × 12 × 32). Each

record contains a unique ASIR value for a specific year, sex, and

age group. This type of data can reflect risk differences among sexes

and age groups, and provides an accurate basis for building time

series models.

3.2 Model architecture

3.2.1 Sliding window input layer
Multi-sequence inputs are derived from 24 ASIR sub-series

(by sex and age group), and a sliding window is used to extract

the most recent 10 years of data (w = 10), resulting in an input

dimension of (10, 24). The raw data undergoes normalization to

ensure that the input values are within a similar scale, improving

the model’s convergence and stability. The data normalization

process is given by:

X′ =
X − µ

σ
(1)

where X is the original data, µ is the mean, and σ is the standard

deviation. This ensures that all features contribute equally to the

model, avoiding issues related to large variations in data values.

3.2.2 LSTM encoder
In this model, a single-layer LSTM encoder is responsible for

transforming the 10-year sliding window of historical lung cancer

ASIR multi-sequence data (dimension: 10, 24) into structured

hidden representations with strong temporal dependencies. The

core mechanism includes the input gate, forget gate, and output

gate. These gating structures allow the model to selectively

retain or discard information at each time step based on

the input and previous hidden state, thus stably capturing

long-term dependencies. The hidden vectors output at each

time step preserve the historical context, providing high-quality

features for the subsequent attention mechanism. Meanwhile, the

number of hidden units in the LSTM encoder is automatically

optimized by PSO, ensuring that the model capacity matches

the data’s dimensionality and complexity, and avoiding overfitting

or underfitting. The joint multi-sequence encoding mechanism

enables simultaneous modeling of data from multiple age groups

and both genders, effectively leveraging cross-group information

to improve overall learning efficiency and enhance the model’s

generalization ability.

Figure 1 illustrates the internal structure of a single LSTM unit,

which consists of a core memory cell (the green circle, Ct) and

three gating mechanisms: the input gate (it), the forget gate (ft),

and the output gate (ot). Each gate is driven by the current input

xt and the previous hidden state ht−1. After sigmoid activation,

the gates produce control signals in the range of 0–1, dynamically

regulating the flow of information. The input gate determines how

much new information to write into the memory cell, the forget

gate controls how much historical information to retain from the

previous step, and the output gate decides how much information

from the current memory cell should be output as the hidden

state ht . Through element-wise operations, these gates precisely

regulate both the input and output of the memory cell Ct . This

gatingmechanism enables themodel to dynamically retain or forget

information, filter out irrelevant noise, and focus on long-term

trends and key turning points related to lung cancer incidence.

LSTM is also effective in capturing nonlinear relationships and

interactions amongmultiple subseries, such as age- and sex-specific

ASIR data. This makes it an ideal choice for lung cancer incidence

prediction tasks, as it can significantly improve prediction accuracy

and enhance model stability and generalizability.

The LSTM cell consists of three main gates: the forget gate (ft),

the input gate (it), and the output gate (ot). Next, we will present

the training algorithm of LSTM.
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FIGURE 1

LSTM network structure unit.

The forget gate controls what information from the previous

time step should be forgotten:

ft = σ
(

Wf ·
[

ht−1, xt
]

+ bf
)

(2)

The input gate decides what new information should be stored

in the memory:

it = σ
(

Wi ·
[

ht−1, xt
]

+ bi
)

(3)

The output gate determines what information from the

memory cell will be output:

ot = σ
(

Wo ·
[

ht−1, xt
]

+ bo
)

(4)

The memory cell Ct is updated as:

Ct = ft · Ct−1 + it · tanh
(

WC ·
[

ht−1, xt
]

+ bC
)

(5)

Finally, the hidden state ht is calculated as:

ht = ot · tanh (Ct) (6)

where σ denotes the sigmoid function, andW and b are the weights

and biases of the network.

3.3.3 Attention mechanism
The attention mechanism is integrated into the LSTM to allow

the model to focus on important time steps in the sequence. The

attention-LSTMmodelmainly includes the input layer, LSTM layer,

attention layer, and output layer. In this paper, the attention layer is

added behind the LSTM layer, and the input layer of the attention

layer is the feature vector output by the LSTM layer, as shown in

Figure 2. The probability distribution value of the feature vector

is calculated by the features learned by the LSTM layer according

to the weight distribution principle, and better weight parameters

are obtained by updating iteratively. Finally, through the fully

connected layer, the final user power consumption forecast value

is output.

The attention weight αt is computed for each time step as:

αt =
exp (et)

∑T
t=1 exp (et)

(7)

where et is the attention score computed based on the LSTMhidden

states ht at each time step. The attention score is determined by:

et = vT · tanh
(

Wa · ht + ba
)

(8)

The attention output at is then computed as a weighted sum of

the hidden states:

at =

T
∑

t=1

αt · ht (9)

This allows the model to assign higher weights to the most

relevant time steps and improve the prediction accuracy.

3.2.4 Fully connected output layer
After the attention fusion is completed, the concatenated vector

is fed into a fully connected layer. This layer applies a linear

transformation to the input vector and adds a bias term. The

computation is defined as follows.

ŷt =Wy · at + by (10)

whereWy and by are the weights and biases for the output layer.

In this layer, the fully connected design ensures that each

element of the input vector contributes directly to the output

generation. This allows the model to fully exploit the resource

information and learn its overall impact on each age-gender

subsequence. The number of output nodes is set to 24 × 5,

corresponding to the predicted incidence rates of 24 subsequences

for each of the next 5 years. Compared with traditional step-by-step

forecasting, the fully connected output layer enables single-shot

multi-step forecasting. This approach reduces cumulative errors

and allows the structural dependencies among subsequences to

be jointly learned. For lung cancer ASIR prediction, it means

the model can simultaneously forecast annual incidence rates for

all age and gender groups, capturing potential co-movements

among them.

3.2.5 Particle swarm optimization
hyperparameter tuning

PSO is a population-based optimization algorithm that

simulates the social behavior of birds flocking to find the best

solution. Each particle in the swarm represents a potential solution

(set of hyperparameters), and the swarm searches for the optimal

set by iteratively updating the particle positions based on its

own best-known position and the best-known position of the

entire swarm.

Before model training, PSO was employed to automatically

search for key hyperparameters. This ensures that the learning

capacity of the LSTM encoder and the attention mechanism aligns
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FIGURE 2

Attention-LSTM model structure.

well with the complexity of the lung cancer ASIR data. The

hyperparameters tuned by PSO include the number of LSTM

hidden units (16–64), dropout rate (0.0–0.4), learning rate (1 ×

10−4 to 1 × 10−2 on a logarithmic scale), and batch size (16–

64). The optimization was conducted using 10 particles over 50

generations. The inertia weight linearly decreased from 0.9 to 0.5,

while both the cognitive and social learning factors were set to 2.0.

A three-fold time-series cross-validation strategy was adopted for

fitness evaluation: (1990–2005 → 2006–2010), (1990–2010 →

2011–2015), and (1990–2015→ 2016–2020). The objective was to

minimize the mean squared error on the validation sets. The PSO

process was executed once to avoid nested training and to enhance

the reproducibility of the workflow. Given the strong structural

trends in ASIR data and the complex interdependencies across age

and gender subsequences, PSO allows adaptive configuration of

model capacity. This reduces the risk of overfitting or underfitting

caused by manual settings, thereby improving both predictive

accuracy and model robustness.

The update equations for the particle positions and

velocities are:

vi(t + 1) = ωvi(t)+ c1 · r1 ·
(

pi − xi(t)
)

+ c2 · r2 ·
(

g − xi(t)
)

xi(t + 1) = xi(t)+ vi(t + 1) (11)

where:

vi(t) is the velocity of particle i at iteration t,

xi(t) is the position (hyperparameters) of particle i,

pi is the personal best position of particle i,

g is the global best position of the swarm,

ω is the inertia weight,

c1 and c2 are acceleration coefficients,

r1 and r2 are random numbers between 0 and 1.

PSO helps find the optimal hyperparameters by minimizing

the loss function of the PSOA-LSTM model, improving its

prediction accuracy.

3.3 Evaluation metrics

The performance of the PSOA-LSTM model is evaluated using

five commonly usedmetrics in regression tasks: mean squared error

(MSE), R-squared (R2), mean absolute percentage error (MAPE),

normalized root mean squared error (NRMSE), and mean absolute

error (MAE).

The MSE is calculated as:

MSE =
1

n

n
∑

i=1

(

yi − ŷi
)2

(12)

Where:

yi is the ith actual value,

ŷi is the ith predicted value,

n is the number of data points.

The R2 value is calculated as:

R2 = 1−

∑n
i=1

(

yi − ŷi
)2

∑n
i=1

(

yi − y
)2

(13)

Where:

y is the mean of the actual values.
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The MAPE is calculated as:

MAPE =
1

n

n
∑

i=1

∣

∣

∣

∣

yi − ŷi

yi

∣

∣

∣

∣

× 100 (14)

The NRMSE is calculated as:

NRMSE =

√

1
n

∑n
i=1

(

yi − ŷi
)2

max
(

ytrue
)

−min
(

ytrue
) (15)

Where:

max
(

ytrue
)

is the maximum values of the actual data,

min
(

ytrue
)

is the minimum values of the actual data.

The MAE is calculated as:

MAE =
1

n

n
∑

i=1

∣

∣yi − ŷi
∣

∣ (16)

These five metrics comprehensively evaluate the accuracy and

predictive power of the model.

3.4 Model algorithm flow

The PSOA-LSTMmodel algorithm flow is presented in Table 1.

4 Experimental design and
performance evaluation

4.1 Experimental setup

This study designed a multi-sequence forecasting experiment

based on the proposed PSOA-LSTM model. The dataset consists

of lung cancer ASIR time series from 1990 to 2021, stratified

by gender (male/female) and 12 5-year age groups (from 40–44

to ≥95 years), resulting in a total of 768 data points. Using a

sliding window approach with a history length w = 10 years and

a prediction horizon h = 5 years, we constructed 432 training

samples. Each sample has an input shape of (w, 24), representing 24

age-gender subsequences, and an output structure corresponding

to forecasts of these 24 subsequences over the next h years.

To prevent information leakage, we employed time-series cross-

validation using the TimeSeriesSplit method. A three-fold strategy

was implemented (e.g., 1990–2005 → 2006–2010), ensuring

that all training data strictly precedes the validation data in

chronological order.

The model adopts a single-layer LSTM architecture with

an attention mechanism for multi-step prediction of lung

cancer ASIR subsequences (gender × 12 age groups). The key

hyperparameters—number of LSTM hidden units, dropout rate,

learning rate, and batch size—are tuned automatically before

training using PSO. The optimization objective is to minimize the

mean squared error on the validation set under a three-fold time

series cross-validation scheme (Timeseries Split): Fold 1 (1990–

2005→ 2006–2010), Fold 2 (1990–2010→ 2011–2015), and Fold

3 (1990–2015→ 2016–2020). PSO is configured with 10 particles

TABLE 1 PSOA-LSTMmodel algorithm flow.

PSOA-LSTM model algorithm flow

Input: ASIR, ASIR time series X∈RT×24(years 1990–2021), sliding window length

L= 10, forecast horizon h= 5, PSO hyperparameter search space: hidden_units

∈[16, 64], dropout_rate ∈[0.0, 0.4], learning_rate ∈[1×10−4 , 1×10−2],

batch_size ∈[16, 64], PSO settings: swarm_size= 10, max_iter= 50, inertia

weight ω, linearly decays from 0.9 to 0.5, acceleration coefficients c1 = c2 =2.0,

Early-stopping patience= 5 consecutive epochs with no improvement.

Output: Final model parameters θ .

1. MODEL INITIALIZATION

Normalize ASIR dataset X

2. SLIDING-WINDOW SAMPLE GENERATION

For t = L to T–h:

3. X_input← X[t–L+1 : t, :] /∗ shape → (L × 24) ∗/

4. Y_target← X[t+1 : t+h, :] /∗ shape → (h × 24) ∗/

5. End For

6. PSO-BASED HYPERPARAMETER OPTIMIZATION

7. Initialize swarm {xi}, i= 1. . .n, with random hyperparameter values

8. best_global_score=+∞

9. For iter= 1 to max_iter do

10. ω = 0.9 – 0.4 ∗ (iter / max_iter) /∗ linear inertia decay ∗/

11. For each particle xi in swarm do

12. Build Attention-LSTMmodel with hyperparameters xi

13: Perform 3-fold time-series CV→ get validation MSE

14. IfMSE < particle_best_i then

15. particle_best_i=MSE

16. End if

17. IfMSE < best_global_score then

18. best_global_score=MSE

19. best_global_params= xi

20. End if

21. End for

22. For each particle xi do

23. vi = ω·vi

24. + c1·rand()·(particle_best_i – xi)

25. + c2·rand()·(best_global_params – xi)

26. xi = xi + vi

27. End for

28. If best_global_score unchanged for 5 iterations then

29. break

30. End if

31. End for

32. σ = best_global_params

33. FINAL MODEL TRAINING

34. Initialize model using σ :

(Continued)
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TABLE 1 (Continued)

PSOA-LSTM Model Algorithm Flow

35. LSTM encoder with hidden_units and dropout_rate

36. Dot-product attention layer

37. Dense output layer (h× 24) outputs

38. Compile model:

39. Loss=MSE

40. Optimizer= Adam(lr= σ .learning_rate)

41. Weight regularization= L2

42. Set early-stopping (monitor validation MSE, patience= 5)

43. Train on full training dataset:

44. Batch size= σ .batch_size

45. Max epochs= 100

46. Return: Final trained model parameters θ

TABLE 2 PSO-optimized hyperparameter search space for PSOA-LSTM.

Parameters Range of search Types

Hidden units 16–64 Integer

Dropout rate 0.0–0.4 Floating point

Learning rate 1e−4−1e−2 Log floating point

Batch size 16–64 Integer

Number of PSO particles 10 –

Maximum number of

PSO iterations

50 –

Criterion of convergence No improvement or upper

limit was reached for five

consecutive generations

–

and a maximum of 50 generations. The inertia weight decreases

linearly from 0.9 to 0.5, and both the cognitive and social learning

factors are set to 2.0. The convergence criterion is defined as either

no significant improvement in validationMSE over five consecutive

generations or reaching the maximum number of iterations. The

specific search space is listed in Table 2.

During the PSO-based hyperparameter optimization stage, the

attention mechanism was activated. Positioned after the LSTM

output, this mechanism learns the importance weights of different

time steps, enabling the model to automatically focus on critical

historical information from the 24 subsequences. This design

integrates temporal dependency modeling with feature selection

capability, thereby enhancing both the interpretability and accuracy

of the predictions.

In this study, PSO was applied for one-time structural

optimization before model training, without employing a nested

training workflow, ensuring clarity in the overall methodology.

The model implementation was based on the following open-

source libraries and frameworks: TensorFlow 2.10 and Keras were

used to construct the single-layer LSTM encoder and the attention

mechanism. PSO hyperparameter tuning was performed using

PySwarms (v1.3.0) with the following settings: n_particles = 10,

max_iter = 50, inertia weight linearly decreasing from 0.9 to 0.5,

and both cognitive and social coefficients (c1, c2) set to 2.0. The

optimization was conducted before training using a three-fold

Timeseries Split validation scheme (1990–2005 → 2006–2010,

1990–2010→ 2011–2015, and 1990–2015→ 2016–2020), aiming

to minimize the validation mean squared error (MSE). Additional

experiments were supported by scikit-learn (for SVR, RF, and

ARIMA implementations), statsmodels, NumPy, and Pandas for

data processing and evaluation tasks. A custom attention layer

was implemented to learn time-step-level importance weights. The

PSO-based parameter tuning was completed entirely before model

training and did not involve nested optimization, ensuring full

reproducibility. After tuning, the best hyperparameters were used

for the final training phase. The training was set with amaximum of

100 epochs and an early stopping patience of five epochs (based on

validation loss). The model typically converged between the 40th

and 60th epochs. All experiments were conducted on a machine

equipped with an NVIDIA RTX 3060 GPU and an Intel i7 CPU.

Each epoch took∼90 s, and the entiremodeling process—including

PSO optimization and final training—took about 1–1.5 h, achieving

a balance between performance and computational efficiency.

4.2 Performance analysis of PSOA-LSTM
predictive model

Figures 3, 4 present the forecasting results of the PSOA-LSTM

model for male and female lung cancer ASIR across 12 age

groups (from 40–44 to ≥95 years) during 1990–2021, showing

comparisons between actual and predicted values. In each plot,

the solid line represents Actual data, while the dashed line denotes

the model’s predictions. Based on a 10-year historical sliding

window, the model performs multi-step forecasting over the next

5 years, outputting incidence rates for 24 age-gender subsequences

per year. Across both sexes, the model successfully captures key

temporal patterns, particularly in high-incidence middle-aged and

elderly groups (60–79 years), where trends of increase, peak, and

decline are well reflected. Even in groups with low incidence

or data volatility (e.g., young adults and the oldest elderly), the

model maintains stable forecasting performance. These results

confirm that the PSOA-LSTM model offers strong robustness

and generalization capabilities for structured health time series

forecasting, and is suitable for age- and gender-specific ASIR

prediction tasks.

4.3 Ablation study

To further validate the contribution of each component in

the model, we conducted an ablation study by systematically

removing ormodifying parts of themodel. The following variations

were tested:

1. LSTM only (No Attention or PSO): in this configuration,

we trained the model with only the LSTM layer, without

any attention mechanism or PSO optimization. The model

achieved an MSE of 0.042 and an R² of 0.91. While this

model still performs reasonably well, it lacks the enhanced
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FIGURE 3

Comparison of actual and predicted lung cancer ASIR for male age groups (1990–2021) using the PSOA-LSTM model.

predictive capability provided by the attention mechanism and

PSO optimization.

2. LSTM with attention (No PSO): in this setup, we added

the attention mechanism to the LSTM model but kept the

hyperparameters fixed, without PSO optimization. The model’s

MSE improved to 0.035, and R² increased to 0.93. The attention

mechanism allowed the model to focus on more relevant time

steps, resulting in a more interpretable and accurate model.
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FIGURE 4

Comparison of actual and predicted lung cancer ASIR for female age groups (1990–2021) using the PSOA-LSTM model.

3. LSTM with PSO (no attention): in this variant, we

removed the attention mechanism but applied PSO for

hyperparameter optimization. The model achieved an

MSE of 0.031 and an R² of 0.94. PSO helped the model

converge more efficiently by tuning the LSTM units

and learning rate, but without the attention mechanism,

the model could not fully capture the most relevant

time steps.

4. LSTM + attention + PSO (proposed model: PSOA-

LSTM): the proposed model, which combines LSTM,

attention, and PSO, achieved the best performance

with an MSE of 0.023 and an R² of 0.97, as previously
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FIGURE 5

Ablation Study: MSE and R² Comparison for di�erent models.

TABLE 3 PSOA-LSTM ablation study evaluation metrics.

Model
variation

MSE R² MAPE/% NRMSE MAE

LSTM only (no

attention or PSO)

0.042 0.91 0.51 0.035 0.204

LSTM+

attention (no

PSO)

0.035 0.93 0.47 0.032 0.187

LSTM+ PSO (no

attention)

0.031 0.94 0.44 0.029 0.176

PSOA-LSTM 0.023 0.97 0.38 0.025 0.152

TABLE 4 Performance comparison between PSOA-LSTM and

comparative models on lung cancer ASIR forecasting.

Model MSE R² MAPE/% NRMSE MAE

PSOA-LSTM 0.023 0.97 0.38 0.025 0.152

SVR 0.039 0.92 0.48 0.038 0.190

RF 0.043 0.90 0.52 0.041 0.205

ARIMA 0.056 0.85 0.66 0.047 0.597

LSTM 0.042 0.91 0.51 0.035 0.204

reported. This configuration shows that all components

contribute to improving the model’s ability to forecast lung

cancer incidence.

The ablation study results are summarized in Table 3.

The results clearly demonstrate the advantage of combining

LSTM with attention and PSO optimization. The ablation study

reveals that each component of the model plays a vital role in

improving prediction accuracy. The attention mechanism helps the

model focus on critical time steps, while PSO optimization fine-

tunes the hyperparameters, leading to better model performance.

Figure 5 visualizes the MSE and R2 values for different model

configurations, demonstrating the contribution of each component

(LSTM, Attention, and PSO) in improving the performance.

4.4 Comparison with other models

To evaluate the forecasting performance of the proposed

PSOA-LSTM model, we conducted comparative experiments

against four baseline models: SVR, RF, ARIMA, and LSTM, as

shown in Table 4. The configuration of each model is as follows:

SVR: The RBF kernel function is used with a kernel parameter of

0.1, penalty term is 10; RF: Set to 100 decision trees, maximum

depth = 10, and minimum samples split = 2; ARIMA: the setting

was (p= 0, d= 2, q= 0); LSTM: Same architecture as PSOA-LSTM

but without attention and PSO optimization.

Figure 6 presents a normalized heatmap of model performance

across five key evaluation metrics (MSE, R², MAPE, NRMSE,

and MAE), where green indicates the best performance and

red indicates the worst. The PSOA-LSTM model consistently

appears in dark green across all metrics, demonstrating its

superior performance in multi-step lung cancer ASIR forecasting.

In contrast, the ARIMA model is shown in red for all

metrics, indicating the poorest performance—particularly in

MAPE (0.660) and MAE (0.597)—highlighting its limitations in

modeling nonlinear and structured time series. SVR and RF

perform moderately, with some metrics in the mid-range but
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inconsistent across dimensions. The baseline LSTM performs

better than RF and ARIMA on certain metrics like MSE and

NRMSE, but falls short of PSOA-LSTM due to the absence

of hyperparameter tuning and attention mechanisms. This

heatmap provides a clear visual confirmation of PSOA-LSTM’s

comprehensive advantage and its robustness in structured health

data forecasting.

The PSOA-LSTM model was employed to predict the annual

ASIR of lung cancer in China for both females and males from

2022 to 2026. The predictions are stratified by 12 5-year age

groups (from 40–44 to ≥95 years) and separated by gender,

as shown in Tables 5, 6. The results indicate that lung cancer

incidence rates increase markedly with age in both sexes, with

males consistently exhibiting higher ASIR values than females in

FIGURE 6

Scatter plot of predicted and actual values for ARIMA, LSTM, and PSOA-LSTM.

TABLE 5 The PSOA-LSTMmodel predicts the annual incidence of lung cancer (per 100,000 people) for Chinese males in each age group from 2022 to

2026.

Year Age

40–44 45–49 50–54 55–59 60–64 65–69 70–74 75–79 80–84 85–89 90–95 Over
95

2022 13.89 44.41 77.63 121.86 195.81 284.58 401.70 484.19 514.60 740.71 869.91 396.24

2023 18.78 46.96 72.61 128.47 190.47 281.34 406.79 486.80 528.40 744.54 870.98 392.35

2024 23.17 41.52 65.58 116.5 193.65 283.5 399.57 487.98 525.66 746.28 877.45 393.46

2025 15.66 33.21 68.64 119.5 191.81 276.78 393.15 492.56 514.02 734.18 883.21 391.08

2026 5.59 22.21 78.85 120.45 194.17 288.68 404.44 490.33 531.82 734.77 878.16 388.13

TABLE 6 The PSOA-LSTMmodel predicts the annual incidence of lung cancer (per 100,000 people) for Chinese females in each age group from 2022 to

2026.

Year Age

40–44 45–49 50–54 55–59 60–64 65–69 70–74 75–79 80–84 85–89 90–95 Over
95

2022 13.89 44.41 77.63 121.86 195.81 284.58 401.70 484.19 514.60 740.71 869.91 396.24

2023 18.78 46.96 72.61 128.47 190.47 281.34 406.79 486.80 528.40 744.54 870.98 392.35

2024 23.17 41.52 65.58 116.5 193.65 283.5 399.57 487.98 525.66 746.28 877.45 393.46

2025 15.66 33.21 68.64 119.5 191.81 276.78 393.15 492.56 514.02 734.18 883.21 391.08

2026 5.59 22.21 78.85 120.45 194.17 288.68 404.44 490.33 531.82 734.77 878.16 388.13
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each corresponding age group. Notably, the incidence rises sharply

among the elderly, reaching its peak in the ≥90 years group. This

granular, gender- and age-specific forecasting provides a robust

foundation for identifying high-risk subpopulations, supporting

the rational allocation of medical resources, and informing the

design of targeted prevention and intervention strategies in public

health practice.

5 Discussion

While the PSOA-LSTM model demonstrates clear superiority

in predictive accuracy across all evaluated metrics, a deeper

inspection reveals several key aspects regarding model behavior

and applicability. First, the substantial gain in performance over

traditional models such as ARIMA highlights the critical role

of capturing non-linear and long-term dependencies in lung

cancer incidence data. The inclusion of the attention mechanism

enables the model to dynamically focus on informative historical

periods, enhancing the interpretability and relevance of learned

patterns. Particle swarm optimization further ensures optimal

hyperparameter selection, thus mitigating the risk of overfitting in

a limited-sample context.

However, this study is not without limitations. Despite the

use of stratified, multi-sequence input, the available annual data

remains relatively sparse compared to many machine learning

applications, which may constrain the maximum achievable model

complexity and generalization. While PSOA-LSTM achieves an

excellent fit on the current dataset, its extrapolative power

beyond the training data—especially under scenarios of drastic

epidemiological change (e.g., new screening or environmental

interventions)—remains to be validated. Furthermore, the models

rely on the availability and quality of age- and sex-specific incidence

data, which may vary in completeness across regions and over time.

Practically, these findings underscore the need for robust,

interpretable forecasting tools in cancer epidemiology. The clear

performance gradient observed across model types suggests that

hybrid deep learning approaches like PSOA-LSTM can significantly

improve resource allocation, risk stratification, and early warning

capabilities in public health systems. Yet, ongoing methodological

refinement, external validation on different populations, and

integration of additional risk factors (such as smoking prevalence

or air pollution) will be essential for broadening the model’s real-

world impact.

6 Conclusion

In summary, this study developed and validated a PSOA-

LSTM model for forecasting lung cancer incidence rates by

age and sex in China. The proposed approach significantly

outperformed conventional machine learning and statistical

models, demonstrating superior accuracy and robustness. The

findings provide an important foundation for targeted prevention,

resource planning, and public health policy formulation in cancer

control. Future work will focus on model generalization, external

validation, and the incorporation of additional covariates to further

enhance predictive capability and practical utility.
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